دورية أكاديمية

Update on lacrimal apparatus dysfunction associated with differentiated thyroid cancer after I-131 therapy.

التفاصيل البيبلوغرافية
العنوان: Update on lacrimal apparatus dysfunction associated with differentiated thyroid cancer after I-131 therapy.
المؤلفون: Liang C; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China., Wu C; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China., Liu L; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China. liulianbb@163.com., Zhong J; Department of Ophthalmology, The Sixth Affiliated Hospital of Jinan University, No. 88, Changdong Road, Dongguan, 523573, China. zjx85221206@126.com.
المصدر: International ophthalmology [Int Ophthalmol] 2024 Jun 23; Vol. 44 (1), pp. 257. Date of Electronic Publication: 2024 Jun 23.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Kluwer Country of Publication: Netherlands NLM ID: 7904294 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2630 (Electronic) Linking ISSN: 01655701 NLM ISO Abbreviation: Int Ophthalmol Subsets: MEDLINE
أسماء مطبوعة: Publication: Dordrecht : Kluwer
Original Publication: The Hague, Junk.
مواضيع طبية MeSH: Iodine Radioisotopes*/adverse effects , Iodine Radioisotopes*/therapeutic use , Thyroid Neoplasms*/radiotherapy , Lacrimal Apparatus Diseases*/etiology , Lacrimal Apparatus Diseases*/diagnosis , Lacrimal Apparatus Diseases*/physiopathology , Lacrimal Apparatus*, Humans ; Dry Eye Syndromes/etiology ; Dry Eye Syndromes/diagnosis ; Dry Eye Syndromes/physiopathology ; Radiation Injuries/etiology ; Radiation Injuries/diagnosis ; Radiation Injuries/physiopathology ; Quality of Life ; Nasolacrimal Duct/radiation effects
مستخلص: Purpose: The most prevalent lacrimal apparatus dysfunctions associated with differentiated thyroid cancer(DTC) after I-131 therapy are dry eye and nasolacrimal duct obstruction(NLDO), leading to ocular discomfort and lower quality of life for patients. It is crucial to diagnose and manage lacrimal apparatus dysfunction associated with I-131 therapy for DTC. Therefore, this review aims to comprehensively summarize and analyze the advances in mechanisms and therapeutic options underlying lacrimal apparatus dysfunction induced by I-131 therapy for DTC.
Methods: A comprehensive search of CNKI, PubMed, and Wed of Science was performed from the database to December of 2023. Key search terms were "Thyroid cancer", "I-131", "Complications", "Dry eye", "Epiphora", "Tear", "Nasolacrimal duct" and "NLDO".
Results: The research indicates that I-131 therapy for DTC causes damage to the lacrimal glands and nasolacrimal duct system, resulting in symptoms such as dry eye, epiphora, and mucoid secretions. Moreover, recent research has focused on exploring relevant risk factors of the condition and experimental and clinical treatments. However, there is some controversy regarding the mechanisms involved, whether it is due to the passive flow of I-131 in tears, active uptake of I-131 by the sodium-iodide symporter (NIS) in the lacrimal sac and nasolacrimal duct, or secondary metabolic and hormonal disturbances caused by I-131.
Conclusion: It is crucial for early detection and preventive measures by ophthalmologists and the need for further studies to elucidate the mechanisms underlying the disease.
(© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Vaccarella S, Dal Maso L, Laversanne M et al (2015) The impact of diagnostic changes on the rise in thyroid Cancer incidence: a Population-based study in selected high-resource countries. Thyroid 25(10):1127–1136. https://doi.org/10.1089/thy.2015.0116. (PMID: 10.1089/thy.2015.011626133012)
Rahib L, Smith BD, Aizenberg R et al (2014) Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 74(11):2913–2921. https://doi.org/10.1158/0008-5472.Can-14-0155. (PMID: 10.1158/0008-5472.Can-14-015524840647)
Chiapponi C, Hartmann MJM, Decarolis B et al (2023) Differentiated thyroid cancer in adolescents: single center experience and considerations for surgical management and radioiodine treatment. J Clin Res Pediatr Endocrinol 15(3):257–263. https://doi.org/10.4274/jcrpe.galenos.2023.2023-1-16. (PMID: 10.4274/jcrpe.galenos.2023.2023-1-163698777310448561)
Riesco-Eizaguirre G, Santisteban P (2006) A perspective view of sodium iodide symporter research and its clinical implications. Eur J Endocrinol 155(4):495–512. https://doi.org/10.1530/eje.1.02257. (PMID: 10.1530/eje.1.0225716990649)
Guidelines Working Committee of Chinese Society of Clinical Oncology (2021) Guidelines of Chinese society of clinical 0ncology (CSCO) dilerentiated thyroid Cancer. Cancer Control Treat. 34(12):1164–1201. https://doi.org/10.3969/j.ssn.1674-0904.2021.12.013. (PMID: 10.3969/j.ssn.1674-0904.2021.12.013)
Nurhidayah W, Widyasari EM, Daruwati I et al (2023) Radiosynthesis, stability, lipophilicity, and cellular uptake evaluations of [(131)I]Iodine-α-Mangostin for breast cancer diagnosis and therapy. Int J Mol Sci. https://doi.org/10.3390/ijms24108678. (PMID: 10.3390/ijms241086783724002510218390)
Glazer DI, Brown RK, Wong KK et al (2013) SPECT/CT evaluation of unusual physiologic radioiodine biodistributions: pearls and pitfalls in image interpretation. Radiograph Rev Publ Radiol Soc North Am Inc 33(2):397–418. https://doi.org/10.1148/rg.332125051.
Jhiang SM, Sipos JA (2021) Na+/I- symporter expression, function, and regulation in non-thyroidal tissues and impact on thyroid cancer therapy. Endocrine-related Cancer 28(10):T167-t177. https://doi.org/10.1530/erc-21-0035. (PMID: 10.1530/erc-21-0035339745568419015)
Spitzweg C, Joba W, Schriever K et al (1999) Analysis of human sodium iodide symporter immunoreactivity in human exocrine glands. J Clin Endocrinol Metab 84(11):4178–4184. https://doi.org/10.1210/jcem.84.11.6117. (PMID: 10.1210/jcem.84.11.611710566669)
Fard-Esfahani A, Emami-Ardekani A, Fallahi B et al (2014) Adverse effects of radioactive iodine-131 treatment for differentiated thyroid carcinoma. Nucl Med Commun 35(8):808–817. https://doi.org/10.1097/mnm.0000000000000132. (PMID: 10.1097/mnm.000000000000013224751702)
Clement SC, Peeters RP, Ronckers CM et al (2015) Intermediate and long-term adverse effects of radioiodine therapy for differentiated thyroid carcinoma–a systematic review. Cancer Treat Rev 41(10):925–934. https://doi.org/10.1016/j.ctrv.2015.09.001. (PMID: 10.1016/j.ctrv.2015.09.00126421813)
Zettinig G, Hanselmayer G, Fueger BJ et al (2002)long-term impairment of the lacrimal glands after radioiodine therapy: a cross-sectional study. Eur J Nucl Med Mol Imaging 29 (11): 1428–1432. https://doi.org/10.1007/s00259-002-0969-0.
Solans R, Bosch JA, Galofré P et Al(2001)salivary and lacrimal gland dysfunction (sicca syndrome) after radioiodine therapy. J Nucl Med 42 (5): 738–743. https://pubmed.ncbi.nlm.nih.gov/11337569/.
da Fonseca FL, Yamanaka PK, Mazoti L et al (2017) Correlation among ocular surface disease, xerostomia, and nasal symptoms in patients with differentiated thyroid carcinoma subjected to radioiodine therapy: a prospective comparative study. Head Neck 39(12):2381–2396. https://doi.org/10.1002/hed.24895. (PMID: 10.1002/hed.2489528945293)
Fonseca FL, Lunardelli P, Matayoshi S (2012) Lacrimal drainage system obstruction associated to radioactive iodine therapy for thyroid carcinoma. Arq Bras Oftalmol 75(2):97–100. https://doi.org/10.1590/s0004-27492012000200005. (PMID: 10.1590/s0004-2749201200020000522760799)
Doi SA, Woodhouse NJ, Thalib L et al (2007) Ablation of the thyroid remnant and I-131 dose in differentiated thyroid cancer: a meta-analysis revisited. Clin Med Res 5(2):87–90. https://doi.org/10.3121/cmr.2007.763. (PMID: 10.3121/cmr.2007.763176070421905932)
Yartsev VD, Atkova EL, Ekaterinchev MA (2023) Topographic and anatomical features of the nasolacrimal duct obstruction due to radioiodine treatment. Int Ophthalmol 43(9):3385–3390. https://doi.org/10.1007/s10792-023-02746-7. (PMID: 10.1007/s10792-023-02746-737199817)
Morgenstern KE, Vadysirisack DD, Zhang Z et al (2005) Expression of sodium iodide symporter in the lacrimal drainage system: implication for the mechanism underlying nasolacrimal duct obstruction in I(131)-treated patients. Ophthalmic Plast Reconstr Surg 21(5):337–344. https://doi.org/10.1097/01.iop.0000179369.75569.a8. (PMID: 10.1097/01.iop.0000179369.75569.a816234694)
Al-Qahtani KH, Al Asiri M, Tunio MA et al (2014) Nasolacrimal duct obstruction following radioactive iodine 131 therapy in differentiated thyroid cancers: review of 19 cases. Clin Ophthalmol 8:2479–2484. https://doi.org/10.2147/opth.S71708. (PMID: 10.2147/opth.S71708255253254266423)
Li N, Zhang W (2023) Clinical characteristics of nasolacrimal duct obstruction after iodine therapy in differentiated thyroid cancer patients. Ear Nose Throat J. https://doi.org/10.1177/01455613231170088. (PMID: 10.1177/0145561323117008838124322)
Yartsev VD, Solodkiy VA, Fomin DK et al (2021) Clinical and demographic characteristics of tearing in patients after Radioiodine ablation for differentiated thyroid Cancer. Curr Eye Res 46(9):1320–1324. https://doi.org/10.1080/02713683.2021.1878229. (PMID: 10.1080/02713683.2021.187822933455422)
Lee IT, Chen W, Chen Q et al (2022) Factors associated with radioactive Iodine therapy-acquired nasolacrimal duct obstruction. Endocr Pract 28(12):1210–1215. https://doi.org/10.1016/j.eprac.2022.08.006. (PMID: 10.1016/j.eprac.2022.08.00635970353)
Yartsev VD, Sheremeta MS, Trukhin AA et al (2023) Dependence of radioactive iodine-131 capture by the lacrimal ducts on the tear production level. Indian J Ophthalmol 71(5):1828–1832. https://doi.org/10.4103/ijo.Ijo_2780_22. (PMID: 10.4103/ijo.Ijo_2780_223720303710391448)
Fard-Esfahani A, Mirshekarpour H, Fallahi B et al (2007) The effect of high-dose radioiodine treatment on lacrimal gland function in patients with differentiated thyroid carcinoma. Clin Nucl Med 32(9):696–699. https://doi.org/10.1097/RLU.0b013e318124fdb6. (PMID: 10.1097/RLU.0b013e318124fdb617710021)
Ali MJ (2023) Etiopathogenesis of primary acquired nasolacrimal duct obstruction (PANDO). Prog Retin Eye Res 96:101193. https://doi.org/10.1016/j.preteyeres.2023.101193. (PMID: 10.1016/j.preteyeres.2023.10119337394093)
Eksioglu U, Atilgan HI, Yakin M et al (2019) Antioxidant effects of vitamin D on lacrimal glands against high dose radioiodine-associated damage in an animal model. Cutan Ocul Toxicol 38(1):18–24. https://doi.org/10.1080/15569527.2018.1498507. (PMID: 10.1080/15569527.2018.149850730003810)
Koca G, Singar E, Akbulut A et al (2021) The effect of resveratrol on radioiodine therapy-associated lacrimal gland damage. Curr Eye Res 46(3):398–407. https://doi.org/10.1080/02713683.2020.1803920. (PMID: 10.1080/02713683.2020.180392032730712)
Fedorov AA, Atkova EL, Yartsev VD (2020) Secondary acquired nasolacrimal duct obstruction as a specific complication of treatment with radioactive Iodine (Morphological Study). Ophthalmic Plast Reconstr Surg 36(3):250–253. https://doi.org/10.1097/iop.0000000000001521. (PMID: 10.1097/iop.000000000000152131743278)
Usmani S, Jain A, Al-Riyami K et al (2023) Accumulation of 131 Iodine in the nasolacrimal sac/duct after radioiodine therapy for papillary thyroid cancer. J Pak Med Assoc 73(3): 713–714. https://doi.org/10.47391/jpma.23-22.
Lee IT, Grice JV, Ji X et al (2024) A pilot nonrandomized controlled trial examining the use of artificial tears on the radioactivity of tears after radioactive Iodine treatment for thyroid cancer. Thyroid 34(1):82–87. https://doi.org/10.1089/thy.2023.0338. (PMID: 10.1089/thy.2023.033837917111)
Bakheet SM, Hammami MM, Hemidan A et al (1998) Radioiodine secretion in tears. J Nucl Med 39(8):1452–1454. (PMID: 9708527)
Zettinig G, Karanikas G, Hanselmayer G et al (2000) Radioactive contamination of contact lenses during radioiodine therapy. Nucl Med Commun 21(10):955–957. https://doi.org/10.1097/00006231-200010000-00010. (PMID: 10.1097/00006231-200010000-0001011130337)
Ketchum CJ, Rajendrakumar GV, Maloney PC (2004) Characterization of the adenosinetriphosphatase and transport activities of purified cystic fibrosis transmembrane conductance regulator. Biochemistry 43(4):1045–1053. https://doi.org/10.1021/bi035382a. (PMID: 10.1021/bi035382a14744150)
Berman M, Hoff E, Barandes M et al (1968) Iodine kinetics in man–a model. J Clin Endocrinol Metab 28(1):1–14. https://doi.org/10.1210/jcem-28-1-1. (PMID: 10.1210/jcem-28-1-15694134)
Singh S, Hammer CM, Paulsen F (2023) Urea and ocular surface: synthesis, secretion and its role in tear film homeostasis. Ocul Surf 27:41–47. https://doi.org/10.1016/j.jtos.2022.11.003. (PMID: 10.1016/j.jtos.2022.11.00336375795)
Zhan X, Li J, Guo Y et al (2021) Mass spectrometry analysis of human tear fluid biomarkers specific for ocular and systemic diseases in the context of 3P medicine. EPMA J 12(4):449–475. https://doi.org/10.1007/s13167-021-00265-y. (PMID: 10.1007/s13167-021-00265-y348769368639411)
Chudgar AV, Shah JC (2017) Pictorial Review of False-Positive Results on Radioiodine scintigrams of patients with differentiated thyroid Cancer. Radiogr Rev Publ Radiol Soc North Am Inc 37(1): 298–315. https://doi.org/10.1148/rg.2017160074.
Kiratli PO, Kara PP, Ergün EL et al (2004) Metastatic insular thyroid carcinoma: visualized on Tc-99m pertechnetate, Tc-99m MDP and iodine-131 scintigraphy; a review of the literature for other radionuclide agents. Ann Nucl Med 18(5):443–446. https://doi.org/10.1007/bf02984488. (PMID: 10.1007/bf0298448815462407)
Ozcan Kara P, Gunay EC, Erdogan A (2014) Radioiodine Contamination artifacts and unusual patterns of Accumulation in whole-body I-131 imaging: a Case Series. Int J Endocrinol Metabolism 12(1):e9329. https://doi.org/10.5812/ijem.9329. (PMID: 10.5812/ijem.9329)
Levy O, De la Vieja A, Ginter CS et al (1998) N-linked glycosylation of the thyroid Na+/I- symporter (NIS). Implications for its secondary structure model. J Biol Chem 273(35): 22657–22663. https://doi.org/10.1074/jbc.273.35.22657.
Ali MJ, Vyakaranam AR, Rao JE et al (2017) Iodine-131 therapy and lacrimal drainage system toxicity: nasal localization studies using whole body nuclear scintigraphy and SPECT-CT. Ophthalmic Plast Reconstr Surg 33(1):13–16. https://doi.org/10.1097/iop.0000000000000603. (PMID: 10.1097/iop.000000000000060326669292)
Sakahara H, Yamashita S, Suzuki K et al (2007) Visualization of nasolacrimal drainage system after radioiodine therapy in patients with thyroid cancer. Ann Nucl Med 21(9):525–527. https://doi.org/10.1007/s12149-007-0056-5. (PMID: 10.1007/s12149-007-0056-518030585)
Yuoness S, Rachinsky I, Driedger AA et al (2011) Differentiated thyroid cancer with epiphora: detection of nasolacrimal duct obstruction on I-131 SPECT/CT. Clin Nuclear Med 36(12):1149–1152. https://doi.org/10.1097/RLU.0b013e3182336016. (PMID: 10.1097/RLU.0b013e3182336016)
Markitziu A, Lustmann J, Uzieli B et al (1993) Salivary and lacrimal gland involvement in a patient who had undergone a thyroidectomy and was treated with radioiodine for thyroid cancer. Oral Surg Oral Med Oral Pathol 75(3):318–322. https://doi.org/10.1016/0030-4220(93)90144-s. (PMID: 10.1016/0030-4220(93)90144-s8469542)
Koca G, Yalniz-Akkaya Z, Gültekin SS et al (2013) Radioprotective effect of montelukast sodium in rat lacrimal glands after radioiodine treatment. Rev Esp Med Nucl Imagen Mol 32(5):294–300. https://doi.org/10.1016/j.remn.2013.01.006. (PMID: 10.1016/j.remn.2013.01.00623499122)
Acar DE, Acar U, Yumusak N et al (2014) Reducing the histopathological changes of radioiodine to the lacrimal glands by a popular anti-oxidant: lycopene. Curr Eye Res 39(7):659–665. https://doi.org/10.3109/02713683.2013.867354. (PMID: 10.3109/02713683.2013.86735424871924)
Acar U, Atilgan HI, Acar DE et al (2013) The effect of short-term vitamin E against radioiodine-induced early lacrimal gland damage. Ann Nucl Med 27(10):886–891. https://doi.org/10.1007/s12149-013-0763-z. (PMID: 10.1007/s12149-013-0763-z23979966)
Ornek F, Acar DE, Acar U et al (2017) Short- and long-term effects of zinc treatment on lacrimal gland histopathology and tear functions tests in radioiodine-administered rats. Arq Bras Oftalmol 80(1):35–40. https://doi.org/10.5935/0004-2749.20170010. (PMID: 10.5935/0004-2749.2017001028380100)
Yakin M, Eksioglu U, Sadic M et al (2017) Coenzyme Q10 for the protection of lacrimal gland against high-dose radioiodine therapy-associated oxidative damage: histopathologic and tissue cytokine level assessments in an animal model. Curr Eye Res 42(12):1590–1596. https://doi.org/10.1080/02713683.2017.1362006. (PMID: 10.1080/02713683.2017.136200628937867)
Atilgan HI, Akbulut A, Yazihan N et al (2023) The cytokines-Directed roles of spirulina for radioprotection of lacrimal gland. Ocular Immunol Inflamm 31(2):271–276. https://doi.org/10.1080/09273948.2022.2026409. (PMID: 10.1080/09273948.2022.2026409)
Ravera S, Reyna-Neyra A, Ferrandino G et al (2017) The Sodium/Iodide Symporter (NIS): molecular physiology and preclinical and clinical applications. Annu Rev Physiol 79:261–289. https://doi.org/10.1146/annurev-physiol-022516-034125. (PMID: 10.1146/annurev-physiol-022516-034125281920585739519)
Burns JA, Morgenstern KE, Cahill KV et al (2004) Nasolacrimal obstruction secondary to I(131) therapy. Ophthalmic Plast Reconstr Surg 20(2):126–129. https://doi.org/10.1097/01.iop.0000117340.41849.81. (PMID: 10.1097/01.iop.0000117340.41849.8115083081)
Lee IT, Grice JV, Ji X et al (2023) A pilot nonrandomized controlled trial examining the use of artificial tears on the radioactivity of tears after radioactive Iodine treatment for thyroid cancer. Thyroid 34(1):82–87. https://doi.org/10.1089/thy.2023.0338. (PMID: 10.1089/thy.2023.033837917111)
Jung SK, Kim YC, Cho WK et al (2015) Surgical outcomes of endoscopic dacryocystorhinostomy: analysis of 1083 consecutive cases. Canadian journal of ophthalmology. J Canadien d’ophtalmologie 50(6): 466–470. https://doi.org/10.1016/j.jcjo.2015.08.007.
Sweeney AR, Davis GE, Chang SH et al (2018) Outcomes of endoscopic dacryocystorhinostomy in secondary acquired nasolacrimal duct obstruction: a case-control study. Ophthalmic Plast Reconstr Surg 34(1):20–25. https://doi.org/10.1097/iop.0000000000000841. (PMID: 10.1097/iop.000000000000084127997463)
Panda BB, Nayak B, Mohapatra S et al (2023) Success and complications of endoscopic laser dacryocystorhinostomy vs. external dacryocystorhinostomy: a systematic review and meta-analysis. Indian J Ophthalmol 71(10):3290–3298. https://doi.org/10.4103/ijo.Ijo_3334_22. (PMID: 10.4103/ijo.Ijo_3334_223778722410683697)
Rajabi MT, Shahraki K, Nozare A et al (2022) External versus endoscopic dacryocystorhinostomy for primary acquired nasolacrimal duct obstruction. Middle East Afr J Ophthalmol 29(1):1–6. https://doi.org/10.4103/meajo.meajo_238_21. (PMID: 10.4103/meajo.meajo_238_21366853399846961)
Bakri K, Jones NS, Downes R et al (2003) Intraoperative fluorouracil in endonasal laser dacryocystorhinostomy. Arch Otolaryngol Head Neck Surg 129(2):233–235. https://doi.org/10.1001/archotol.129.2.233. (PMID: 10.1001/archotol.129.2.23312578455)
Ji QS, Zhong JX, Tu YH et al (2012) New mucosal flap modification for endonasal endoscopic dacryocystorhinostomy in asians. Int J Ophthalmol 5(6):704–707. https://doi.org/10.3980/j.issn.2222-3959.2012.06.10. (PMID: 10.3980/j.issn.2222-3959.2012.06.10232759043530812)
Cheng SM, Feng YF, Xu L et al (2013) Efficacy of mitomycin C in endoscopic dacryocystorhinostomy: a systematic review and meta-analysis. PLoS ONE 8(5):e62737. https://doi.org/10.1371/journal.pone.0062737. (PMID: 10.1371/journal.pone.0062737236754233652813)
Chan DM, Golubev I, Shipchandler TZ et al (2014) Improving outcomes by combining septoplasty with primary external dacryocystorhinostomy. Am J Otolaryngol 35(3):309–312. https://doi.org/10.1016/j.amjoto.2014.02.006. (PMID: 10.1016/j.amjoto.2014.02.00624629586)
Okuyucu S, Gorur H, Oksuz H et al (2015) Endoscopic dacryocystorhinostomy with silicone, polypropylene, and T-tube stents; randomized controlled trial of efficacy and safety. Am J Rhinol Allergy 29(1):63–68. https://doi.org/10.2500/ajra.2015.29.4119. (PMID: 10.2500/ajra.2015.29.411925590323)
Li EY, Wong ES, Wong AC et al (2017) Primary vs secondary endoscopic dacryocystorhinostomy for Acute Dacryocystitis with lacrimal sac abscess formation: a randomized clinical trial. JAMA Ophthalmol 135(12):1361–1366. https://doi.org/10.1001/jamaophthalmol.2017.4798. (PMID: 10.1001/jamaophthalmol.2017.4798291211836583760)
Li J, Wang J, Sun C (2023) Efficacy of hyaluronic acid in endoscopic dacryocystorhinostomy: a systematic review and Meta-analysis. Am J Rhinol Allergy 37(1):102–109. https://doi.org/10.1177/19458924221126356. (PMID: 10.1177/1945892422112635636113103)
معلومات مُعتمدة: 82271094 National Natural Science Foundation of China
فهرسة مساهمة: Keywords: DTC; Dry eye; I-131 therapy; NIS; NLDO; Therapies
المشرفين على المادة: 0 (Iodine Radioisotopes)
0 (Iodine-131)
تواريخ الأحداث: Date Created: 20240622 Date Completed: 20240622 Latest Revision: 20240626
رمز التحديث: 20240627
DOI: 10.1007/s10792-024-03192-9
PMID: 38909080
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-2630
DOI:10.1007/s10792-024-03192-9