دورية أكاديمية

Mechanistic study on vasodilatory and antihypertensive effects of hesperetin: ex vivo and in vivo approaches.

التفاصيل البيبلوغرافية
العنوان: Mechanistic study on vasodilatory and antihypertensive effects of hesperetin: ex vivo and in vivo approaches.
المؤلفون: Tew WY; College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Shangjie, Minhou, Fuzhou, 350122, Fujian, China.; Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia., Tan CS; Material Characterization and Inorganic Spectroscopy, Perkin Elmer Sdn. Bhd., #2.01. Level 2, Wisma Academy, Lot 4A, Jalan 19/1, 46300, Petaling Jaya, Selangor, Malaysia., Yan CS; Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia., Loh HW; Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia., Wang X; Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia., Wen X; College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Shangjie, Minhou, Fuzhou, 350122, Fujian, China., Wei X; College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Shangjie, Minhou, Fuzhou, 350122, Fujian, China. 2000017@fjtcm.edu.cn., Yam MF; College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Shangjie, Minhou, Fuzhou, 350122, Fujian, China. yammunfei@yahoo.com.; Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia. yammunfei@yahoo.com.
المصدر: Hypertension research : official journal of the Japanese Society of Hypertension [Hypertens Res] 2024 Sep; Vol. 47 (9), pp. 2416-2434. Date of Electronic Publication: 2024 Jun 24.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 9307690 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1348-4214 (Electronic) Linking ISSN: 09169636 NLM ISO Abbreviation: Hypertens Res Subsets: MEDLINE
أسماء مطبوعة: Publication: 2009- : London : Nature Publishing Group
Original Publication: Toyonaka, Japan : The Society, c1992-2003
مواضيع طبية MeSH: Hesperidin*/pharmacology , Antihypertensive Agents*/pharmacology , Vasodilation*/drug effects , Rats, Sprague-Dawley*, Animals ; Male ; Rats ; Blood Pressure/drug effects ; Hypertension/drug therapy ; Hypertension/physiopathology ; Rats, Inbred SHR ; Vasodilator Agents/pharmacology ; Nitric Oxide/metabolism ; Signal Transduction/drug effects ; Muscle, Smooth, Vascular/drug effects ; Muscle, Smooth, Vascular/metabolism ; Cyclic GMP/metabolism
مستخلص: Hesperetin is one of the prominent flavonoids found in citrus fruit. Several research studies have reported that hesperetin can promote vasodilation in vascular tissue by increasing the level of nitric oxide and cyclic nucleotides. However, these may not be the only pathway for hesperetin to exert its vasodilatory effect. In addition to vasodilation, hesperetin has been found to carry an antihypertensive effect through intraperitoneal injection, although no study has comprehensively investigated the antihypertensive effect of hesperetin through oral administration. Therefore, this study aimed to determine the possible mechanism pathways involved in hesperetin-induced vasodilation and investigated its antihypertensive effects on hypertensive rats' model via oral administration. The ex vivo experimental findings showed that the NO/sGC/cGMP signalling pathway was involved in hesperetin-mediated vasodilation. Moreover, hesperetin activated the AC/cAMP/PKA pathway through PGI 2 and activated the β 2 -adrenergic receptor. Hesperetin can act as a voltage-gated potassium channel (K V ) and ATP-sensitive potassium channel (K ATP ) opener. The intracellular calcium in vascular smooth muscle was reduced by hesperetin through blocking the voltage-operated calcium channels (VOCC) and inositol triphosphate receptor (IP 3 R). In the in vivo assessment, hesperetin shows a significant decrease in Spontaneously Hypertensive rats' blood pressure following 21 days of oral treatment. The sub-chronic toxicity assessment demonstrated that hesperetin exhibited no deleterious effects on the body weights, clinical biochemistry and haematological profile of Sprague-Dawley rats. This study implies that hesperetin holds promise as a potential medication for hypertension treatment, devoid of undesirable side effects.
(© 2024. The Author(s), under exclusive licence to The Japanese Society of Hypertension.)
References: Bhargava M, Ikram MK, Wong TY. How does hypertension affect your eyes? J Hum Hypertens. 2012;26:71–83. (PMID: 2150904010.1038/jhh.2011.37)
Rampal L, Rampal S, Azhar MZ, Rahman AR. Prevalence, awareness, treatment and control of hypertension in Malaysia: a national study of 16,440 subjects. Public Health. 2008;122:11–8. (PMID: 1798131010.1016/j.puhe.2007.05.008)
Collaboration NCDRF. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet. 2021;398:957–80. (PMID: 10.1016/S0140-6736(21)01330-1)
Garg A, Garg S, Zaneveld LJ, Singla AK. Chemistry and pharmacology of the Citrus bioflavonoid hesperidin. Phytother Res. 2001;15:655–69. (PMID: 1174685710.1002/ptr.1074)
Li YM, Li XM, Li GM, Du WC, Zhang J, Li WX, et al. In vivo pharmacokinetics of hesperidin are affected by treatment with glucosidase-like BglA protein isolated from yeasts. J Agric Food Chem. 2008;56:5550–7. (PMID: 18570429278263210.1021/jf800105c)
Yamamoto M, Suzuki A, Hase T. Short-term effects of glucosyl hesperidin and hesperetin on blood pressure and vascular endothelial function in spontaneously hypertensive rats. J Nutr Sci Vitaminol. 2008;54:95–8. (PMID: 1838841410.3177/jnsv.54.95)
Akiyama S, Katsumata S, Suzuki K, Nakaya Y, Ishimi Y, Uehara M. Hypoglycemic and hypolipidemic effects of hesperidin and cyclodextrin-clathrated hesperetin in Goto-Kakizaki rats with type 2 diabetes. Biosci Biotechnol Biochem. 2009;73:2779–82. (PMID: 1996646910.1271/bbb.90576)
Alu’datt MH, Rababah T, Alhamad MN, Al-Mahasneh MA, Ereifej K, Al-Karaki G, et al. Profiles of free and bound phenolics extracted from Citrus fruits and their roles in biological systems: content, and antioxidant, anti-diabetic and anti-hypertensive properties. Food Funct. 2017;8:3187–97. (PMID: 2880583410.1039/C7FO00212B)
Parhiz H, Roohbakhsh A, Soltani F, Rezaee R, Iranshahi M. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother Res. 2015;29:323–31. (PMID: 2539426410.1002/ptr.5256)
Wang HW, Shi L, Xu YP, Qin XY, Wang QZ. Hesperetin alleviates renal interstitial fibrosis by inhibiting tubular epithelial-mesenchymal transition in vivo and in vitro. Exp Ther Med. 2017;14:3713–9. (PMID: 29042968563926810.3892/etm.2017.4968)
Rizza S, Muniyappa R, Iantorno M, Kim JA, Chen H, Pullikotil P, et al. Citrus polyphenol hesperidin stimulates production of nitric oxide in endothelial cells while improving endothelial function and reducing inflammatory markers in patients with metabolic syndrome. J Clin Endocrinol Metab. 2011;96:E782–792. (PMID: 21346065308519710.1210/jc.2010-2879)
Takumi H, Nakamura H, Simizu T, Harada R, Kometani T, Nadamoto T, et al. Bioavailability of orally administered water-dispersible hesperetin and its effect on peripheral vasodilatation in human subjects: implication of endothelial functions of plasma conjugated metabolites. Food Funct. 2012;3:389–98. (PMID: 2230752410.1039/c2fo10224b)
Orallo F, Alvarez E, Basaran H, Lugnier C. Comparative study of the vasorelaxant activity, superoxide-scavenging ability and cyclic nucleotide phosphodiesterase-inhibitory effects of hesperetin and hesperidin. Naunyn Schmiedebergs Arch Pharm. 2004;370:452–63. (PMID: 10.1007/s00210-004-0994-6)
Tan CS, Loh YC, Ch’ng YS, Ng CH, Yeap ZQ, Ahmad M, et al. Vasorelaxant and chemical fingerprint studies of Citrus reticulatae pericarpium extracts. J Ethnopharmacol. 2019;232:135–44. (PMID: 3054391310.1016/j.jep.2018.12.014)
Tan CS, Yam MF. Mechanism of vasorelaxation induced by 3′-hydroxy-5,6,7,4′-tetramethoxyflavone in the rats aortic ring assay. Naunyn Schmiedebergs Arch Pharm. 2018;391:561–9. (PMID: 10.1007/s00210-018-1481-9)
Tew WY, Tan CS, Asmawi MZ, Yam MF. Underlying mechanism of vasorelaxant effect exerted by 3,5,7,2′,4′-pentahydroxyflavone in rats aortic ring. Eur J Pharm. 2020;880:173123. (PMID: 10.1016/j.ejphar.2020.173123)
Yam MF, Tan CS, Shibao R. Vasorelaxant effect of sinensetin via the NO/sGC/cGMP pathway and potassium and calcium channels. Hypertens Res. 2018;41:787–97. (PMID: 3011185610.1038/s41440-018-0083-8)
Chen YJ, Kong L, Tang ZZ, Zhang YM, Liu Y, Wang TY, et al. Hesperetin ameliorates diabetic nephropathy in rats by activating Nrf2/ARE/glyoxalase 1 pathway. Biomed Pharmacother. 2019;111:1166–75. (PMID: 3084143010.1016/j.biopha.2019.01.030)
Jiao Q, Xu L, Jiang L, Jiang Y, Zhang J, Liu B. Metabolism study of hesperetin and hesperidin in rats by UHPLC-LTQ-Orbitrap MS (n). Xenobiotica. 2020;50:1311–22. (PMID: 3065468210.1080/00498254.2019.1567956)
Muhammad T, Ikram M, Ullah R, Rehman SU, Kim MO. Hesperetin, a citrus flavonoid, attenuates LPS-induced neuroinflammation, apoptosis and memory impairments by modulating TLR4/NF-kappaB signaling. Nutrients. 2019;11:648. (PMID: 30884890647199110.3390/nu11030648)
Yang HL, Chen SC, Senthil Kumar KJ, Yu KN, Lee Chao PD, Tsai SY, et al. Antioxidant and anti-inflammatory potential of hesperetin metabolites obtained from hesperetin-administered rat serum: an ex vivo approach. J Agric Food Chem. 2012;60:522–32. (PMID: 2209841910.1021/jf2040675)
Ch’ng YS, Loh YC, Tan CS, Ahmad M, Asmawi MZ, Wan Omar WM, et al. Vasodilation and antihypertensive activities of Swietenia macrophylla (Mahogany) seed extract. J Med Food. 2018;21:289–301. (PMID: 2942010910.1089/jmf.2017.4008)
Yildiz O, Seyrek M, Gul H. Pharmacology of arterial grafts for coronary artery bypass surgery. In: Artery bypass. 2013. https://doi.org/10.5772/54723 .
Nesterova AP, Klimov EA, Zharkova M, Sozin S, Sobolev V, Ivanikova NV, et al. Diseases of the circulatory system. In: Disease pathways. 2020. p. 327–90. https://doi.org/10.1016/b978-0-12-817086-1.00008-7 .
Goodman LS, Brunton LL, Chabne B, C KB. Goodman & Gilman’s pharmacological basis of therapeutics. New York: McGraw-Hill; 2011.
Kang KT. Endothelium-derived relaxing factors of small resistance arteries in hypertension. Toxicol Res. 2014;30:141–8. (PMID: 25343007420674010.5487/TR.2014.30.3.141)
Liu L, Xu DM, Cheng YY. Distinct effects of naringenin and hesperetin on nitric oxide production from endothelial cells. J Agric Food Chem. 2008;56:824–9. (PMID: 1819761810.1021/jf0723007)
Sobey CG. Potassium channel function in vascular disease. Arterioscler Thromb Vasc Biol. 2001;21:28–38. (PMID: 1114593010.1161/01.ATV.21.1.28)
Berumen LC, Rodriguez A, Miledi R, Garcia-Alcocer G. Serotonin receptors in hippocampus. ScientificWorldJournal. 2012;2012:823493. (PMID: 22629209335356810.1100/2012/823493)
Silva AS, Zanesco A. Exercício físico, receptores β-adrenérgicos e resposta vascular. J Vasc Brasileiro. 2010;9:47–56. (PMID: 10.1590/S1677-54492010000200007)
Baltoumas FA, Theodoropoulou MC, Hamodrakas SJ. Interactions of the alpha-subunits of heterotrimeric G-proteins with GPCRs, effectors and RGS proteins: a critical review and analysis of interacting surfaces, conformational shifts, structural diversity and electrostatic potentials. J Struct Biol. 2013;182:209–18. (PMID: 2352373010.1016/j.jsb.2013.03.004)
Ishii M, Kurachi Y. Muscarinic acetylcholine receptors. Curr Pharm Des. 2006;12:3573–81. (PMID: 1707366010.2174/138161206778522056)
Jackson WF. Potassium channels in regulation of vascular smooth muscle contraction and growth. Adv Pharm. 2017;78:89–144. (PMID: 10.1016/bs.apha.2016.07.001)
Liu Y, Zhang L, Dong L, Song Q, Guo P, Wang Y, et al. Hesperetin improves diabetic coronary arterial vasomotor responsiveness by upregulating myocyte voltage-gated K(+) channels. Exp Ther Med. 2020;20:486–94. (PMID: 325090187271715)
Luksha L, Agewall S, Kublickiene K. Endothelium-derived hyperpolarizing factor in vascular physiology and cardiovascular disease. Atherosclerosis. 2009;202:330–44. (PMID: 1865619710.1016/j.atherosclerosis.2008.06.008)
Calderone V, Chericoni S, Martinelli C, Testai L, Nardi A, Morelli I, et al. Vasorelaxing effects of flavonoids: investigation on the possible involvement of potassium channels. Naunyn Schmiedebergs Arch Pharm. 2004;370:290–8. (PMID: 10.1007/s00210-004-0964-z)
Liu Y, Niu L, Cui L, Hou X, Li J, Zhang X, et al. Hesperetin inhibits rat coronary constriction by inhibiting Ca(2+) influx and enhancing voltage-gated K(+) channel currents of the myocytes. Eur J Pharm. 2014;735:193–201. (PMID: 10.1016/j.ejphar.2014.03.057)
McFadzean I, Gibson A. The developing relationship between receptor-operated and store-operated calcium channels in smooth muscle. Br J Pharm. 2002;135:1–13. (PMID: 10.1038/sj.bjp.0704468)
Félétou M. The endothelium: part 1: multiple functions of the endothelial cells—focus on endothelium-derived vasoactive mediators. San Rafael: Morgan & Claypool Life Sciences; 2011.
Mezey E, Brownstein M. Lessons learned from Miki. Neurochem Res. 2006;31:127–9. (PMID: 1667317310.1007/PL00022050)
Loh YC, Ch’ng YS, Tan CS, Ahmad M, Asmawi MZ, Yam MF. Mechanisms of action of Uncaria rhynchophylla ethanolic extract for its vasodilatory effects. J Med Food. 2017;20:895–911. (PMID: 2877108410.1089/jmf.2016.3804)
Marconi KP, Bharathi B, Venis AM, Raj R, Amirtham SM, Subramani S. Correction: phenylephrine induces relaxation of longitudinal strips from small arteries of goat legs. PLoS One. 2021;16:e0257440. (PMID: 34506612843274410.1371/journal.pone.0257440)
Turfus SC, Delgoda R, Picking D, Gurley BJ. Pharmacokinetics. In: Pharmacognosy. 2017. p 495–512. https://doi.org/10.1016/b978-0-12-802104-0.00025-1 .
Kobayashi S, Tanabe S, Sugiyama M, Konishi Y. Transepithelial transport of hesperetin and hesperidin in intestinal Caco-2 cell monolayers. Biochim Biophys Acta. 2008;1778:33–41. (PMID: 1802175210.1016/j.bbamem.2007.08.020)
Boots AW, Haenen GR, Bast A. Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharm. 2008;585:325–37. (PMID: 10.1016/j.ejphar.2008.03.008)
Corcoran MP, McKay DL, Blumberg JB. Flavonoid basics: chemistry, sources, mechanisms of action, and safety. J Nutr Gerontol Geriatr. 2012;31:176–89. (PMID: 2288883710.1080/21551197.2012.698219)
de Souza Dos Santos MC, Goncalves CF, Vaisman M, Ferreira AC, de Carvalho DP. Impact of flavonoids on thyroid function. Food Chem Toxicol. 2011;49:2495–502. (PMID: 2174552710.1016/j.fct.2011.06.074)
Kawaguchi K, Mizuno T, Aida K, Uchino K. Hesperidin as an inhibitor of lipases from porcine pancreas and Pseudomonas. Biosci Biotechnol Biochem. 1997;61:102–4. (PMID: 902803810.1271/bbb.61.102)
Li Y, Kandhare AD, Mukherjee AA, Bodhankar SL. Acute and sub-chronic oral toxicity studies of hesperidin isolated from orange peel extract in Sprague Dawley rats. Regul Toxicol Pharm. 2019;105:77–85. (PMID: 10.1016/j.yrtph.2019.04.001)
Truong HN, Nguyen HN, Nguyen TKN, Le MH, Tran HG, Huynh N, et al. Establishment of a standardized mouse model of hepatic fibrosis for biomedical research. Biomed Res Ther. 2014;1:43–9. (PMID: 10.7603/s40730-014-0009-2)
Chavan SS, Damale MG, Shinde DB, Sanghetti JN. Antibacterial and antifungal drugs from natural sources: a review of clinical development. In: Atta-ur-Rahman, Anjum S, El-seedi H, editors. Natural products in clinical trials. 2018. https://doi.org/10.2174/97816810821341180101 .
Loh YC, Tan CS, Yam MF, Oo CW, Omar WMW. Orthogonal Stimulus-Response as a Tool to Formulate Traditional Chinese Medicinal Herbal Combination: - New Scientific-Based TCM Herbal Formulating Method. J Pharmacopunct. 2018;21:203–6. (PMID: 10.3831/KPI.2018.21.024)
Wangchuk P. Therapeutic applications of natural products in herbal medicines, biodiscovery programs, and biomedicine. J Biol Act Prod Nat. 2018;8:1–20.
Nasim N, Sandeep IS, Mohanty S. Plant-derived natural products for drug discovery: current approaches and prospects. Nucleus. 2022;65:399–411. (PMID: 10.1007/s13237-022-00405-3)
فهرسة مساهمة: Keywords: Antihypertensive effect; Cardiovascular; Hesperetin; Signalling mechanism; Vasodilation
المشرفين على المادة: E750O06Y6O (Hesperidin)
Q9Q3D557F1 (hesperetin)
0 (Antihypertensive Agents)
0 (Vasodilator Agents)
31C4KY9ESH (Nitric Oxide)
H2D2X058MU (Cyclic GMP)
تواريخ الأحداث: Date Created: 20240624 Date Completed: 20240905 Latest Revision: 20240911
رمز التحديث: 20240912
DOI: 10.1038/s41440-024-01652-4
PMID: 38914702
قاعدة البيانات: MEDLINE
الوصف
تدمد:1348-4214
DOI:10.1038/s41440-024-01652-4