دورية أكاديمية

The Importance of Monitoring Non-clonal Chromosome Aberrations (NCCAs) in Cancer Research.

التفاصيل البيبلوغرافية
العنوان: The Importance of Monitoring Non-clonal Chromosome Aberrations (NCCAs) in Cancer Research.
المؤلفون: Heng E; Stanford University, Stanford, CA, USA., Thanedar S; Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA., Heng HH; Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA. hheng@med.wayne.edu.; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA. hheng@med.wayne.edu.
المصدر: Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2024; Vol. 2825, pp. 79-111.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 9214969 Publication Model: Print Cited Medium: Internet ISSN: 1940-6029 (Electronic) Linking ISSN: 10643745 NLM ISO Abbreviation: Methods Mol Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Totowa, NJ : Humana Press
Original Publication: Clifton, N.J. : Humana Press,
مواضيع طبية MeSH: Neoplasms*/genetics , Chromosome Aberrations*, Humans ; Chromosomal Instability ; Cytogenetic Analysis/methods ; Karyotyping/methods
مستخلص: Cytogenetic analysis has traditionally focused on the clonal chromosome aberrations, or CCAs, and considered the large number of diverse non-clonal chromosome aberrations, or NCCAs, as insignificant noise. Our decade-long karyotype evolutionary studies have unexpectedly demonstrated otherwise. Not only the baseline of NCCAs is associated with fuzzy inheritance, but the frequencies of NCCAs can also be used to reliably measure genome or chromosome instability (CIN). According to the Genome Architecture Theory, CIN is the common driver of cancer evolution that can unify diverse molecular mechanisms, and genome chaos, including chromothripsis, chromoanagenesis, and polypoidal giant nuclear and micronuclear clusters, and various sizes of chromosome fragmentations, including extrachromosomal DNA, represent some extreme forms of NCCAs that play a key role in the macroevolutionary transition. In this chapter, the rationale, definition, brief history, and current status of NCCA research in cancer are discussed in the context of two-phased cancer evolution and karyotype-coded system information. Finally, after briefly describing various types of NCCAs, we call for more research on NCCAs in future cytogenetics.
(© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Ye CJ, Liu G, Bremer SW et al (2007) The dynamics of cancer chromosomes and genomes. Cytogenet Genome Res 118(2–4):237–246. https://doi.org/10.1159/000108306. (PMID: 10.1159/00010830618000376)
Heng HH (2015) Debating Cancer: the paradox in cancer research. World Scientific Publishing Co., Singapore. (PMID: 10.1142/8879)
Heng HH (2019) Genome chaos: rethinking genetics, evolution, and molecular medicine. Academic, San Diego.
Heng E, Thanedar S, Heng HH (2023) Challenges and opportunities for clinical cytogenetics in the 21st century. Genes 14:493. https://doi.org/10.3390/genes14020493. (PMID: 10.3390/genes14020493368334199956237)
Nowell PC, Hungerford DA (1960) Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst 25:85–109. (PMID: 14427847)
Rowley JD (1973) Chromosomal patterns in myelocytic leukemia. N Engl J Med 289(4):220–221. https://doi.org/10.1056/NEJM197307262890421. (PMID: 10.1056/NEJM1973072628904214514580)
Horne SD, Stevens JB, Abdallah BY (2013) Why imatinib remains an exception of cancer research. J Cell Physiol 228(4):665–670. https://doi.org/10.1002/jcp.24233. (PMID: 10.1002/jcp.2423323018746)
Calabretta B, Perrotti D (2004) The biology of CML blast crisis. Blood 103(11):4010–4022. https://doi.org/10.1182/blood-2003-12-4111. (PMID: 10.1182/blood-2003-12-411114982876)
Mitelman F (2005) Cancer cytogenetics update 2005. Atlas of genetics and cytogenetics in oncology and haematology.
Albertson DG, Collins C, McCormick F et al (2003) Chromosome aberrations in solid tumors. Nat Genet 34:369–376. https://doi.org/10.1038/ng1215. (PMID: 10.1038/ng121512923544)
Mitelman F (2000) Recurrent chromosome aberrations in cancer. Mutat Res 462(2–3):247–253. https://doi.org/10.1016/s1383-5742(00)00006-5. (PMID: 10.1016/s1383-5742(00)00006-510767636)
Heng HH, Stevens JB, Liu G, Bremer SW, Ye CJ (2004) Imaging genome abnormalities in cancer research. Cell Chromosome 3(1):1. https://doi.org/10.1186/1475-9268-3-1. (PMID: 10.1186/1475-9268-3-114720303331418)
Heng HH, Stevens JB, Liu G et al (2006) Stochastic cancer progression driven by nonclonal chromosome aberrations. J Cell Physiol 208(2):461–472. https://doi.org/10.1002/jcp.20685. (PMID: 10.1002/jcp.2068516688757)
Heng HH, Bremer SW, Stevens J et al (2006) Cancer progression by non-clonal chromosome aberrations. J Cell Biochem 98(6):1424e1435. https://doi.org/10.1002/jcb.20964. (PMID: 10.1002/jcb.20964)
Heng HH, Liu G, Bremer S et al (2006) Clonal and nonclonal chromosome aberrations and genome variation and aberration. Genome 49(3):195e204. https://doi.org/10.1139/g06-023. (PMID: 10.1139/g06-023)
Heng HQ, Chen WY, Wang YC (1988) Effects of pingyangmycin on chromosomes: a possible structural basis for chromosome aberration. Mutat Res 199(1):199–205. https://doi.org/10.1016/0027-5107(88)90246-1. (PMID: 10.1016/0027-5107(88)90246-12452349)
Stevens JB, Abdallah BY, Liu G et al (2011) Diverse system stresses: common mechanisms of chromosome fragmentation. Cell Death Dis 2(6):e178. https://doi.org/10.1038/cddis.2011.60. (PMID: 10.1038/cddis.2011.60217162933169002)
Tomlinson I, Sasieni P, Bodmer W (2002) How many mutations in a cancer? Am J Pathol 160(3):755–758. https://doi.org/10.1016/S0002-9440(10)64896-1. (PMID: 10.1016/S0002-9440(10)64896-1118911721867158)
Heng HH, Bremer SW, Stevens JB et al (2013) Chromosomal instability (CIN): what it is and why it is crucial to cancer evolution. Cancer Metastasis Rev 32(3–4):325–340. https://doi.org/10.1007/s10555-013-9427-7. (PMID: 10.1007/s10555-013-9427-723605440)
Ye CJ, Chen J, Liu G et al (2020) Somatic genomic mosaicism in multiple myeloma. Front Genet 11:388. https://doi.org/10.3389/fgene.2020.00388. (PMID: 10.3389/fgene.2020.00388323910597189895)
Drews RM, Hernando B, Tarabichi M et al (2022) A pan-cancer compendium of chromosomal instability. Nature 606(7916):976–983. https://doi.org/10.1038/s41586-022-04789-9. (PMID: 10.1038/s41586-022-04789-9357058077613102)
Furst R (2021) The importance of Henry H. Heng’s genome archit. Theory Prog Biophys Mol Biol 165:153–156. (PMID: 10.1016/j.pbiomolbio.2021.08.00934481833)
Cairns J (1975) Mutation selection and the natural history of cancer. Nature 255(5505):197–200. https://doi.org/10.1038/255197a0. (PMID: 10.1038/255197a01143315)
Nowell PC (1976) The clonal evolution of tumor cell populations. Science (New York, N.Y.) 194(4260):23–28. https://doi.org/10.1126/science.959840. (PMID: 10.1126/science.959840959840)
Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61(5):759–767. https://doi.org/10.1016/0092-8674(90)90186-i. (PMID: 10.1016/0092-8674(90)90186-i2188735)
Fisher JC, Hollomon JH (1951) A hypothesis for the origin of cancer foci. Cancer 4(5):916–918. https://doi.org/10.1002/1097-0142(195109)4:5<916::aid-cncr2820040504>3.0.co;2-7. (PMID: 10.1002/1097-0142(195109)4:5<916::aid-cncr2820040504>3.0.co;2-714879355)
Weinberg RA (1982) Fewer and fewer oncogenes. Cell 30(1):3–4. https://doi.org/10.1016/0092-8674(82)90003-4. (PMID: 10.1016/0092-8674(82)90003-46751559)
Heng HH (2007) Cancer genome sequencing: the challenges ahead. Bioessays 29(8):783–794. https://doi.org/10.1002/bies.20610. (PMID: 10.1002/bies.2061017621658)
Heng HH, Regan SM, Liu G et al (2016) Why it is crucial to analyze non clonal chromosome aberrations or NCCAs? Mol Cytogenet 9:15. https://doi.org/10.1186/s13039-016-0223-2. (PMID: 10.1186/s13039-016-0223-2268777684752783)
Rangel N, Forero-Castro M, Rondón-Lagos M (2017) New insights in the cytogenetic practice: karyotypic chaos, non-clonal chromosomal alterations and chromosomal instability in human cancer and therapy response. Genes 8(6):155. https://doi.org/10.3390/genes8060155. (PMID: 10.3390/genes8060155285871915485519)
Ye CJ, Liu G, Heng HH (2018) Experimental induction of genome chaos. Methods Mol Biol (Clifton, N.J.) 1769:337–352. https://doi.org/10.1007/978-1-4939-7780-2&#95;21. (PMID: 10.1007/978-1-4939-7780-2_21)
Latt SA (1979) Sister-chromatid exchanges. Genetics 92(1 Pt 1 Suppl):s83–s95. (PMID: 385445)
Lin MS (1980) Sister chromatid exchanges in human cells and Chinese hamster cells. Evidence that the rate of sister chromatid exchanges is a function of ploidy. Exp Cell Res 127(1):179–183. https://doi.org/10.1016/0014-4827(80)90424-3. (PMID: 10.1016/0014-4827(80)90424-37379862)
Knudsen LE, Kirsch-Volders M (2021) Micronuclei, reproduction and child health. Mutat Res Rev Mutat Res 787:108345. https://doi.org/10.1016/j.mrrev.2020.108345 . Epub 2020 Nov 18. (PMID: 10.1016/j.mrrev.2020.10834534083036)
Hsu TC (1983) Genetic instability in the human population: a working hypothesis. Hereditas 98(1):1–9. https://doi.org/10.1111/j.1601-5223.1983.tb00574.x. (PMID: 10.1111/j.1601-5223.1983.tb00574.x6303985)
Heng HQ (1984) Studies on high-resolution R-band of the chromosomes of Rana Japonica Japonica. Acta Herpetol Sin 3:55–58.
Heng HHQ, Chen WY (1985) The study of the chromatin and the chromosome structure for Bufo gargarizans by the light microscope. J Sichuan Univ Nat Sci 2:105–108.
Heng HQ, Lin R, Zhao XL et al (1987) Structure of the chromosome and its formation. II. Studies on the sister unit fibers. Nucleus 30:2–9.
Heng HH, Squire J, Tsui L (1991) Chromatin mapping – a strategy for physical characterization of the human genome by hybridization in situ. In: Paper presented at the 8th international Congress of Human Genetics American Journal of Human Genetics, DC, USA.
Heng HH, Squire J, Tsui LC (1992) High-resolution mapping of mammalian genes by in situ hybridization to free chromatin. Proc Natl Acad Sci USA 89(20):9509–9513. https://doi.org/10.1073/pnas.89.20.9509. (PMID: 10.1073/pnas.89.20.9509138405550161)
Heng HH, Spyropoulos B, Moens PB (1997) FISH technology in chromosome and genome research. Bioessays 19(1):75–84. https://doi.org/10.1002/bies.950190112. (PMID: 10.1002/bies.9501901129008419)
Heng HH, Shi XM (1997) From free chromatin analysis to high resolution fiber FISH. Cell Res 7(1):119–124. https://doi.org/10.1038/cr.1997.13. (PMID: 10.1038/cr.1997.139261569)
Mackey MA, Morgan WF, Dewey WC (1988) Nuclear fragmentation and premature chromosome condensation induced by heat shock in S-phase Chinese hamster ovary cells. Cancer Res 48(22):6478–6483. (PMID: 3180064)
Ianzini F, Mackey MA (1997) Spontaneous premature chromosome condensation and mitotic catastrophe following irradiation of HeLa S3 cells. Int J Radiat Biol 72(4):409–421. https://doi.org/10.1080/095530097143185. (PMID: 10.1080/0955300971431859343106)
Wolman SR, Smith HS, Stampfer M et al (1985) Growth of diploid cells from breast cancers. Cancer Genet Cytogenet 16(1):49–64. https://doi.org/10.1016/0165-4608(85)90077-9. (PMID: 10.1016/0165-4608(85)90077-93971331)
Casalone R, Granata Casalone P, Minelli E et al (1992) Significance of the clonal and sporadic chromosome abnormalities in non-neoplastic renal tissue. Hum Genet 90(1–2):71–78. https://doi.org/10.1007/BF00210747. (PMID: 10.1007/BF002107471427791)
Mandahl N, Höglund M, Mertens F et al (1994) Cytogenetic aberrations in 188 benign and borderline adipose tissue tumors. Genes Chromosomes Cancer 9(3):207–215. https://doi.org/10.1002/gcc.2870090309. (PMID: 10.1002/gcc.28700903097515663)
Atkin NB (2003) Aneuploidy in carcinomas may be initiated by the acquisition of a single trisomy. Cytogenet Genome Res 101(2):99–102. https://doi.org/10.1159/000074162. (PMID: 10.1159/00007416214610347)
Roschke AV, Tonon G, Gehlhaus KS et al (2003) Karyotypic complexity of the NCI-60 drug-screening panel. Cancer Res 63(24):8634–8647. (PMID: 14695175)
Mitelman F (2006) 50,000 tumors, 40,000 aberrations, and 300 fusion genes: how much remains? 50 years of 46 human chromosomes: progress in cytogenetics. National Cancer Institute, National Institutes of Health.
Bayani J, Selvarajah S, Maire G et al (2007) Genomic mechanisms and measurement of structural and numerical instability in cancer cells. Semin Cancer Biol 17(1):5–18. https://doi.org/10.1016/j.semcancer.2006.10.006. (PMID: 10.1016/j.semcancer.2006.10.00617126026)
Erenpreisa J, Kalejs M, Ianzini F et al (2005) Segregation of genomes in polyploid tumour cells following mitotic catastrophe. Cell Biol Int 29(12):1005–1011. https://doi.org/10.1016/j.cellbi.2005.10.008. (PMID: 10.1016/j.cellbi.2005.10.00816314119)
Erenpreisa J, Cragg MS (2010) MOS, aneuploidy and the ploidy cycle of cancer cells. Oncogene 29(40):5447–5451. https://doi.org/10.1038/onc.2010.310. (PMID: 10.1038/onc.2010.31020676137)
Stevens JB, Liu G, Bremer SW et al (2007) Mitotic cell death by chromosome fragmentation. Cancer Res 67(16):7686–7694. https://doi.org/10.1158/0008-5472.CAN-07-0472. (PMID: 10.1158/0008-5472.CAN-07-047217699772)
Fucic A, Bonassi S, Gundy S et al (2016) Frequency of acentric fragments are associated with cancer risk in subjects exposed to ionizing radiation. Anticancer Res 36(5):2451–2457. (PMID: 27127157)
Sansregret L, Swanton C (2017) The role of aneuploidy in cancer evolution. Cold Spring Harb Perspect Med 7(1):a028373. https://doi.org/10.1101/cshperspect.a028373. (PMID: 10.1101/cshperspect.a028373280496555204330)
Gebhart E (2008) Ring chromosomes in human neoplasias. Cytogenet Genome Res 121(3–4):149–173. https://doi.org/10.1159/000138881. (PMID: 10.1159/00013888118758155)
Heng HH, Liu G, Stevens JB et al (2013) Karyotype heterogeneity and unclassified chromosomal abnormalities. Cytogenet Genome Res 139(3):144–157. https://doi.org/10.1159/000348682. (PMID: 10.1159/00034868223571381)
Gisselsson D (2001) Atlas Genet Cytogenet Oncol Haematol 5(3):236–243.
Ye CJ, Heng HH (2017) High resolution fiber-fluorescence in situ hybridization. Methods Mol Biol 1541:151–166. https://doi.org/10.1007/978-1-4939-6703-2&#95;14. (PMID: 10.1007/978-1-4939-6703-2_1427910022)
Haaf T, Schmid M (1989) 5-Azadeoxycytidine induced undercondensation in the giant X chromosomes of Microtus agrestis. Chromosoma 98(2):93–98. https://doi.org/10.1007/BF00291043. (PMID: 10.1007/BF002910432476282)
Smith L, Plug A, Thayer M (2001) Delayed replication timing leads to delayed mitotic chromosome condensation and chromosomal instability of chromosome translocations. Proc Natl Acad Sci USA 98(23):13300–13305. https://doi.org/10.1073/pnas.241355098. (PMID: 10.1073/pnas.2413550981169868660865)
Duesberg P (2007) Chromosomal chaos and cancer. Sci Am 296(5):52–59. https://doi.org/10.1038/scientificamerican0507-52. (PMID: 10.1038/scientificamerican0507-5217500414)
Heng HH (2007) Karyotypic chaos, a form of non-clonal chromosome aberrations, plays a key role for cancer progression and drug resistance. FASEB: Nuclear Structure and Cancer.
Liu G, Stevens JB, Horne SD et al (2014) Genome chaos: survival strategy during crisis. Cell Cycle (Georgetown, Tex.) 13(4):528–537. https://doi.org/10.4161/cc.27378. (PMID: 10.4161/cc.2737824299711)
Ye CJ, Sharpe Z, Alemara S et al (2019) Micronuclei and genome chaos: changing the system inheritance. Genes (Basel) 10(5):366. https://doi.org/10.3390/genes10050366. (PMID: 10.3390/genes1005036631086101)
Stephens PJ, Greenman CD, Fu B et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144(1):27–40. https://doi.org/10.1016/j.cell.2010.11.055. (PMID: 10.1016/j.cell.2010.11.055212153673065307)
Baca SC, Prandi D, Lawrence MS et al (2013) Punctuated evolution of prostate cancer genomes. Cell 153(3):666–677. https://doi.org/10.1016/j.cell.2013.03.021. (PMID: 10.1016/j.cell.2013.03.021236222493690918)
Pellestor F, Gatinois V (2020) Chromoanagenesis: a piece of the macroevolution scenario. Mol Cytogenet 13:3. https://doi.org/10.1186/s13039-020-0470-0. (PMID: 10.1186/s13039-020-0470-0320102226988253)
Pellestor F, Gaillard JB, Schneider A et al (2022) Chromoanagenesis, the mechanisms of a genomic chaos. Semin Cell Dev Biol 123:90–99. https://doi.org/10.1016/j.semcdb.2021.01.004. (PMID: 10.1016/j.semcdb.2021.01.00433608210)
Walen KH (2005) Budded karyoplasts from multinucleated fibroblast cells contain centrosomes and change their morphology to mitotic cells. Cell Biol Int 29(12):1057–1065. https://doi.org/10.1016/j.cellbi.2005.10.016. (PMID: 10.1016/j.cellbi.2005.10.01616316754)
Walen KH (2010) Mitosis is not the only distributor of mutated cells: non-mitotic endopolyploid cells produce reproductive genome-reduced cells. Cell Biol Int 34(8):867–872. https://doi.org/10.1042/CBI20090502. (PMID: 10.1042/CBI2009050220441563)
Weihua Z, Lin Q, Ramoth AJ et al (2011) Formation of solid tumors by a single multinucleated cancer cell. Cancer 117(17):4092–4099. https://doi.org/10.1002/cncr.26021. (PMID: 10.1002/cncr.2602121365635)
Zhang S, Mercado-Uribe I, Xing Z et al (2014) Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene 33(1):116–128. https://doi.org/10.1038/onc.2013.96. (PMID: 10.1038/onc.2013.9623524583)
Heng HH, Liu G, Stevens JB et al (2011) Decoding the genome beyond sequencing: the new phase of genomic research. Genomics 98(4):242–252. https://doi.org/10.1016/j.ygeno.2011.05.008. (PMID: 10.1016/j.ygeno.2011.05.00821640814)
Hamann JC, Surcel A, Chen R et al (2017) Entosis is induced by glucose starvation. Cell Rep 20(1):201–210. https://doi.org/10.1016/j.celrep.2017.06.037. (PMID: 10.1016/j.celrep.2017.06.037286833135559205)
Vincent MD (2011) Cancer: beyond speciation. Adv Cancer Res 112:283–350. https://doi.org/10.1016/B978-0-12-387688-1.00010-7. (PMID: 10.1016/B978-0-12-387688-1.00010-721925308)
Huang S (2013) Genetic and non-genetic instability in tumor progression: link between the fitness landscape and the epigenetic landscape of cancer cells. Cancer Metastasis Rev 32(3–4):423–448. https://doi.org/10.1007/s10555-013-9435-7. (PMID: 10.1007/s10555-013-9435-723640024)
Duesberg P, McCormack A (2013) Immortality of cancers: a consequence of inherent karyotypic variations and selections for autonomy. Cell Cycle (Georgetown, Tex) 12(5):783–802. https://doi.org/10.4161/cc.23720. (PMID: 10.4161/cc.2372023388461)
Horne SD, Chowdhury SK, Heng HH (2014) Stress, genomic adaptation, and the evolutionary trade-off. Front Genet 5:92. https://doi.org/10.3389/fgene.2014.00092. (PMID: 10.3389/fgene.2014.00092247957544005935)
Heng J, Heng HH (2022) Genome chaos: creating new genomic information essential for cancer macroevolution. Semin Cancer Biol 81:160–175. https://doi.org/10.1016/j.semcancer.2020.11.003. (PMID: 10.1016/j.semcancer.2020.11.00333189848)
Li X, Zhong Y, Zhang X et al (2023) Spatiotemporal view of malignant histogenesis and macroevolution via formation of polyploid giant cancer cells. Oncogene 42(9):665–678. https://doi.org/10.1038/s41388-022-02588-0 . Epub ahead of print. (PMID: 10.1038/s41388-022-02588-0365968459957731)
Barrios L, Caballín MR, Miró R et al (1991) Chromosomal instability in breast cancer patients. Hum Genet 88(1):39–41. https://doi.org/10.1007/BF00204926. (PMID: 10.1007/BF002049261959924)
Gisselsson D, Jonson T, Petersén A et al (2001) Telomere dysfunction triggers extensive DNA fragmentation and evolution of complex chromosome abnormalities in human malignant tumors. Proc Natl Acad Sci USA 98(22):12683–12688. https://doi.org/10.1073/pnas.211357798. (PMID: 10.1073/pnas.2113577981167549960114)
Foster N, Carter S, Ng G et al (2009) Molecular cytogenetic analysis of cervical squamous cell carcinoma cells demonstrates discordant levels of numerical and structural chromosomal instability and identifies ‘selected’ chromosome rearrangements. Cytogenet Genome Res 127(1):9–20. https://doi.org/10.1159/000290954. (PMID: 10.1159/00029095420224276)
Ye CJ, Stevens JB, Liu G et al (2009) Genome based cell population heterogeneity promotes tumorigenicity: the evolutionary mechanism of cancer. J Cell Physiol 219(2):288–300. https://doi.org/10.1002/jcp.21663. (PMID: 10.1002/jcp.21663191152352778062)
Jackson TR, Salmina K, Huna A et al (2013) DNA damage causes TP53-dependent coupling of self-renewal and senescence pathways in embryonal carcinoma cells. Cell Cycle (Georgetown, Tex.) 12(3):430–441. https://doi.org/10.4161/cc.23285. (PMID: 10.4161/cc.2328523287532)
Shen KC, Heng H, Wang Y et al (2005) ATM and p21 cooperate to suppress aneuploidy and subsequent tumor development. Cancer Res 65(19):8747–8753. https://doi.org/10.1158/0008-5472.CAN-05-1471. (PMID: 10.1158/0008-5472.CAN-05-147116204044)
Sharpless NE, Ferguson DO, O’Hagan RC et al (2001) Impaired nonhomologous end-joining provokes soft tissue sarcomas harboring chromosomal translocations, amplifications, and deletions. Mol Cell 8(6):1187–1196. https://doi.org/10.1016/s1097-2765(01)00425-7. (PMID: 10.1016/s1097-2765(01)00425-711779495)
Biesterfeld S, Gerres K, Fischer-Wein G et al (1994) Polyploidy in non-neoplastic tissues. J Clin Pathol 47(1):38–42. https://doi.org/10.1136/jcp.47.1.38. (PMID: 10.1136/jcp.47.1.388132807501754)
Spitz MR, Hsu TC (1994) Mutagen sensitivity as a marker of cancer risk. Cancer Detect Prev 18(4):299–303. (PMID: 7526974)
Hagmar L, Bonassi S, Strömberg U et al (1998) Cancer predictive value of cytogenetic markers used in occupational health surveillance programs. Recent results in cancer research. Fortschritte der Krebsforschung. Progres Dans Les Recherches Sur Le Cancer 154:177–184. https://doi.org/10.1007/978-3-642-46870-4&#95;10. (PMID: 10.1007/978-3-642-46870-4_1010026999)
Bonassi S, Hagmar L, Strömberg U et al (2000) Chromosomal aberrations in lymphocytes predict human cancer independently of exposure to carcinogens. European Study Group on Cytogenetic Biomarkers and Health. Cancer Res 60(6):1619–1625. (PMID: 10749131)
Karashima T, Taguchi T, Yoshikawa C et al (2000) Numerical chromosomal changes in metastatic prostate cancer following anti-androgen therapy: fluorescence in situ hybridization analysis of 5 Japanese cases. Cancer Genet Cytogenet 120(2):148–154. https://doi.org/10.1016/s0165-4608(00)00208-9. (PMID: 10.1016/s0165-4608(00)00208-910942807)
López de Mesa R, Sierrasesúmaga L, Calasanz MJ et al (2000) Nonclonal chromosomal aberrations induced by anti-tumoral regimens in childhood cancer: relationship with cancer-related genes and fragile sites. Cancer Genet Cytogenet 121(1):78–85. https://doi.org/10.1016/s0165-4608(00)00236-3. (PMID: 10.1016/s0165-4608(00)00236-310958946)
Kasahara K, Taguchi T, Yamasaki I et al (2002) Detection of genetic alterations in advanced prostate cancer by comparative genomic hybridization. Cancer Genet Cytogenet 137(1):59–63. https://doi.org/10.1016/s0165-4608(02)00552-6. (PMID: 10.1016/s0165-4608(02)00552-612377415)
El-Zein R, Gu Y, Sierra MS et al (2005) Chromosomal instability in peripheral blood lymphocytes and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 14(3):748–752. https://doi.org/10.1158/1055-9965.EPI-04-0236. (PMID: 10.1158/1055-9965.EPI-04-023615767363)
Kolusayin Ozar MO, Orta T (2005) The use of chromosome aberrations in predicting breast cancer risk. J Exp Clin Cancer Res 24(2):217–222. (PMID: 16110754)
Fenech M (2011) Micronuclei and their association with sperm abnormalities, infertility, pregnancy loss, pre-eclampsia and intra-uterine growth restriction in humans. Mutagenesis 26(1):63–67. https://doi.org/10.1093/mutage/geq084. (PMID: 10.1093/mutage/geq08421164184)
Heng HH, Horne SD, Chaudhry S et al (2018) A postgenomic perspective on molecular cytogenetics. Curr Genomics 19(3):227–239. https://doi.org/10.2174/1389202918666170717145716. (PMID: 10.2174/1389202918666170717145716296069105850511)
Scott D, Barber JB, Spreadborough AR et al (1999) Increased chromosomal radiosensitivity in breast cancer patients: a comparison of two assays. Int J Radiat Biol 75(1):1–10. https://doi.org/10.1080/095530099140744. (PMID: 10.1080/0955300991407449972785)
Duesberg P, Li R, Sachs R et al (2007) Cancer drug resistance: the central role of the karyotype. Drug Resist Updates 10(1–2):51–58. https://doi.org/10.1016/j.drup.2007.02.003. (PMID: 10.1016/j.drup.2007.02.003)
Heng HH, Liu G, Stevens JB et al (2010) Genetic and epigenetic heterogeneity in cancer: the ultimate challenge for drug therapy. Curr Drug Targets 11(10):1304–1316. https://doi.org/10.2174/1389450111007011304. (PMID: 10.2174/138945011100701130420840073)
Heng E, Moy A, Liu G et al (2021) ER stress and micronuclei cluster: stress response contributes to genome chaos in cancer. Front Cell Dev Biol 9:673188. https://doi.org/10.3389/fcell.2021.673188. (PMID: 10.3389/fcell.2021.673188344228038371933)
Ye JC, Horne S, Zhang JZ et al (2021) Therapy induced genome chaos: a novel mechanism of rapid cancer drug resistance. Front Cell Dev Biol 9:676344. https://doi.org/10.3389/fcell.2021.676344. (PMID: 10.3389/fcell.2021.676344341951968237085)
Rancati G, Pavelka N, Fleharty B et al (2008) Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor. Cell 135(5):879–893. https://doi.org/10.1016/j.cell.2008.09.039. (PMID: 10.1016/j.cell.2008.09.039190417512776776)
Heng HH (2009) The genome-centric concept: resynthesis of evolutionary theory. Bioessays 31(5):512–525. https://doi.org/10.1002/bies.200800182. (PMID: 10.1002/bies.20080018219334004)
Pearse AM, Swift K, Hodson P et al (2012) Evolution in a transmissible cancer: a study of the chromosomal changes in devil facial tumor (DFT) as it spreads through the wild Tasmanian devil population. Cancer Genet 205(3):101–112. https://doi.org/10.1016/j.cancergen.2011.12.001. (PMID: 10.1016/j.cancergen.2011.12.00122469509)
Stepanenko A, Andreieva S, Korets K et al (2015) Step-wise and punctuated genome evolution drive phenotype changes of tumor cells. Mutat Res 771:56–69. https://doi.org/10.1016/j.mrfmmm.2014.12.006. (PMID: 10.1016/j.mrfmmm.2014.12.00625771981)
Stepanenko AA, Heng HH (2017) Transient and stable vector transfection: Pitfalls, off-target effects, artifacts. Mutat Res Rev Mutat Res 773:91–103. https://doi.org/10.1016/j.mrrev.2017.05.002. (PMID: 10.1016/j.mrrev.2017.05.00228927539)
Hutchens C, Ketterling RP, Van Dyke DL (2012) When are apparently non-clonal abnormalities in bone marrow chromosome studies actually clonal? Cancer Genet 205(7–8):405–409. https://doi.org/10.1016/j.cancergen.2012.04.003. (PMID: 10.1016/j.cancergen.2012.04.00322868001)
Ye CJ, Stilgenbauer L, Moy A et al (2019) What is karyotype coding and why is genomic topology important for cancer and evolution? Front Genet 10:1082. https://doi.org/10.3389/fgene.2019.01082. (PMID: 10.3389/fgene.2019.01082317370546838208)
Bak P, Bak AL, Zeuthen J (1979) Characterization of human chromosomal unit fibers. Chromosoma 73(3):301–315. https://doi.org/10.1007/BF00288694. (PMID: 10.1007/BF00288694510072)
Laemmli UK, Cheng SM, Adolph KW et al (1978) Metaphase chromosome structure: the role of nonhistone proteins. Cold Spring Harb Symp Quant Biol 42(Pt 1):351–360. https://doi.org/10.1101/sqb.1978.042.01.036. (PMID: 10.1101/sqb.1978.042.01.036277351)
Kubalová I, Souza Câmara A, Cápal P et al (2023) Helical coiling of metaphase chromatids. Nucleic Acids Res 51:2641–2654. https://doi.org/10.1093/nar/gkad028. (PMID: 10.1093/nar/gkad0283686454710085683)
Câmara AS, Kubalová I, Schubert V (2023) Helical chromonema coiling is conserved in eukaryotes. Plant J. https://doi.org/10.1111/tpj.16484 . Advance online publication.
Flagiello D, Bernardino-Sgherri J, Dutrillaux B (2002) Complex relationships between 5-aza-dC induced DNA demethylation and chromosome compaction at mitosis. Chromosoma 111(1):37–44. https://doi.org/10.1007/s00412-001-0180-2. (PMID: 10.1007/s00412-001-0180-212068921)
Cuylen S, Blaukopf C, Politi AZ et al (2016) Ki-67 acts as a biological surfactant to disperse mitotic chromosomes. Nature 535(7611):308–312. https://doi.org/10.1038/nature18610. (PMID: 10.1038/nature18610273622264947524)
Liu G, Ye CJ, Chowdhury SK et al (2018) Detecting chromosome condensation defects in gulf war illness patients. Curr Genomics 19(3):200–206. https://doi.org/10.2174/1389202918666170705150819. (PMID: 10.2174/1389202918666170705150819296069075850508)
Lange JT, Rose JC, Chen CY et al (2022) The evolutionary dynamics of extrachromosomal DNA in human cancers. Nat Genet 54(10):1527–1533. https://doi.org/10.1038/s41588-022-01177-x. (PMID: 10.1038/s41588-022-01177-x361234069534767)
Cannan WJ, Pederson DS (2016) Mechanisms and consequences of double-strand DNA break formation in chromatin. J Cell Physiol 231(1):3–14. https://doi.org/10.1002/jcp.25048. (PMID: 10.1002/jcp.25048260402494994891)
McClintock B (1941) The stability of broken ends of chromosomes in zea mays. Genetics 26(2):234–282. https://doi.org/10.1093/genetics/26.2.234. (PMID: 10.1093/genetics/26.2.234172470041209127)
McClintock B (1938) The production of homozygous deficient tissues with mutant characteristics by means of the aberrant mitotic behavior of ring-shaped chromosomes. Genetics 23(4):315–376. https://doi.org/10.1093/genetics/23.4.315. (PMID: 10.1093/genetics/23.4.315172468911209016)
Stevens JB, Abdallah BY, Regan SM et al (2010) Comparison of mitotic cell death by chromosome fragmentation to premature chromosome condensation. Mol Cytogenet 3:20. https://doi.org/10.1186/1755-8166-3-20. (PMID: 10.1186/1755-8166-3-20209590062974731)
Heng HH, Thanedar S, Heng E (2022) Stress-induced macroevolution: how genome reorganization creates and preserves system information by changing karyotype coding. APS conference, Oct 28–30, 2022 San Diego.
Heng J, Heng HH (2021) Two-phased evolution: Genome chaos-mediated information creation and maintenance. Prog Biophys Mol Biol 165:29–42. https://doi.org/10.1016/j.pbiomolbio.2021.04.003. (PMID: 10.1016/j.pbiomolbio.2021.04.00333992670)
Heng J, Heng HH (2021) Karyotype coding: the creation and maintenance of system information for complexity and biodiversity. Biosystems 208:104476. https://doi.org/10.1016/j.biosystems.2021.104476. (PMID: 10.1016/j.biosystems.2021.10447634237348)
Ye CJ, Regan S, Liu G et al (2018) Understanding aneuploidy in cancer through the lens of system inheritance, fuzzy inheritance and emergence of new genome systems. Mol Cytogenet 11:31. https://doi.org/10.1186/s13039-018-0376-2. (PMID: 10.1186/s13039-018-0376-2297607815946397)
Sheltzer JM, Blank HM, Pfau SJ et al (2011) Aneuploidy drives genomic instability in yeast. Science (New York, N.Y.) 333(6045):1026–1030. https://doi.org/10.1126/science.1206412. (PMID: 10.1126/science.120641221852501)
Sheltzer JM, Ko JH, Replogle JM et al (2017) Single-chromosome gains commonly function as tumor suppressors. Cancer Cell 31(2):240–255. https://doi.org/10.1016/j.ccell.2016.12.004. (PMID: 10.1016/j.ccell.2016.12.004280898905713901)
Potapova TA, Zhu J, Li R (2013) Aneuploidy and chromosomal instability: a vicious cycle driving cellular evolution and cancer genome chaos. Cancer Metastasis Rev 32(3–4):377–389. https://doi.org/10.1007/s10555-013-9436-6. (PMID: 10.1007/s10555-013-9436-623709119)
Stopsack KH, Whittaker CA, Gerke TA et al (2019) Aneuploidy drives lethal progression in prostate cancer. Proc Natl Acad Sci USA 116(23):11390–11395. https://doi.org/10.1073/pnas.1902645116. (PMID: 10.1073/pnas.1902645116310856486561291)
Li R, Zhu J (2022) Effects of aneuploidy on cell behaviour and function. Nat Rev Mol Cell Biol 23(4):250–265. https://doi.org/10.1038/s41580-021-00436-9. (PMID: 10.1038/s41580-021-00436-934987171)
Liehr T (2016) Cytogenetically visible copy number variations (CG-CNVs) in banding and molecular cytogenetics of human; about heteromorphisms and euchromatic variants. Mol Cytogenet 9:5. https://doi.org/10.1186/s13039-016-0216-1. (PMID: 10.1186/s13039-016-0216-1268071504724132)
Schmid W (1975) The micronucleus test. Mutat Res 31(1):9–15. https://doi.org/10.1016/0165-1161(75)90058-8. (PMID: 10.1016/0165-1161(75)90058-848190)
Countryman PI, Heddle JA (1976) The production of micronuclei from chromosome aberrations in irradiated cultures of human lymphocytes. Mutat Res 41(2–3):321–332. https://doi.org/10.1016/0027-5107(76)90105-6. (PMID: 10.1016/0027-5107(76)90105-6796719)
Bolognesi C, Bruzzone M, Ceppi M et al (2021) Micronuclei and upper body cancers (head, neck, breast cancers) a systematic review and meta-analysis. Mutat Res Rev Mutat Res 787:108358. https://doi.org/10.1016/j.mrrev.2020.108358. (PMID: 10.1016/j.mrrev.2020.10835834083052)
Guo X, Hintzsche H, Xu W et al (2022) Interplay of cGAS with micronuclei: regulation and diseases. Mutat Res Rev Mutat Res 790:108440. https://doi.org/10.1016/j.mrrev.2022.108440. (PMID: 10.1016/j.mrrev.2022.10844035970331)
Fenech M, Holland N, Kirsch-Volders M et al (2020) Micronuclei and disease – report of HUMN project workshop at Rennes 2019 EEMGS conference. Mutat Res Genet Toxicol Environ Mutagen 850-851:503133. https://doi.org/10.1016/j.mrgentox.2020.503133. (PMID: 10.1016/j.mrgentox.2020.50313332247551)
Kirsch-Volders M, Bolognesi C, Ceppi M et al (2020) Micronuclei, inflammation and auto-immune disease. Mutat Res Rev Mutat Res 786:108335. https://doi.org/10.1016/j.mrrev.2020.108335. (PMID: 10.1016/j.mrrev.2020.10833533339583)
Krupina K, Goginashvili A, Cleveland DW (2021) Causes and consequences of micronuclei. Curr Opin Cell Biol 70:91–99. https://doi.org/10.1016/j.ceb.2021.01.004. (PMID: 10.1016/j.ceb.2021.01.004336109058119331)
Davoli T, de Lange T (2011) The causes and consequences of polyploidy in normal development and cancer. Annu Rev Cell Dev Biol 27:585–610. https://doi.org/10.1146/annurev-cellbio-092910-154234. (PMID: 10.1146/annurev-cellbio-092910-15423421801013)
Meyer A, Van de Peer Y (2005) From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). Bioessays 27(9):937–945. https://doi.org/10.1002/bies.20293. (PMID: 10.1002/bies.2029316108068)
Niu N, Zhang J, Zhang N et al (2016) Linking genomic reorganization to tumor initiation via the giant cell cycle. Oncogenesis 5(12):e281. https://doi.org/10.1038/oncsis.2016.75. (PMID: 10.1038/oncsis.2016.75279919135177773)
Niu N, Mercado-Uribe I, Liu J (2017) Dedifferentiation into blastomere-like cancer stem cells via formation of polyploid giant cancer cells. Oncogene 36(34):4887–4900. https://doi.org/10.1038/onc.2017.72. (PMID: 10.1038/onc.2017.72284369475582213)
Mirzayans R, Andrais B, Murray D (2018) Roles of polyploid/multinucleated giant cancer cells in metastasis and disease relapse following anticancer treatment. Cancers 10(4):118. https://doi.org/10.3390/cancers10040118. (PMID: 10.3390/cancers10040118296620215923373)
Lin KC, Torga G, Sun Y et al (2019) The role of heterogeneous environment and docetaxel gradient in the emergence of polyploid, mesenchymal and resistant prostate cancer cells. Clin Exp Metastasis 36(2):97–108. https://doi.org/10.1007/s10585-019-09958-1. (PMID: 10.1007/s10585-019-09958-130810874)
Herbein G, Nehme Z (2020) Polyploid giant cancer cells, a hallmark of oncoviruses and a new therapeutic challenge. Front Oncol 10:567116. https://doi.org/10.3389/fonc.2020.567116. (PMID: 10.3389/fonc.2020.567116331549447591763)
Mannan R, Wang X, Bawa PS et al (2020) Polypoidal giant cancer cells in metastatic castration-resistant prostate cancer: observations from the Michigan Legacy Tissue Program. Med Oncol (Northwood, London, England) 37(3):16. https://doi.org/10.1007/s12032-020-1341-6. (PMID: 10.1007/s12032-020-1341-6)
Pienta KJ, Hammarlund EU, Austin RH et al (2022) Cancer cells employ an evolutionarily conserved polyploidization program to resist therapy. Semin Cancer Biol 81:145–159. https://doi.org/10.1016/j.semcancer.2020.11.016. (PMID: 10.1016/j.semcancer.2020.11.01633276091)
Tagal V, Roth MG (2021) Loss of aurora kinase signaling allows lung cancer cells to adopt endoreplication and form polyploid giant cancer cells that resist antimitotic drugs. Cancer Res 81(2):400–413. https://doi.org/10.1158/0008-5472.CAN-20-1693. (PMID: 10.1158/0008-5472.CAN-20-169333172929)
Bouezzedine F, El Baba R, Haidar Ahmad S et al (2023) Polyploid giant cancer cells generated from human cytomegalovirus-infected prostate epithelial cells. Cancers 15(20):4994. https://doi.org/10.3390/cancers15204994. (PMID: 10.3390/cancers152049943789436110604969)
White-Gilbertson S, Voelkel-Johnson C (2020) Giants and monsters: unexpected characters in the story of cancer recurrence. Adv Cancer Res 148:201–232. https://doi.org/10.1016/bs.acr.2020.03.001. (PMID: 10.1016/bs.acr.2020.03.001327235647731118)
Liu J, Erenpreisa J, Sikora E (2022) Polyploid giant cancer cells: An emerging new field of cancer biology. Semin Cancer Biol 81:1–4. https://doi.org/10.1016/j.semcancer.2021.10.006. (PMID: 10.1016/j.semcancer.2021.10.00634695579)
Shao Y, Lu N, Wu Z et al (2018) Creating a functional single-chromosome yeast. Nature 560(7718):331–335. https://doi.org/10.1038/s41586-018-0382-x. (PMID: 10.1038/s41586-018-0382-x30069045)
Luo J, Sun X, Cormack BP et al (2018) Karyotype engineering by chromosome fusion leads to reproductive isolation in yeast. Nature 560(7718):392–396. https://doi.org/10.1038/s41586-018-0374-x. (PMID: 10.1038/s41586-018-0374-x300690478223741)
Chandrakasan S, Ye CJ, Chitlur M et al (2011) Malignant fibrous histiocytoma two years after autologous stem cell transplant for Hodgkin lymphoma: evidence for genomic instability. Pediatr Blood Cancer 56(7):1143–1145. https://doi.org/10.1002/pbc.22929. (PMID: 10.1002/pbc.2292921488163)
Niederwieser C, Nicolet D, Carroll AJ et al (2016) Chromosome abnormalities at onset of complete remission are associated with worse outcome in patients with acute myeloid leukemia and an abnormal karyotype at diagnosis: CALGB 8461 (Alliance). Haematologica 101(12):1516–1523. https://doi.org/10.3324/haematol.2016.149542. (PMID: 10.3324/haematol.2016.149542274706025479622)
Li P, Cui C (2016) A broader view of cancer cytogenetics: from nuclear aberrations to cytogenomic abnormalities. J Mol Genet Med 10:e108. https://doi.org/10.4172/1747-0862.1000e108. (PMID: 10.4172/1747-0862.1000e108)
Vargas-Rondón N, Villegas VE, Rondón-Lagos M (2017) The role of chromosomal instability in cancer and therapeutic responses. Cancers 10(1):4. https://doi.org/10.3390/cancers10010004. (PMID: 10.3390/cancers10010004292833875789354)
Ramos S, Navarrete-Meneses P, Molina B et al (2018) Genomic chaos in peripheral blood lymphocytes of Hodgkin’s lymphoma patients one year after ABVD chemotherapy/radiotherapy. Environ Mol Mutagen 59(8):755–768. https://doi.org/10.1002/em.22216. (PMID: 10.1002/em.2221630260497)
Chin TF, Ibrahim K, Thirunavakarasu T et al (2018) Nonclonal chromosomal aberrations in childhood leukemia survivors. Fetal Pediatr Pathol 37(4):243–253. https://doi.org/10.1080/15513815.2018.1492054. (PMID: 10.1080/15513815.2018.149205430273079)
Liehr T (2021) Molecular cytogenetics in the era of chromosomics and cytogenomic approaches. Front Genet 12:720507. https://doi.org/10.3389/fgene.2021.720507. (PMID: 10.3389/fgene.2021.720507347215228548727)
Zhurenkov KE, Alexander-Sinkler EI, Gavrilyik IO et al (2022) Labial mucosa stem cells: isolation, characterization, and their potential for corneal epithelial reconstruction. Invest Ophthalmol Vis Sci 63(8):16. https://doi.org/10.1167/iovs.63.8.16. (PMID: 10.1167/iovs.63.8.16358488899308017)
Kültz D (2005) Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol 67:225–257. https://doi.org/10.1146/annurev.physiol.67.040403.103635. (PMID: 10.1146/annurev.physiol.67.040403.10363515709958)
Kültz D (2020) Evolution of cellular stress response mechanisms. J Exp Zool A Ecol Integr Physiol 333(6):359–378. https://doi.org/10.1002/jez.2347. (PMID: 10.1002/jez.234731970941)
Mojica EA, Kültz D (2022) Physiological mechanisms of stress-induced evolution. J Exp Biol 225(Suppl_1):jeb243264. https://doi.org/10.1242/jeb.243264. (PMID: 10.1242/jeb.24326435258607)
Heng HH (2024) Genome chaos: rethinking genetics, evolution, and molecular medicine, 2nd edn. Academic, San Diego.
Crkvenjakov R, Heng HH (2022) Further illusions: on key evolutionary mechanisms that could never fit with modern synthesis. Prog Biophys Mol Biol 169–170:3–11. https://doi.org/10.1016/j.pbiomolbio.2021.10.002. (PMID: 10.1016/j.pbiomolbio.2021.10.00234767862)
فهرسة مساهمة: Keywords: Chromosome instability; Genome chaos; Heterogeneity; Karyotype coding; Two-phased evolution
تواريخ الأحداث: Date Created: 20240624 Date Completed: 20240624 Latest Revision: 20240624
رمز التحديث: 20240624
DOI: 10.1007/978-1-0716-3946-7_4
PMID: 38913304
قاعدة البيانات: MEDLINE