دورية أكاديمية

Role of renin angiotensin system inhibitors and metformin in Glioblastoma Therapy: a review.

التفاصيل البيبلوغرافية
العنوان: Role of renin angiotensin system inhibitors and metformin in Glioblastoma Therapy: a review.
المؤلفون: Dixon S; Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA. sd1686@nova.edu., O'connor AT; Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA., Brooks-Noreiga C; Halmos College of Arts and Sciences, Nova Southeastern University, Ft. Lauderdale, FL, USA., Clark MA; Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA., Levy A; Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA., Castejon AM; Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA.
المصدر: Cancer chemotherapy and pharmacology [Cancer Chemother Pharmacol] 2024 Jul; Vol. 94 (1), pp. 1-23. Date of Electronic Publication: 2024 Jun 25.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer Verlag Country of Publication: Germany NLM ID: 7806519 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0843 (Electronic) Linking ISSN: 03445704 NLM ISO Abbreviation: Cancer Chemother Pharmacol Subsets: MEDLINE
أسماء مطبوعة: Publication: Berlin : Springer Verlag
Original Publication: Berlin, New York, Springer International.
مواضيع طبية MeSH: Metformin*/therapeutic use , Metformin*/pharmacology , Glioblastoma*/drug therapy , Renin-Angiotensin System*/drug effects , Brain Neoplasms*/drug therapy, Humans ; Animals ; Angiotensin-Converting Enzyme Inhibitors/pharmacology ; Angiotensin-Converting Enzyme Inhibitors/therapeutic use ; Hypoglycemic Agents/therapeutic use ; Hypoglycemic Agents/pharmacology ; Antineoplastic Combined Chemotherapy Protocols/therapeutic use ; Antineoplastic Combined Chemotherapy Protocols/pharmacology
مستخلص: Glioblastoma multiforme (GBM) is a highly aggressive and incurable disease accounting for about 10,000 deaths in the USA each year. Despite the current treatment approach which includes surgery with chemotherapy and radiation therapy, there remains a high prevalence of recurrence. Notable improvements have been observed in persons receiving concurrent antihypertensive drugs such as renin angiotensin inhibitors (RAS) or the antidiabetic drug metformin with standard therapy. Anti-tumoral effects of RAS inhibitors and metformin have been observed in in vitro and in vivo studies. Although clinical trials have shown mixed results, the potential for the use of RAS inhibitors and metformin as adjuvant GBM therapy remains promising. Nevertheless, evidence suggest that these drugs exert multimodal antitumor actions; by particularly targeting several cancer hallmarks. In this review, we highlight the results of clinical studies using multidrug cocktails containing RAS inhibitors and or metformin added to standard therapy for GBM. In addition, we highlight the possible molecular mechanisms by which these repurposed drugs with an excellent safety profile might elicit their anti-tumoral effects. RAS inhibition elicits anti-inflammatory, anti-angiogenic, and immune sensitivity effects in GBM. However, metformin promotes anti-migratory, anti-proliferative and pro-apoptotic effects mainly through the activation of AMP-activated protein kinase. Also, we discussed metformin's potential in targeting both GBM cells as well as GBM associated-stem cells. Finally, we summarize a few drug interactions that may cause an additive or antagonistic effect that may lead to adverse effects and influence treatment outcome.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: D’Alessio A, Proietti G, Sica G, Bianca Maria S (2019) Pathological and molecular features of glioblastoma and its peritumoral tissue. Cancers 11. https://doi.org/10.3390/cancers11040469.
Steponaitis G, and Arimantas Tamasauskas (2021) Mesenchymal and proneural subtypes of glioblastoma disclose branching based on gsc associated signature. Int J Mol Sci 22. https://doi.org/10.3390/ijms22094964.
Torrisi F, Alberghina C, Simona D’aprile AM, Pavone L, Longhitano S, Giallongo D, Tibullo et al (2022) The Hallmarks of Glioblastoma: Heterogeneity, Intercellular Crosstalk and Molecular Signature of Invasiveness and Progression. Biomedicines. https://doi.org/10.3390/biomedicines10040806.
National Brain Tumor Society (2023) About Glioblastoma.
Ahmed MH, Canney M, Carpentier A, Idbaih A (2023) Overcoming the blood brain barrier in glioblastoma: Status and future perspective. Rev Neurol 179:430–436. https://doi.org/10.1016/j.neurol.2023.03.013. (PMID: 10.1016/j.neurol.2023.03.01337062676)
Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C, Jill S, Barnholtz-Sloan (2022) CBTRUS Statistical Report: primary brain and other Central Nervous System tumors diagnosed in the United States in 2015–2019. Neurooncology 24:V1–V95. https://doi.org/10.1093/neuonc/noac202. (PMID: 10.1093/neuonc/noac202)
Stupp R, Mason WP, Martin J, van den Bent M, Weller B, Fisher, Martin JB, Taphoorn K, Belanger et al (2005) Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N Engl J Med 352. https://doi.org/10.1056/nejmoa043330.
Thakkar JP, Therese A, Dolecek C, Horbinski, Quinn T, Ostrom DD, Lightner, Jill S, Barnholtz-Sloan, Villano JL (2014) Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomarkers Prev. https://doi.org/10.1158/1055-9965.EPI-14-0275. (PMID: 10.1158/1055-9965.EPI-14-0275250537114185005)
Fisher JP, Adamson DC (2021) Current FDA-approved therapies for high-grade malignant gliomas. Biomedicines. https://doi.org/10.3390/biomedicines9030324. (PMID: 10.3390/biomedicines9030324338101548004675)
Kinzel A, Ambrogi M, Varshaver M, Kirson ED (2019) Tumor Treating fields for Glioblastoma Treatment: patient satisfaction and compliance with the second-generation optune ® system. Clin Med Insights: Oncol 13. https://doi.org/10.1177/1179554918825449.
Nguyen H-M (2021) and Dipongkor Saha. The Current State of Oncolytic Herpes Simplex Virus for Glioblastoma Treatment. Oncolytic Virotherapy Volume 10. https://doi.org/10.2147/ov.s268426.
Luksik AS, Yazigi E, Shah P, Jackson CM (2023) CAR T Cell Therapy in Glioblastoma: Overcoming Challenges Related to Antigen Expression. Cancers. https://doi.org/10.3390/cancers15051414.
Becker AP, Blake E, Sells S, Jaharul Haque, and Arnab Chakravarti (2021) Tumor heterogeneity in glioblastomas: from light microscopy to molecular pathology. Cancers 13:1–25. https://doi.org/10.3390/cancers13040761. (PMID: 10.3390/cancers13040761)
Hua TNM, Oh J, Kim S, Antonio JM, Vu TA, Vo J, Om JW, Choi et al (2020) Peroxisome proliferator-activated receptor gamma as a theragnostic target for mesenchymal-type glioblastoma patients. Experimental and Molecular Medicine 52. Springer Nature: 629–642. https://doi.org/10.1038/s12276-020-0413-1.
Hanahan D, Robert AW (2000) The Hallmarks of Cancer. Cell 100:57–70. https://doi.org/10.1016/S0092-8674(00)81683-9. (PMID: 10.1016/S0092-8674(00)81683-910647931)
Hanahan D (2022) Hallmarks of Cancer: New Dimensions. Cancer Discovery 12. American Association for Cancer Research: 31–46. https://doi.org/10.1158/2159-8290.CD-21-1059.
Feitelson MA, Arzumanyan A, Kulathinal RJ, Stacy W, Blain RF, Holcombe J, Mahajna M, Marino et al (2015) Sustained proliferation in cancer: mechanisms and novel therapeutic targets. Sem Cancer Biol. https://doi.org/10.1016/j.semcancer.2015.02.006. (PMID: 10.1016/j.semcancer.2015.02.006)
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: The next generation. Cell 144. Elsevier: 646–674. https://doi.org/10.1016/J.CELL.2011.02.013/ATTACHMENT/3F528E16-8B3C-4D8D-8DE5-43E0C98D8475/MMC1.PDF.
Crespo I, Vital AL, María Gonzalez-Tablas, María Del Carmen Patino, Alvaro Otero, María Celeste Lopes, Catarina De Oliveira, Patricia Domingues, Orfao A, and Maria Dolores Tabernero (2015). MolecularGenomic Alterations in Glioblastoma Multiforme. American Journal of Pathology. https://doi.org/10.1016/j.ajpath.2015.02.023.
Artavanis-Tsakonas, Spyros MD, Rand, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science. https://doi.org/10.1126/science.284.5415.770. (PMID: 10.1126/science.284.5415.770)
Bazzoni R (2019) and Angela Bentivegna. Role of Notch Signaling Pathway in Glioblastoma Pathogenesis. Cancers. https://doi.org/10.3390/cancers11030292.
Kopan R, Ma Xenia G, Ilagan (2009) The Canonical Notch Signaling Pathway: unfolding the activation mechanism. Cell 137:216–233. https://doi.org/10.1016/j.cell.2009.03.045. (PMID: 10.1016/j.cell.2009.03.045193796902827930)
Purow BW, Raqeeb M, Haque, Martha W, Noel Q, Su MJ, Burdick J, Lee T, Sundaresan et al (2005) Expression of Notch-1 and its ligands, Delta-like-1 and jagged = 1, is critical for glioma cell survival and proliferation. Cancer Res 65. https://doi.org/10.1158/0008-5472.CAN-04-1890.
Nguyen HS, Shabani S, Awad AJ, Kaushal M, Doan N (2018) Molecular markers of therapy-resistant glioblastoma and potential strategy to combat resistance. Int J Mol Sci 19. https://doi.org/10.3390/ijms19061765.
Nørøxe D, Schou HS, Poulsen, Lassen U (2016) Hallmarks of glioblastoma: a systematic review. ESMO Open 1:1–9. https://doi.org/10.1136/esmoopen-2016-000144. (PMID: 10.1136/esmoopen-2016-000144)
Zhu H, Acquaviva J, Ramachandran P, Boskovitz A, Woolfenden S, Pfannl R, Bronson RT et al (2009) Oncogenic EGFR signaling cooperates with loss of tumor suppressor gene functions in gliomagenesis. Proc Natl Acad Sci USA 106:2712–2716. https://doi.org/10.1073/pnas.0813314106. (PMID: 10.1073/pnas.0813314106191969662650331)
Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ, Cachola KE et al (2007) Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 13. https://doi.org/10.1038/nm1517.
Fabrizio F, Pio D, Trombetta A, Rossi A, Sparaneo S, Castellana, Lucia Anna Muscarella (2018) Gene code CD274/PD-L1: from molecular basis toward cancer immunotherapy. Therapeutic Adv Med Oncol. https://doi.org/10.1177/1758835918815598. (PMID: 10.1177/1758835918815598)
Himes BT, Philipp A, Geiger K, Ayasoufi AG, Bhargav DA, Brown, Parney IF (2021) Immunosuppression in Glioblastoma: current understanding and therapeutic implications. Front Oncol. https://doi.org/10.3389/fonc.2021.770561. (PMID: 10.3389/fonc.2021.770561347780898581618)
Nduom EK, Wei J, Yaghi NK, Huang N, Kong LY, Gabrusiewicz K, Ling X et al (2016) PD-L1 expression and prognostic impact in glioblastoma. Neurooncology 18:195–205. https://doi.org/10.1093/neuonc/nov172. (PMID: 10.1093/neuonc/nov172)
DiDomenico J, Lamano JB, Oyon D, Li Y, Veliceasa D, Kaur G, Ampie L, Choy W, Lamano JB, Bloch O (2018) The immune checkpoint protein PD-L1 induces and maintains regulatory T cells in glioblastoma. OncoImmunology 7. https://doi.org/10.1080/2162402X.2018.1448329.
Filippone A, Lanza M, Mannino D, Raciti G, Colarossi C, Sciacca D, Cuzzocrea S, Paterniti I (2022) PD1/PD-L1 immune checkpoint as a potential target for preventing brain tumor progression. Cancer Immunology, Immunotherapy 71. Springer Berlin Heidelberg: 2067–2075. https://doi.org/10.1007/s00262-021-03130-z.
Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol. https://doi.org/10.1080/01926230701320337. (PMID: 10.1080/01926230701320337175624832117903)
Pfeffer CM, Amareshwar TK, Singh (2018) Apoptosis: a target for anticancer therapy. Int J Mol Sci. https://doi.org/10.3390/ijms19020448. (PMID: 10.3390/ijms19020448298652706032049)
Gousias K, Theocharous T, Simon M (2022) Mechanisms of Cell Cycle Arrest and Apoptosis in Glioblastoma. Biomedicines. https://doi.org/10.3390/biomedicines10030564.
Plati J, Bucur O, Roya Khosravi-Far (2008) Dysregulation of apoptotic signaling in cancer: molecular mechanisms and therapeutic opportunities. J Cell Biochem. https://doi.org/10.1002/jcb.21707. (PMID: 10.1002/jcb.21707184591492941905)
Ozaki T, and Akira Nakagawara (2011) Role of p53 in cell death and human cancers. Cancers. https://doi.org/10.3390/cancers3010994. (PMID: 10.3390/cancers3010994242126513756401)
Brennan CW, Roel GW, Verhaak A, McKenna B, Campos H, Noushmehr SR, Salama S Zheng, et al (2014) The somatic genomic Landscape of Glioblastoma. Cell 157:753. https://doi.org/10.1016/j.cell.2014.04.004. (PMID: 10.1016/j.cell.2014.04.004)
Halatsch ME, Schmidt U, Unterberg A, Vougioukas VI (2006) Uniform MDM2 overexpression in a panel of glioblastoma multiforme cell lines with divergent EGFR and p53 expression status. Anticancer Res 26.
Ohgaki H, and Paul Kleihues (2013) The definition of primary and secondary glioblastoma. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-12-3002. (PMID: 10.1158/1078-0432.CCR-12-300223209033)
Chiba K, Johnson JZ, Vogan JM, Wagner T, Boyle JM, and Dirk Hockemeyer (2015). Cancer-associated tert promoter mutations abrogate telomerase silencing. eLife 4. https://doi.org/10.7554/eLife.07918.
Shay JW, Wright WE (2006) Telomerase therapeutics for cancer: challenges and new directions. Nat Rev Drug Discovery. https://doi.org/10.1038/nrd2081. (PMID: 10.1038/nrd208116773071)
Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, Meyne J, Ratliff RL, Wu JR (1988) A highly conserved repetitive DNA sequence, (TTAGGG)(n), present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 85. https://doi.org/10.1073/pnas.85.18.6622.
Aubert G, and Peter M. Lansdorp (2008) Telomeres and aging. Physiol Rev. https://doi.org/10.1152/physrev.00026.2007. (PMID: 10.1152/physrev.00026.200718391173)
Killela PJ, Zachary J, Reitman Y, Bettegowda JC, Agrawal N, Diaz LA, Friedman AH et al (2013) TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci USA 110. https://doi.org/10.1073/pnas.1303607110.
Harris AL (2002) Hypoxia - A key regulatory factor in tumour growth. Nat Rev Cancer. https://doi.org/10.1038/nrc704. (PMID: 10.1038/nrc70411902584)
Muller YA, Li B, Christinger HW, Wells JA, Brian C, Cunningham, De Vos AM (1997) Vascular endothelial growth factor: Crystal structure and functional mapping of the kinase domain receptor binding site. Proc Natl Acad Sci USA 94:7192–7197. https://doi.org/10.1073/pnas.94.14.7192. (PMID: 10.1073/pnas.94.14.7192920706723789)
Reardon DA, Turner S, Peters KB, Desjardins A, Gururangan S, Sampson JH, McLendon RE et al (2011) A review of VEGF/VEGFR-targeted therapeutics for recurrent glioblastoma. JNCCN J Natl Compr Cancer Netw 9. https://doi.org/10.6004/jnccn.2011.0038.
Bates DO (2010) Vascular endothelial growth factors and vascular permeability. Cardiovascular Res. https://doi.org/10.1093/cvr/cvq105. (PMID: 10.1093/cvr/cvq105)
Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359. https://doi.org/10.1038/359843a0.
Park J, Hyun, and Heung Kyu Lee (2022) Current understanding of Hypoxia in Glioblastoma Multiforme and its response to Immunotherapy. Cancers. https://doi.org/10.3390/cancers14051176. (PMID: 10.3390/cancers14051176366122609818850)
Zhou Y, Hong F, Tan KR, Hess, Yung WKA (2003) The expression of PAX6, PTEN, vascular endothelial growth factor, and epidermal growth factor receptor in gliomas: relationship to tumor grade and survival. Clin Cancer Res 9.
Zhang P, Xia Q, Liu L, Li S, and Lei Dong (2020) Current opinion on molecular characterization for GBM classification in guiding clinical diagnosis, prognosis, and Therapy. Front Mol Biosci. https://doi.org/10.3389/fmolb.2020.562798. (PMID: 10.3389/fmolb.2020.562798338985107785859)
So J, Seon H, Kim, Kyung Seok H (2021) Mechanisms of Invasion in Glioblastoma: Extracellular Matrix, Ca2 + signaling, and Glutamate. Front Cell Neurosci. https://doi.org/10.3389/fncel.2021.663092. (PMID: 10.3389/fncel.2021.663092341493608206529)
Wieduwilt MJ, and Moasser M. M (2011) The epidermal growth factor receptor family: biology driving targeted therapeutics. Cell Mol Life Sci 65:1566–1584. https://doi.org/10.1007/s00018-008-7440-8.The. (PMID: 10.1007/s00018-008-7440-8.The)
Lemmon MA, Schlessinger J, Ferguson KM (2014) The EGFR family: not so prototypical receptor tyrosine kinases. Cold Spring Harb Perspect Biol 6. https://doi.org/10.1101/cshperspect.a020768.
Shinojima N, Tada K, Shiraishi S, Kamiryo T, Kochi M, Nakamura H, Makino K et al (2003) Prognostic Value of Epidermal Growth Factor Receptor in patients with Glioblastoma Multiforme. Cancer Res 63.
Talasila KM, Soentgerath A, Euskirchen P, Rosland GV, Wang J, Huszthy PC, Prestegarden L et al (2013) EGFR wild-type amplification and activation promote invasion and development of glioblastoma independent of angiogenesis. Acta Neuropathol 125. https://doi.org/10.1007/s00401-013-1101-1.
Agnihotri S, Burrell KE, Wolf A, Jalali S, Hawkins C, Rutka JT, and Gelareh Zadeh (2013) Glioblastoma, a brief review of history, molecular genetics, animal models and novel therapeutic strategies. Arch Immunol Ther Exp. https://doi.org/10.1007/s00005-012-0203-0. (PMID: 10.1007/s00005-012-0203-0)
Urbanska K, Sokolowska J, Szmidt M, Sysa P (2014) Glioblastoma multiforme - an overview. Wspolczesna Onkologia. https://doi.org/10.5114/wo.2014.40559. (PMID: 10.5114/wo.2014.40559254777514248049)
Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee SU (2017) Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev. https://doi.org/10.22034/APJCP.2017.18.1.3. (PMID: 10.22034/APJCP.2017.18.1.3282399995563115)
Verhaak RGW, Katherine A, Hoadley E, Purdom V, Wang Y, Qi MD, Wilkerson C, Ryan Miller et al (2010) Integrated Genomic Analysis identifies clinically relevant subtypes of Glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17. https://doi.org/10.1016/j.ccr.2009.12.020.
Ziaja M, Urbanek KA, Kowalska K, and Agnieszka Wanda Piastowska-ciesielska (2021). Angiotensin iiangiotensin receptors 12—multifunctional system in cells biology, what do we know? Cells. MDPI. https://doi.org/10.3390/cells10020381.
Ruiz-Ortega M, Rupérez Mónica, Esteban V Juan Rodríguez-Vita, Elsa Sánchez-López, Giselle Carvajal, and Jesús Egido. 2006. Angiotensin II: a key factor in the inflammatory and fibrotic response in kidney diseases. Nephrol Dialysis Transplantation 21. https://doi.org/10.1093/ndt/gfi265.
Yixuan Shi RS, Padda, Shao-Ling C-SL, Zhang (2015) Angiotensin-(1–7): a novel peptide to treat hypertension and nephropathy in diabetes? J Diabetes Metabolism 6. https://doi.org/10.4172/2155-6156.1000615 . OMICS Publishing Group.
Bradshaw A, Ruth AC, Wickremesekera HD, Brasch AM, Chibnall PF, Davis ST, Tan, and Tinte Itinteang (2016) Glioblastoma Multiforme Cancer stem cells Express Components of the renin–angiotensin system. Front Surg 3:1–8. https://doi.org/10.3389/fsurg.2016.00051. (PMID: 10.3389/fsurg.2016.00051)
Almutlaq M, Alamro AA, Alamri HS, Alghamdi AA, Barhoumi T (2021) The Effect of Local Renin Angiotensin System in the common types of Cancer. Front Endocrinol. https://doi.org/10.3389/fendo.2021.736361. (PMID: 10.3389/fendo.2021.736361)
Murphy JE, Wo JY-L, Ferrone C, Jiang W, Beow Y, Yeap LS, Blaszkowsky EL Kwak, et al (2017) TGF-B1 inhibition with losartan in combination with FOLFIRINOX (F-NOX) in locally advanced pancreatic cancer (LAPC): preliminary feasibility and R0 resection rates from a prospective phase II study. J Clin Oncol 35. https://doi.org/10.1200/jco.2017.35.4_suppl.386.
Nakamura K, Yaguchi T, Ohmura G, Kobayashi A, Kawamura N, Iwata T, Kiniwa Y, Okuyama R, Yutaka Kawakami (2018) Involvement of local renin-angiotensin system in immunosuppression of tumor microenvironment. Cancer Sci 109. https://doi.org/10.1111/cas.13423.
Vallejo Ardila D, Lucia KA, Walsh T, Fifis R, Paolini G, Kastrappis C, Christophi, Marcos Vinicius Perini (2020) Immunomodulatory effects of renin-angiotensin system inhibitors on T lymphocytes in mice with colorectal liver metastases. J Immunother Cancer 8. https://doi.org/10.1136/jitc-2019-000487.
Catarata M, Joana R, Ribeiro Maria José Oliveira, Carlos Robalo Cordeiro, and Rui Medeiros. 2020. Renin-angiotensin system in lung tumor and microenvironment interactions. Cancers. https://doi.org/10.3390/cancers12061457.
Liu H, Naxerova K, Pinter M, Incio J, Lee H, Shigeta K, Ho WW et al (2017) Use of angiotensin system inhibitors is Associated with Immune activation and longer survival in Nonmetastatic Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 23:5959–5969. https://doi.org/10.1158/1078-0432.CCR-17-0256. (PMID: 10.1158/1078-0432.CCR-17-0256286004745856249)
Guo T, Wu C, Zhou L, Zhang J, Wang W, Shen Y, Zhang L et al (2023) Preclinical evaluation of Mito-LND, a targeting mitochondrial metabolism inhibitor, for glioblastoma treatment. Journal of Translational Medicine 21. BioMed Central: 1–13. https://doi.org/10.1186/s12967-023-04332-y.
Wang Y, Zhang T, Li C, Guo J, Xu B, and Lixiang Xue (2022). Telmisartan attenuates human glioblastoma cells proliferationoncogenicity by inducing the lipid oxidation. Asia-Pacific Journal of Clinical Oncology 18. John WileySons Inc: 217–223. https://doi.org/10.1111/ajco.13574.
Chang Y, Lung CH, Chou YF, Li LC, Huang Y, Kao DY, Hueng, and Chia Kuang Tsai (2023). Antiproliferativeapoptotic effects of telmisartan in human glioma cells. Cancer Cell International 23. BioMed Central Ltd. https://doi.org/10.1186/s12935-023-02963-1.
Amano Y, Yamaguchi T, Ohno K, Niimi T, Orita M, Sakashita H, Makoto Takeuchi (2012) Structural basis for telmisartan-mediated partial activation of PPAR gamma. Hypertens Res 35:715–719. https://doi.org/10.1038/hr.2012.17. (PMID: 10.1038/hr.2012.1722357520)
Ellis H, Patricia, and Kathreena Mary Kurian (2014) Biological rationale for the use of PPARγ agonists in glioblastoma. Frontiers in Oncology. Front Res Foundation. https://doi.org/10.3389/fonc.2014.00052. (PMID: 10.3389/fonc.2014.00052)
Pinter M, Rakesh KJ (2017) C A N C E R Targeting the renin-angiotensin system to improve cancer treatment: Implications for immunotherapy.
Januel E, Ursu R, Alkhafaji A, Marantidou A, Doridam J, Belin C, Levy-Piedbois C, Carpentier AF (2015) Impact of renin-angiotensin system blockade on clinical outcome in glioblastoma. Eur J Neurol 22. https://doi.org/10.1111/ene.12746.
Perryman R, Renziehausen A, Shaye H, Kostagianni AD, Tsiailanis AD, Thorne T, Chatziathanasiadou MV et al (2022) Inhibition of the angiotensin II type 2 receptor AT 2 R is a novel therapeutic strategy for glioblastoma. https://doi.org/10.1073/pnas.
Rice ASC, Robert H, Dworkin TD, McCarthy P, Anand C, Bountra PI, McCloud J Hill, et al (2014) EMA401, an orally administered highly selective angiotensin II type 2 receptor antagonist, as a novel treatment for postherpetic neuralgia: a randomised, double-blind, placebo-controlled phase 2 clinical trial. Lancet 383. https://doi.org/10.1016/S0140-6736(13)62337-5.
O’Rawe M, Wickremesekera AC, Pandey R, Young D, Sim D, FitzJohn T, Burgess C, Kaye AH, Tan ST (2022) Treatment of glioblastoma with re-purposed renin-angiotensin system modulators: Results of a phase I clinical trial. Journal of Clinical Neuroscience 95. Churchill Livingstone: 48–54. https://doi.org/10.1016/j.jocn.2021.11.023.
Fuster-Garcia E, Estellés DL, María del Mar Álvarez-Torres, Javier Juan-Albarracín, Chelebian E, Rovira A, Acosta CA et al (2021) MGMT methylation may benefit overall survival in patients with moderately vascularized glioblastomas. European Radiology 31. Springer Science and Business Media Deutschland GmbH: 1738–1747. https://doi.org/10.1007/s00330-020-07297-4.
Annavarapu S, Gogate A, Pham T, Davies K, Singh P, and Nicholas Robert (2021) Treatment patterns and outcomes for patients with newly diagnosed glioblastoma multiforme: a retrospective cohort study. CNS Oncol 10. https://doi.org/10.2217/cns-2021-0007.
Kourilsky A, Bertrand G, Ursu R, Doridam J, Barlog C, Faillot T, Mandonnet E, Belin C, Levy C, Antoine F, Carpentier (2016) Impact of Angiotensin-II receptor blockers on vasogenic edema in glioblastoma patients. J Neurol 263. https://doi.org/10.1007/s00415-015-8016-9.
Carpentier AF, Ferrari D, Bailon O, Ursu R, Banissi C, Dubessy AL, Belin C, Levy C (2012) Steroid-sparing effects of angiotensin-II inhibitors in glioblastoma patients. Eur J Neurol 19. https://doi.org/10.1111/j.1468-1331.2012.03766.x.
Ursu R, Thomas L, Psimaras D, Chinot O, Le Rhun E, Ricard D, Charissoux M et al (2019) Angiotensin II receptor blockers, steroids and radiotherapy in glioblastoma—a randomised multicentre trial (ASTER trial). An ANOCEF study. Eur J Cancer 109. https://doi.org/10.1016/j.ejca.2018.12.025.
Carlos-Escalante JoséA, Marcela, de Jesús-Sánchez A, Rivas-Castro PS, Pichardo-Rojas C, Arce, and Talia Wegman-Ostrosky (2021). The Use of Antihypertensive Drugs as Coadjuvant Therapy in Cancer. Frontiers in Oncology 11: 1–18. https://doi.org/10.3389/fonc.2021.660943.
Happold C, Gorlia T, Burt Nabors L, Erridge SC, Reardon DA, Hicking C, Picard M, Stupp R, Weller M (2018) Do statins, ACE inhibitors or sartans improve outcome in primary glioblastoma? Journal of Neuro-Oncology 138. Springer New York LLC: 163–171. https://doi.org/10.1007/s11060-018-2786-8.
Halatsch M, Eric RE, Kast GK-M, Mayer B, Zolk O, Schmitz B, Scheuerle A et al (2021) A phase Ib/IIa trial of 9 repurposed drugs combined with temozolomide for the treatment of recurrent glioblastoma: CUSP9v3. Neuro-Oncology Adv 3. https://doi.org/10.1093/noajnl/vdab075.
Kast RE (2018) Paths for Improving Bevacizumab Available in 2018: The ADZT Regimen for Better Glioblastoma Treatment. Medical sciences (Basel, Switzerland) 6. NLM (Medline). https://doi.org/10.3390/medsci6040084.
Levin VA, Chan J, Datta M, Yee JL, Jain RK (2017) Effect of angiotensin system inhibitors on survival in newly diagnosed glioma patients and recurrent glioblastoma patients receiving chemotherapy and/or bevacizumab. Journal of Neuro-Oncology 134. Springer New York LLC: 325–330. https://doi.org/10.1007/s11060-017-2528-3.
Salacz ME, Kast RE, Saki N, Brüning A, Georg Karpel-Massler, and Marc Eric Halatsch (2016) Toward a noncytotoxic glioblastoma therapy: blocking MCP-1 with the MTZ regimen. OncoTargets and therapy. Dove Medical Press Ltd. https://doi.org/10.2147/OTT.S100407 .
Martínez VR, Aguirre MaríaV, Todaro JS, Evelina G, Ferrer, Patricia AM, Williams (2020) Improvement of the Anticancer Activities of Telmisartan by Zn(II) Complexation and Mechanisms of Action. Biological Trace Element Research 197. Humana Press Inc.: 454–463. https://doi.org/10.1007/s12011-019-02013-w.
DeCordova S, Shastri A, Tsolaki AG, Yasmin H, Klein L, Singh SK, and Uday Kishore (2020) Molecular Heterogeneity and Immunosuppressive Microenvironment in Glioblastoma. Front Immunol. https://doi.org/10.3389/fimmu.2020.01402. (PMID: 10.3389/fimmu.2020.01402327654987379131)
Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC et al (2007) Malignant astrocytic glioma: Genetics, biology, and paths to treatment. Genes Dev. https://doi.org/10.1101/gad.1596707. (PMID: 10.1101/gad.159670717974913)
Ahir BK, Herbert H, Engelhard, Lakka SS (2020) Tumor Development and Angiogenesis in Adult Brain Tumor: Glioblastoma. Mol Neurobiol. https://doi.org/10.1007/s12035-020-01892-8. (PMID: 10.1007/s12035-020-01892-8321528257170819)
Purow B (2016) Repurposing existing agents as adjunct therapies for glioblastoma. Neuro-Oncology Practice 3. Oxford University Press: 154–163. https://doi.org/10.1093/nop/npv041.
Benenemissi I, Hana K, Sifi LK, Sahli O, Semmam N, Abadi, and Dalila Satta (2019) Angiotensin-converting enzyme insertion/deletion gene polymorphisms and the risk of glioma in an Algerian population. Pan Afr Med J 32. https://doi.org/10.11604/pamj.2019.32.197.15129.
Lindberg H, Nielsen D, Jensen BV, Eriksen J, Skovsgaard T (2004) Angiotensin converting enzyme inhibitors for cancer treatment? Acta Oncol. https://doi.org/10.1080/02841860310022346. (PMID: 10.1080/0284186031002234615163162)
Song M, Chen D, Lu B, Wang C, Zhang J, Huang L, Wang X et al (2013) PTEN loss increases PD-L1 protein expression and affects the correlation between PD-L1 expression and clinical parameters in Colorectal Cancer. PLoS ONE 8. https://doi.org/10.1371/journal.pone.0065821.
Patsoukis N, Wang Q, Strauss L, Vassiliki A, Boussiotis (2020) Revisiting the PD-1 pathway 1: 1–14.
Yi M, Niu M, Xu L, Luo S, Wu K (2021) Regulation of PD-L1 expression in the tumor microenvironment. J Hematol Oncol. https://doi.org/10.1186/s13045-020-01027-5. (PMID: 10.1186/s13045-020-01027-5345260978442312)
Dixon S, Tran A, Schrier M, Trivedi M (2022) Nucleic acid biomarker technology for cancer immunotherapy. In Engineering Technologies and Clinical Translation, 331–356. Elsevier. https://doi.org/10.1016/B978-0-323-90949-5.00010-3.
Liu J, Chen Z, Li Y, Zhao W, Wu JB, Zhang Z (2021) PD-1/PD-L1 checkpoint inhibitors in Tumor Immunotherapy. Front Pharmacol. https://doi.org/10.3389/fphar.2021.731798. (PMID: 10.3389/fphar.2021.731798357573878758560)
Yang T, Kong Z, Ma W (2020) PD-1/PD-L1 immune checkpoint inhibitors in glioblastoma: clinical studies, challenges and potential. Human Vaccines and Immunotherapeutics 17. Taylor & Francis: 1–8. https://doi.org/10.1080/21645515.2020.1782692.
Lu S, Strand KA, Marie F, Mutryn RM, Tucker, Austin J, Jolly SB, Furgeson KS, Moulton RA, Nemenoff, Mary CM, Weiser-Evans (2020) PTEN (Phosphatase and Tensin Homolog) Protects Against Ang II (Angiotensin II)-Induced Pathological Vascular Fibrosis and Remodeling-Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology 40. https://doi.org/10.1161/ATVBAHA.119.313757.
Arrieta O, Pineda-Olvera B, Guevara-Salazar P, Hernández-Pedro N, Morales-Espinosa D, Cerón-Lizarraga TL, Rembao CH, Segura-Pacheco B, Sotelo J (2008) Expression of AT1 and AT2 angiotensin receptors in astrocytomas is associated with poor prognosis. British Journal of Cancer 99: 160–166. https://doi.org/10.1038/sj.bjc.6604431.
Kouchi M, Shibayama Y, Ogawa D, Miyake K, Nishiyama A, Takashi Tamiya (2017) (Pro)renin receptor is crucial for glioma development via the Wnt/β-catenin signaling pathway. J Neurosurg 127:819–828. https://doi.org/10.3171/2016.9.JNS16431. (PMID: 10.3171/2016.9.JNS1643128059652)
Hassani B, Attar Z, Firouzabadi N (2023) The renin-angiotensin-aldosterone system (RAAS) signaling pathways and cancer: foes versus allies. Cancer Cell Int 23:254. https://doi.org/10.1186/s12935-023-03080-9. (PMID: 10.1186/s12935-023-03080-93789163610604988)
Panza S, Malivindi R, Caruso A, Russo U, Giordano F, Győrffy Balázs, Gelsomino L et al (2021) Novel insights into the antagonistic effects of losartan against angiotensin ii/agtr1 signaling in glioblastoma cells. Cancers 13:MDPI. https://doi.org/10.3390/cancers13184555. (PMID: 10.3390/cancers13184555)
Tsiailanis AD, Renziehausen A, Kiriakidi S, Vrettos EI, Georgios S, Markopoulos N, Sayyad B, Hirmiz et al (2020) Enhancement of glioblastoma multiforme therapy through a novel quercetin-losartan hybrid. Free Radic Biol Med 160. https://doi.org/10.1016/j.freeradbiomed.2020.08.007.
Rivera E, Arrieta O, Guevara P, Duarte-Rojo A, Sotelo J (2001) AT1 receptor is present in glioma cells; its blockage reduces the growth of rat glioma. Br J Cancer 85. https://doi.org/10.1054/bjoc.2001.2102.
Arrieta O, Guevara P, Escobar E, García-Navarrete R, Pineda B, Sotelo J (2005) Blockage of angiotensin II type I receptor decreases the synthesis of growth factors and induces apoptosis in C6 cultured cells and C6 rat glioma. Br J Cancer 92:1247–1252. https://doi.org/10.1038/sj.bjc.6602483. (PMID: 10.1038/sj.bjc.6602483157857462361987)
Datta M, Chatterjee S, Perez EM, Gritsch S, Roberge S, Duquette M, Chen IX et al (2023) Losartan controls immune checkpoint blocker-induced edema and improves survival in glioblastoma mouse models. Proc Natl Acad Sci USA 120. https://doi.org/10.1073/pnas.2219199120.
Lastakchi S, Olaloko MK, McConville C (2022) A Potential New Treatment for High-Grade Glioma: A Study Assessing Repurposed Drug Combinations against Patient-Derived High-Grade Glioma Cells. Cancers 14. https://doi.org/10.3390/cancers14112602.
Matsui T, Chiyo T, Kobara H, Fujihara S, Fujita K, Namima D, Nakahara M et al (2019) Telmisartan inhibits cell proliferation and tumor growth of esophageal squamous cell carcinoma by inducing S-phase arrest in vitro and in vivo. Int J Mol Sci 20. https://doi.org/10.3390/ijms20133197.
Fujihara S, Morishita A, Ogawa K, Tadokoro T, Chiyo T, Kato K, Kobara H, Mori H, Iwama H, Masaki T (2017) The angiotensin II type 1 receptor antagonist telmisartan inhibits cell proliferation and tumor growth of esophageal adenocarcinoma via the AMPKα/mTOR pathway in vitro and in vivo. Oncotarget 8:8536–8549. https://doi.org/10.18632/oncotarget.14345. (PMID: 10.18632/oncotarget.1434528052030)
Pinheiro L, Perdomo-Pantoja A, Casaos J, Huq S, Paldor I, Vigilar V, Mangraviti A et al (2021) Captopril inhibits Matrix Metalloproteinase-2 and extends survival as a temozolomide adjuvant in an intracranial gliosarcoma model. Clin Neurol Neurosurg 207. https://doi.org/10.1016/j.clineuro.2021.106771.
Lian M, Jiang H, Wang H, Guo S (2015) Angiotensin-converting enzyme insertion/deletion gene polymorphisms is associated with risk of glioma in a Chinese population. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System 16. SAGE Publications Ltd: 443–447. https://doi.org/10.1177/1470320313495910.
Rigat B, Hubert C, Alhenc-Gelas François, Cambien François, Corvol P, Soubrier F (1990) An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 86. https://doi.org/10.1172/JCI114844.
Röcken C, Lendeckel U, Dierkes J, Westphal S, Carl-McGrath S, Peters B, Krüger S, Malfertheiner P, Roessner A, Matthias PA, Ebert (2005) The number of lymph node metastases in gastric cancer correlates with the angiotensin I - converting enzyme gene insertion/deletion polymorphism. Clin Cancer Res 11:2526–2530. https://doi.org/10.1158/1078-0432.CCR-04-1922. (PMID: 10.1158/1078-0432.CCR-04-192215814629)
Maideen MP, Naina R, Balasubramanian S, Muthusamy, Venkateswaramurthy Nallasamy (2022) An overview of clinically imperative and pharmacodynamically significant drug interactions of renin-angiotensin-aldosterone system (RAAS) Blockers. Curr Cardiol Rev 18. https://doi.org/10.2174/1573403X18666220511152330.
Pei N, Wan R, Chen X, Li A, Zhang Y, Li J, Du H et al (2016) Angiotensin-(1–7) decreases cell growth and angiogenesis of human nasopharyngeal carcinoma xenografts. Mol Cancer Ther 15:37–47. https://doi.org/10.1158/1535-7163.MCT-14-0981. (PMID: 10.1158/1535-7163.MCT-14-098126671566)
Simões e, Silva A, Cristina, Walkyria O, Sampaio (2019) The role of Angiotensin–(1–7) in Cancer. Angiotensin-(1–7). Springer International Publishing, Cham, pp 219–229. https://doi.org/10.1007/978-3-030-22696-1_14 . (PMID: 10.1007/978-3-030-22696-1_14)
Li X, Wang X, Xie J, Liang B, Wu J (2019) Suppression of Angiotensin-(1–7) on the disruption of blood-brain barrier in rat of Brain Glioma. Pathol Oncol Res 25:429–435. https://doi.org/10.1007/s12253-018-0471-z. (PMID: 10.1007/s12253-018-0471-z30229380)
Evans JMM, Louise A, Donnelly, Alistair M, Emslie-Smith DR, Alessi, Andrew DM (2005) Metformin use in patients with type 2 diabetes and controls in Tayside, Scotland, 1993–2001. https://doi.org/10.1136/bmj.38415.708634.F7.
Herzig Sébastien, Shaw RJ (2018) Guardian of metabolism and mitochondrial homeostasis. Nat Reviews Mol Cell Biology 19 Nat Publishing Group 121–135. https://doi.org/10.1038/nrm.2017.95.
Yun CL, Zierath JR (2006) AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest. https://doi.org/10.1172/JCI29044. (PMID: 10.1172/JCI29044)
Jie C, Xuan W, Feng HD, Hua DM, Bo W, Fei S, Zhang, Hao (2021) AdipoR2 inhibits human glioblastoma cell growth through the AMPK/mTOR pathway. European Journal of Medical Research 26. BioMed Central: 1–8. https://doi.org/10.1186/s40001-021-00496-9.
Keerthana C, Kizhakkeveettil TP, Rayginia SC, Shifana NP, Anto K, Kalimuthu N, Isakov, Ruby John Anto (2023) The role of AMPK in cancer metabolism and its impact on the immunomodulation of the tumor microenvironment. Front Immunol 14:1–16. https://doi.org/10.3389/fimmu.2023.1114582. (PMID: 10.3389/fimmu.2023.1114582)
Lorenz NI, Benedikt Sauer PS, Zeiner, Maja I, Strecker (2022) AMP-kinase mediates adaptation of glioblastoma cells to conditions of the tumour microenvironment.
Shoda K, Tsuji S, Nakamura S, Egashira Y, Enomoto Y, Nakayama N, Shimazawa M, Iwama T, and Hideaki Hara (2023). Canagliflozin Inhibits Glioblastoma GrowthProliferation by Activating AMPK. CellularMolecular Neurobiology 43. Springer US: 879–892. https://doi.org/10.1007/s10571-022-01221-8.
Jeon SM, Hay N (2015) The double-edged sword of AMPK signaling in cancer and its therapeutic implications. Arch Pharm Res. https://doi.org/10.1007/s12272-015-0549-z. (PMID: 10.1007/s12272-015-0549-z264637005789788)
Strickland M, Stoll EA (2017) Metabolic reprogramming in glioma. Front Cell Dev Biology. https://doi.org/10.3389/fcell.2017.00043. (PMID: 10.3389/fcell.2017.00043)
Ferla R, Haspinger E, and Eva Surmacz (2012) Metformin inhibits leptin-induced growth and migration of glioblastoma cells. Oncol Lett 4:1077–1081. https://doi.org/10.3892/ol.2012.843. (PMID: 10.3892/ol.2012.843231626553499461)
Mazurek M, Litak J, Kamieniak P, Kulesza Bartłomiej, Jonak K, Baj J, and Cezary Grochowski (2020). Metformin as potential therapy for high-grade glioma. Cancers 12. MDPI AG. https://doi.org/10.3390/cancers12010210.
Sato A, Sunayama J, Okada M, Watanabe E, Seino S, Shibuya K, Suzuki K et al (2012) Glioma-initiating cell elimination by Metformin activation of FOXO3 via AMPK. Stem Cells Translational Med 1:811–824. https://doi.org/10.5966/sctm.2012-0058. (PMID: 10.5966/sctm.2012-0058)
Xiong ZS, Gong SF, Si W, Jiang T, Li QL, Wang TJ, Wang WJ, Wu RY, Jiang K (2019) Effect of metformin on cell proliferation, apoptosis, migration and invasion in A172 glioma cells and its mechanisms. Mol Med Rep 20:887–894. https://doi.org/10.3892/mmr.2019.10369. (PMID: 10.3892/mmr.2019.10369311732556625203)
Hassan M, Al I, Fakhoury ZE, Masri N, Ghazale R, Dennaoui OE, Atat A, Kanaan, and Mirvat El-Sibai (2018). Metformin treatment inhibits motilityinvasion of glioblastoma cancer cells. Analytical Cellular Pathology 2018. Hindawi. https://doi.org/10.1155/2018/5917470.
Crespo S, Kind M, Arcaro A (2016) The role of the PI3K/AKT/mTOR pathway in brain tumor metastasis. J Cancer Metastasis Treat 2:80. https://doi.org/10.20517/2394-4722.2015.72. (PMID: 10.20517/2394-4722.2015.72)
Hashemi M, Etemad S, Rezaei S, Ziaolhagh S, Rajabi R, Rahmanian P, Abdi S et al (2023) Progress in targeting PTEN/PI3K/Akt axis in glioblastoma therapy: revisiting molecular interactions. Biomed Pharmacotherapy 158 Elsevier Masson SAS 114204. https://doi.org/10.1016/j.biopha.2022.114204.
Wang Y, Meng Y, Zhang S, Wu H, Yang D, Nie C, Qunliang H (2018) Phenformin and metformin inhibit growth and migration of LN229 glioma cells in vitro and in vivo. OncoTargets Therapy 11. https://doi.org/10.2147/OTT.S168981.
Wu Z, Ho WS, Lu R (2022) Targeting mitochondrial oxidative phosphorylation in Glioblastoma Therapy. Neuromol Med. https://doi.org/10.1007/s12017-021-08678-8. (PMID: 10.1007/s12017-021-08678-8)
Shi, Yufeng SK, Lim Q, Liang SV, Iyer HY, Wang Z, Wang X, Xie et al (2019) Gboxin is an oxidative phosphorylation inhibitor that targets glioblastoma. Nature 567. https://doi.org/10.1038/s41586-019-0993-x.
Zhao R, Zhou S, Jiang L, Zhang, Zhi BY (2019) Mitochondrial electron transport chain, ROS generation and uncoupling (review). Int J Mol Med. https://doi.org/10.3892/ijmm.2019.4188. (PMID: 10.3892/ijmm.2019.4188318943156984781)
Hua Y, Zheng Y, Yao Y, Jia R, Ge S (2023) and Ai Zhuang. Metformin and cancer hallmarks: shedding new lights on therapeutic repurposing. Journal of Translational Medicine 21. BioMed Central: 1–20. https://doi.org/10.1186/s12967-023-04263-8.
Lord SR, Harris AL (2023) Is it still worth pursuing the repurposing of metformin as a cancer therapeutic? Br J Cancer. https://doi.org/10.1038/s41416-023-02204-2. (PMID: 10.1038/s41416-023-02204-23812952510844302)
Micic D, Cvijovic G, Trajkovic V, Duntas LH, and Snezana Polovina (2011) Metformin: its emerging role in oncology. Hormones 10:5–15. https://doi.org/10.14310/horm.2002.1288. (PMID: 10.14310/horm.2002.128821349801)
Hinchy EC, Gruszczyk AV, Willows R, Navaratnam N, Hall AR, Bates G, Bright TP, Krieg T, Carling D, Murphy MP (2018) Mitochondria-derived ROS activate AMP-activated protein kinase (AMPK) indirectly. J Biol Chem 293:17208–17217. https://doi.org/10.1074/jbc.RA118.002579. (PMID: 10.1074/jbc.RA118.002579302321526222118)
Mihaylova MM, Reuben JS (2011) The AMP-activated protein kinase (AMPK) signaling pathway coordinates cell growth, autophagy, & metabolism. Nat Cell Biol 13.
Cazzaniga M, Bonanni B (2015) Relationship between metabolic reprogramming and mitochondrial activity in cancer cells. Understanding the anticancer effect of metformin and its clinical implications. Anticancer Res 35:5789–5796. (PMID: 26503999)
Chinopoulos C, Seyfried TN (2018) Mitochondrial Substrate-Level Phosphorylation as Energy Source for Glioblastoma: Review and Hypothesis. ASN Neuro 10. https://doi.org/10.1177/1759091418818261.
Han W, Wang S, Qi Y, Wu F, Tian N (2022) Boqin Qiang, and Xiaozhong Peng. Targeting HOTAIRM1 ameliorates glioblastoma by disrupting mitochondrial oxidative phosphorylation and serine metabolism. iScience 25. The Authors: 104823. https://doi.org/10.1016/j.isci.2022.104823.
Lepique A, Paula E, Boccardo, Flávia, Sardela de, Miranda (2021) Metabolic reprogramming and Cancer. Essent Aspects Immunometabolism Health Disease 368:177–201. https://doi.org/10.1007/978-3-030-86684-6_9. (PMID: 10.1007/978-3-030-86684-6_9)
Navarro C, Ortega Ángel, Santeliz R, Garrido B Maricarmen Chacín, Néstor Galban, Ivana Vera, Juan Bautista De Sanctis, and Valmore Bermúdez. 2022. Metabolic reprogramming in Cancer cells: emerging Molecular mechanisms and Novel Therapeutic approaches. Pharmaceutics 14: 1–28. https://doi.org/10.3390/pharmaceutics14061303.
Nong S, Han X, Xiang Y, Qian Y, Wei Y, Zhang T, Tian K, Shen K, Yang J, Xuelei Ma (2023) Metabolic reprogramming in cancer: mechanisms and therapeutics. MedComm 4:1–37. https://doi.org/10.1002/mco2.218. (PMID: 10.1002/mco2.218)
Gou S, Qiu L, Yang Q, Li P, Zhou X et al (2021) Yixuan Sun, Xiuman Zhou,. Metformin leads to accumulation of reactive oxygen species by inhibiting the NFE2L1 expression in human hepatocellular carcinoma cells. Toxicology and Applied Pharmacology 420. Elsevier Inc.: 115523. https://doi.org/10.1016/j.taap.2021.115523.
Park D (2019) Metformin induces oxidative stress-mediated apoptosis without the blockade of glycolysis in H4IIE hepatocellular carcinoma cells. Biol Pharm Bull 42:2002–2008. https://doi.org/10.1248/bpb.b19-00474. (PMID: 10.1248/bpb.b19-0047431787716)
Queiroz EAIF, Puukila S, Eichler R, Sampaio SC, Forsyth HL, Lees SJ, Barbosa AM, Robert FH, Dekker ZB, Fortes, Neelam Khaper (2014) Metformin induces apoptosis and cell cycle arrest mediated by oxidative stress, AMPK and FOXO3a in MCF-7 breast cancer cells. PLoS ONE 9. https://doi.org/10.1371/journal.pone.0098207.
Warkad M, Shende CH, Kim BG, Kang SH, Park JS, Jung JH, Feng G, Inci et al (2021) Metformin-induced ROS upregulation as amplified by apigenin causes profound anticancer activity while sparing normal cells. Sci Rep 11 Nat Publishing Group UK 1–13. https://doi.org/10.1038/s41598-021-93270-0.
Ahmad R, Elwatidy MAV-MM, Al-Obeed O, Al-Khayal K, Eldehna WM, Abdel-Aziz HA, Alafeefy A, Maha Abdulla (2019) Induction of ROS-mediated cell death and activation of the JNK pathway by a sulfonamide derivative. Int J Mol Med 44:1552–1562. https://doi.org/10.3892/ijmm.2019.4284. (PMID: 10.3892/ijmm.2019.428431364730)
Filomeni G, De Zio D, Cecconi F (2015) Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ 22 Nat Publishing Group 377–388. https://doi.org/10.1038/cdd.2014.150.
Fleury C, Mignotte B, Vayssière Jean-luc, Fleury C, Mignotte B, Jean-luc Vayssière M (2020) Mitochondrial reactive oxygen species in cell death signaling to cite this version: HAL id: hal-03034610 mitochondrial reactive oxygen species in cell death signaling.
Kim K, Youn KI, Park SH, Kim SN, Yu D, Lee YW, Kim KT, Noh JY, Ma (2017) Salinomycin induces reactive oxygen species and apoptosis in aggressive breast cancer cells as mediated with regulation of autophagy. Anticancer Res 37:1747–1758. https://doi.org/10.21873/anticanres.11507 . Young Kyo Seo, and Soon Cheol Ahn.
Nair RR, Emmons MF, Cress AE, Raul F, Argilagos K, Lam WT, Kerr HG, Wang WS, Dalton, Hazlehurst LA (2009) HYD1-induced increase in reactive oxygen species leads to autophagy and necrotic cell death in multiple myeloma cells. Mol Cancer Ther 8:2441–2451. https://doi.org/10.1158/1535-7163.MCT-09-0113. (PMID: 10.1158/1535-7163.MCT-09-0113196717652761715)
Perillo B, Donato MD, Pezone A, Zazzo ED, Giovannelli P, Galasso G, Castoria G, and Antimo Migliaccio (2020). ROS in cancer therapy: the bright side of the moon. ExperimentalMolecular Medicine 52. Springer US: 192–203. https://doi.org/10.1038/s12276-020-0384-2.
Zou P, Chen M, Ji J, Chen W, Chen X, Ying S, Zhang J et al (2015) Auranofin induces apoptosis by ROS-mediated ER stress and mitochondrial dysfunction and displayed synergistic lethality with piperlongumine in gastric cancer. Oncotarget 6:36505–36521. https://doi.org/10.18632/oncotarget.5364. (PMID: 10.18632/oncotarget.5364264313784742192)
Sesen J, Dahan P, Scotland SJ, Saland E, Van Thi Dang A, Lemarié BM, Tyler et al (2015) Metformin inhibits growth of human glioblastoma cells and enhances therapeutic response. PLoS ONE 10. https://doi.org/10.1371/journal.pone.0123721.
Lipina C, Hundal HS (2016) Is REDD1 a Metabolic Éminence Grise? Trends in Endocrinology and Metabolism. https://doi.org/10.1016/j.tem.2016.08.005.
Barbieri F, Verduci I, Carlini V, Zona G, Pagano A, Michele Mazzanti, and, Florio T (2019) Repurposed biguanide drugs in glioblastoma exert antiproliferative effects via the inhibition of intracellular chloride channel 1 activity. Front Oncol. https://doi.org/10.3389/fonc.2019.00135. (PMID: 10.3389/fonc.2019.00135317991856874158)
Gururaja Rao, Shubha D, Ponnalagu NJ, Patel, Singh H (2018) Three decades of chloride intracellular channel proteins: from organelle to organ physiology. Curr Protocols Pharmacol 80. https://doi.org/10.1002/cpph.36.
Setti M, Savalli N, Osti D, Richichi C, Angelini M, Brescia P, Fornasari L, Carro MS, Mazzanti M, Giuliana Pelicci (2013) Functional role of CLIC1 ion channel in glioblastoma-derived stem/progenitor cells. J Natl Cancer Inst 105. https://doi.org/10.1093/jnci/djt278.
Barbieri F, Bosio AG, Pattarozzi A, Tonelli M, Bajetto A, Verduci I, Cianci F et al (2022) Chloride intracellular channel 1 activity is not required for glioblastoma development but its inhibition dictates glioma stem cell responsivity to novel biguanide derivatives. J Experimental Clin Cancer Res 41. https://doi.org/10.1186/s13046-021-02213-0.
Gururaja Rao, Shubha NJ, Patel, and Harpreet Singh (2020) Intracellular chloride channels: novel biomarkers in diseases. Front Physiol. https://doi.org/10.3389/fphys.2020.00096. (PMID: 10.3389/fphys.2020.00096321167997034325)
Verduci I, Cianci F, Cazzoli R, Cannavale G, Castiglione S, Ranucci M, Palloni L et al (2022) Abstract 903: Metformin antitumoral activity is exclusively mediated by the membrane functional expression of the Chloride Intracellular Channel 1 in glioblastoma stem cells. Cancer Res 82. https://doi.org/10.1158/1538-7445.am2022-903.
Barbieri F, Würth R, Pattarozzi A, Verduci I, Mazzola C, Cattaneo MG, Michele Tonelli, et al (2018) Inhibition of chloride intracellular channel 1 (CLIC1) as biguanide class-effect to impair human glioblastoma stem cell viability. Front Pharmacol 9. https://doi.org/10.3389/fphar.2018.00899.
Chai X, Chu H, Yang X, Meng Y, Shi P (2015) and Shanmiao Gou. Metformin Increases Sensitivity of Pancreatic Cancer Cells to Gemcitabine by Reducing CD133 + Cell Populations and Suppressing ERK/P70S6K Signaling. Scientific Reports 5. Nature Publishing Group: 1–11. https://doi.org/10.1038/srep14404.
Seo Y, Kim J, Park SJ, Park JJ, Cheon JH, Kim WH, and Tae Il Kim (2020) Metformin suppresses cancer stem cells through ampk activation and inhibition of protein prenylation of the mevalonate pathway in colorectal cancer. Cancers 12:1–13. https://doi.org/10.3390/cancers12092554. (PMID: 10.3390/cancers12092554)
Zahra MH, Said M, Afify G, Hassan HM, Nawara K, Kumon A, Seno, Masaharu Seno (2021) Metformin suppresses self-renewal and stemness of cancer stem cell models derived from pluripotent stem cells. Cell Biochem Funct 39:896–907. https://doi.org/10.1002/cbf.3661. (PMID: 10.1002/cbf.366134268768)
Zhang R, Zhang P, Wang H, Hou D, Li W, Guishan Xiao, and, Li C (2015) Inhibitory effects of metformin at low concentration on epithelial-mesenchymal transition of CD44 + CD117 + ovarian cancer stem cells. Stem Cell Res Therapy 6 Stem Cell Res Therapy 1–12. https://doi.org/10.1186/s13287-015-0249-0.
Mouhieddine TH, Nokkari A, Itani MM, Chamaa F, Bahmad H, Monzer A, El-Merahbi R et al (2015) Metformin and ara-a effectively suppress brain cancer by targeting cancer stem/progenitor cells. Front NeuroSci 9:1–11. https://doi.org/10.3389/fnins.2015.00442. (PMID: 10.3389/fnins.2015.00442)
Yuan X, Wei W, Bao Q, Chen H, Jin P, Jiang W (2018) Metformin inhibits glioma cells stemness and epithelial-mesenchymal transition via regulating YAP activity. Biomedicine and Pharmacotherapy 102. Elsevier: 263–270. https://doi.org/10.1016/j.biopha.2018.03.031.
Abylkassov R, Xie Y (2016) Role of yes-associated protein in cancer: an update (review). Oncol Lett 12:2277–2282. https://doi.org/10.3892/ol.2016.4955. (PMID: 10.3892/ol.2016.4955276987895038596)
Orr BA, Haibo Bai Y, Odia D, Jain R, Anders, and Charles G. Eberhart (2008) Yes-Associated protein 1 (YAP1) is widely expressed in human brain tumors and promotes Glioblastoma Growth Brent. Bone 23:1–7. https://doi.org/10.1097/NEN.0b013e31821ff8d8.Yes-Associated. (PMID: 10.1097/NEN.0b013e31821ff8d8.Yes-Associated)
Fu M, Lan YHT, Guan K-L, Luo T, Luo M (2022) The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Therapy 7:376. https://doi.org/10.1038/s41392-022-01191-9. (PMID: 10.1038/s41392-022-01191-9)
Casati G, Giunti L, Iorio AL, Marturano A, Galli L, Sardi I (2021) Hippo pathway in regulating drug resistance of glioblastoma. Int J Mol Sci 22:1–22. https://doi.org/10.3390/ijms222413431. (PMID: 10.3390/ijms222413431)
Pontes B, Mendes FA (2023) Mechanical properties of Glioblastoma: perspectives for YAP/TAZ Signaling Pathway and Beyond. Diseases 11:1–14. https://doi.org/10.3390/diseases11020086. (PMID: 10.3390/diseases11020086)
Zhang Y, Wang Y, Zhou D, Wang K, Wang X, Wang X, Jiang Y, Zhao M, Xiuping Zhou (2021) Rutong Yu, and. Radiation-induced YAP activation confers glioma radioresistance via promoting FGF2 transcription and DNA damage repair. Oncogene 40. Springer US: 4580–4591. https://doi.org/10.1038/s41388-021-01878-3.
Zhao M, Zhang Y, Jiang Y, Wang K, Wang X, Zhou D, Wang Y, Rutong Yu, and, Xiuping, Zhou (2021) YAP promotes autophagy and progression of gliomas via upregulating HMGB1. J Experimental Clin Cancer Res 40 J Experimental Clin Cancer Res 1–15. https://doi.org/10.1186/s13046-021-01897-8.
Molina JR, Hayashi Y, Stephens C, Maria Magdalena G (2010) Invasive glioblastoma cells acquire stemness and increased Akt activation. Neoplasia 12. https://doi.org/10.1593/neo.10126.
Narayan RS, Fedrigo CA, Brands E, Dik R, Lukas JA, Stalpers BG, Baumert BJ, Slotman, Bart A, Westerman GJ, Peters, Sminia P (2017) The allosteric AKT inhibitor MK2206 shows a synergistic interaction with chemotherapy and radiotherapy in glioblastoma spheroid cultures. BMC Cancer 17. https://doi.org/10.1186/s12885-017-3193-9.
Qian Y, Ding P, Xu J, Nie X, Lu B (2022) CCL2 activates AKT signaling to promote glycolysis and chemoresistance in glioma cells. Cell Biol Int 46. https://doi.org/10.1002/cbin.11778.
Han L, Yang Y, Yue X, Huang K, Liu X, Pu P, Jiang H, Jiang WYT, Kang C (2010) Inactivation of PI3K/AKT signaling inhibits glioma cell growth through modulation of β-catenin-mediated transcription. Brain Res 1366:9–17. https://doi.org/10.1016/j.brainres.2010.09.097. (PMID: 10.1016/j.brainres.2010.09.09720888802)
Würth R, Pattarozzi A, Gatti M, Bajetto A, Corsaro A, Parodi A, Sirito R et al (2013) Metformin selectively affects human glioblastoma tumor-initiating cell viability: a role for metformin-induced inhibition of Akt. Cell Cycle 12:145–156. https://doi.org/10.4161/cc.23050. (PMID: 10.4161/cc.23050232551073570504)
Chen R, Qiao XH, Xu F, Liu CY, Li YJ, Li XR, Li GY, Jiang et al (2019) The binding of PD-L1 and akt facilitates Glioma Cell Invasion upon Starvation via Akt/Autophagy/F-Actin signaling. Front Oncol 9. https://doi.org/10.3389/fonc.2019.01347.
Hao C, Chen G, Zhao H, Li Y, Chen J, Zhang H, Li S et al (2020) PD-L1 expression in glioblastoma, the clinical and prognostic significance: a systematic literature review and meta-analysis. Front Oncol 10:1–10. https://doi.org/10.3389/fonc.2020.01015. (PMID: 10.3389/fonc.2020.01015)
Vimalathas G, Bjarne Winther K (2022) Expression, prognostic significance and therapeutic implications of PD-L1 in gliomas. Neuropathol Appl Neurobiol 48:1–27. https://doi.org/10.1111/nan.12767. (PMID: 10.1111/nan.12767)
Cha J, Ho WH, Yang W, Xia Y, Wei L-C, Chan SO, Lim CW, Li T, Kin, Shih Shin C (2018) Metformin promotes antitumor immunity via endoplasmic reticulum-associated degradation of PD-L1. Physiol Behav 71:606–620. https://doi.org/10.1016/j.molcel.2018.07.030.Metformin. (PMID: 10.1016/j.molcel.2018.07.030.Metformin)
Alomari S, Tyler B, Zhang I, Hernandez A, Caitlin Y, Kraft DR, Jayanidhi Kedda (2021) Drug repurposing for glioblastoma and current advances in drug delivery—A comprehensive review of the literature. Biomolecules 11. https://doi.org/10.3390/biom11121870.
Yadavalli S, Yenugonda VM, Kesari S (2019) Repurposed drugs in treating Glioblastoma Multiforme: clinical trials update. Cancer J (United States) 25:139–146. https://doi.org/10.1097/PPO.0000000000000365. (PMID: 10.1097/PPO.0000000000000365)
Ma Y, Zhu Q, Liang J, Li Y, Li M, Zhang Y, Wang X, Zeng Y, Yuchen, Jiao (2020) A CRISPR knockout negative screen reveals synergy between CDKs inhibitor and metformin in the treatment of human cancer in vitro and in vivo. Signal Transduct Target Therapy 5:1–11. https://doi.org/10.1038/s41392-020-0203-1. (PMID: 10.1038/s41392-020-0203-1)
Songthaveesin C, Sa-nongdej W, Limboonreung T, Chongthammakun S (2018) Combination of metformin and 9-cis retinoic acid increases apoptosis in C6 glioma stem-like cells. Heliyon 4. Elsevier Ltd: e00638. https://doi.org/10.1016/j.heliyon.2018.e00638.
Yang S, Ho S, Li G, Lu H, Xue DH, Kim JJ, Zhu, Ying Liu (2016) Metformin treatment reduces temozolomide resistance of glioblastoma cells. Oncotarget 7:78787–78803. https://doi.org/10.18632/oncotarget.12859. (PMID: 10.18632/oncotarget.12859277912065346677)
Yoon W, Soo JH, Chang JH, Kim YJ, Kim TY, Jung H, Yoo SH, Kim et al (2023) Efficacy and safety of metformin plus low-dose temozolomide in patients with recurrent or refractory glioblastoma: a randomized, prospective, multicenter, double-blind, controlled, phase 2 trial (KNOG-1501 study). Discover Oncology 14. Springer US. https://doi.org/10.1007/s12672-023-00678-3.
Korsakova L, Krasko JA, and Edgaras Stankevicius (2021) Metabolic-targeted combination therapy with dichloroacetate and metformin suppresses glioblastoma cell line growth in vitro and in vivo. Vivo 35:341–348. https://doi.org/10.21873/INVIVO.12265. (PMID: 10.21873/INVIVO.12265)
Levesley J, Steele L, Taylor C, Sinha P, Lawler SE (2013) ABT-263 enhances sensitivity to Metformin and 2-Deoxyglucose in Pediatric Glioma by promoting apoptotic cell death. PLoS ONE 8:1–12. https://doi.org/10.1371/journal.pone.0064051. (PMID: 10.1371/journal.pone.0064051)
Rezaei N, Mazaheri AN-RZ, Koosha F, Hoormand M (2020) The combination of metformin and disulfiram-Cu for effective radiosensitization on glioblastoma cells. Cell J 22:263–272. https://doi.org/10.22074/cellj.2020.6798. (PMID: 10.22074/cellj.2020.679831863651)
Gerthofer V, Kreutz M, Renner K, Jachnik B, Dettmer K, Oefner P, Riemenschneider MJ et al (2018) Combined modulation of tumor metabolism by metformin and diclofenac in glioma. Int J Mol Sci 19. https://doi.org/10.3390/ijms19092586.
Eramo A, Pallini R, Lotti F, Sette G, Patti M, Bartucci M, Ricci-Vitiani L et al (2005) Inhibition of DNA methylation sensitizes glioblastoma for tumor necrosis factor-related apoptosis-inducing ligand-mediated destruction. Cancer Res 65:11469–11477. https://doi.org/10.1158/0008-5472.CAN-05-1724. (PMID: 10.1158/0008-5472.CAN-05-172416357155)
Fendt S-M, Frezza C, Erez A (2016) Targeting metabolic plasticity and flexibility dynamics for cancer therapy. Pain 159:1–26. https://doi.org/10.1158/2159-8290.CD-20-0844.Targeting. (PMID: 10.1158/2159-8290.CD-20-0844.Targeting)
Olivier C, Oliver L, Lalier L, Vallette FrançoisM (2021) Drug Resistance in Glioblastoma: the two faces of oxidative stress. Front Mol Biosci 7:1–16. https://doi.org/10.3389/fmolb.2020.620677. (PMID: 10.3389/fmolb.2020.620677)
Ou, Alexander WK, Alfred Yung, Majd N (2021) Molecular mechanisms of treatment resistance in glioblastoma. Int J Mol Sci 22:1–24. https://doi.org/10.3390/ijms22010351. (PMID: 10.3390/ijms22010351)
Wu Q, Berglund AE, Etame AB (2021) The impact of epigenetic modifications on adaptive resistance evolution in glioblastoma. Int J Mol Sci 22. https://doi.org/10.3390/ijms22158324.
Zhang T, Zhang L, Zhang T, Wu JFK, Guan Z, Xinyang Wang, et al (2014) Metformin sensitizes prostate cancer cells to radiation through EGFR/p-DNA-PKCS in vitro and in vivo. Radiat Res 181:641–649. https://doi.org/10.1667/RR13561.1. (PMID: 10.1667/RR13561.124844651)
Boutaud M, Auger Clément, Verdier M, and Niki Christou (2023) Metformin Treatment reduces CRC aggressiveness in a glucose-independent manner: an in Vitro and Ex vivo study. Cancers 15:1–21. https://doi.org/10.3390/cancers15143724. (PMID: 10.3390/cancers15143724)
Skinner HD, Christopher H, Crane CR, Garrett C, Eng GJ, Chang JM, Skibber, Miguel A, Rodriguez-Bigas et al (2013) Metformin use and improved response to therapy in rectal cancer. Cancer Med 2:99–107. https://doi.org/10.1002/cam4.54. (PMID: 10.1002/cam4.54241336323797563)
Tossetta G (2022) Metformin improves ovarian Cancer sensitivity to Paclitaxel and Platinum-based drugs: a review of in Vitro findings. Int J Mol Sci 23. https://doi.org/10.3390/ijms232112893.
Yang C, Zhao N, Li D, Zou G, Chen Y (2019) Metformin improves the sensitivity of ovarian cancer cells to chemotherapeutic agents. Oncol Lett 18:2404–2411. https://doi.org/10.3892/ol.2019.10564. (PMID: 10.3892/ol.2019.10564314029436676676)
Valtorta S, Dico AL, Raccagni I, Gaglio D, Belloli S, Politi LS, Martelli C et al (2017) Metformin and temozolomide, a synergic option to overcome resistance in glioblastoma multiforme models. Oncotarget 8:113090–113104. https://doi.org/10.18632/oncotarget.23028. (PMID: 10.18632/oncotarget.23028293488895762574)
Yoon W-S, Chang JH, Kim JH, Kim YJ, Jung T-Y, Yoo H, Kim S-H et al (2023) Efficacy and safety of metformin plus low-dose temozolomide in patients with recurrent or refractory glioblastoma: a randomized, prospective, multicenter, double-blind, controlled, phase 2 trial (KNOG-1501 study). Discover Oncol 14:90. https://doi.org/10.1007/s12672-023-00678-3. (PMID: 10.1007/s12672-023-00678-3)
Brown JR, Daniel K, Chan JJ, Shank KA, Griffith, Huihui F, Szulawski R, Yang K et al (2020) Phase II clinical trial of metformin as a cancer stem cell–targeting agent in ovarian cancer. JCI Insight 5:1–12. https://doi.org/10.1172/jci.insight.133247. (PMID: 10.1172/jci.insight.133247)
Jiang L, Li, Liu L (2020) Effect of metformin on stem cells: molecular mechanism and clinical prospect. World J Stem Cells 12:1455–1473. https://doi.org/10.4252/wjsc.v12.i12.1455. (PMID: 10.4252/wjsc.v12.i12.1455335055957789120)
Kim J, Hyun KJ, Lee Y, Seo JH, Kwon JP, Yoon JY, Kang HJ, Lee et al (2018) Effects of metformin on colorectal cancer stem cells depend on alterations in glutamine metabolism. Scientific Reports 8. Springer US: 1–13. https://doi.org/10.1038/s41598-017-18762-4.
Choschzick I, Hirseland E, Cramer H, Schultz S, Leppert J, Tronnier V, Zechel C (2014) Responsiveness of stem-like human glioma cells to all-trans retinoic acid and requirement of retinoic acid receptor isotypes α, β and γ. Neuroscience 279. IBRO: 44–64. https://doi.org/10.1016/j.neuroscience.2014.07.078.
Karsy M, Albert L, Tobias ME, Murali R, and Meena Jhanwar-Uniyal (2010) All-trans retinoic acid modulates cancer stem cells of glioblastoma multiforme in an MAPK-dependent manner. Anticancer Res 30:4915–4920. (PMID: 21187470)
Ying M, Wang S, Sang Y, Sun P, Lal B, Goodwin CR, Guerrero-Cazares H, Quinones-Hinojosa A, Laterra J, Xia S (2011) Regulation of glioblastoma stem cells by retinoic acid: role for notch pathway inhibition. Oncogene 30 Nat Publishing Group 3454–3467. https://doi.org/10.1038/onc.2011.58.
Bagley S (2022) Tretinoin and Retifanlimab in Treating Patients with Recurrent IDH-Mutant Glioma.
Kang C (2023) Retifanlimab: First Approval: 0–9.
Seliger C, Luber C, Gerken M, Schaertl J, Proescholdt M, Riemenschneider MJ, Christoph R, Meier et al (2019) Use of metformin and survival of patients with high-grade glioma. Int J Cancer 144:273–280. https://doi.org/10.1002/ijc.31783. (PMID: 10.1002/ijc.3178330091464)
Chou F, Ju Y, Liu F, Lang, Yang C (2021) D-2-hydroxyglutarate in glioma biology. Cells 10. https://doi.org/10.3390/cells10092345.
Cuyàs E, Salvador Fernández-Arroyo, Bruna Corominas-Faja, Esther Rodríguez-Gallego, Joaquim Bosch-Barrera, Begoña Martin-Castillo, Rafael D., De Llorens J, Joven, Menendez JA (2015) Oncometabolic mutation IDH1 R132H confers a metforminhypersensitive phenotype. Oncotarget 6: 12279–12296. https://doi.org/10.18632/oncotarget.3733.
Reiter-Brennan C, Semmler L, Klein A (2018) The effects of 2-hydroxyglutarate on the tumorigenesis of gliomas. Wspolczesna Onkologia 22:215–222. https://doi.org/10.5114/wo.2018.82642. (PMID: 10.5114/wo.2018.82642307833846377424)
Khurshed M, Molenaar RJ, Myra E, van Linde RA, Mathôt, Eduard A, van Struys JF, van Noorden HJ, Klümpen, Judith VMG, Bovée, Wilmink JW (2021) A phase ib clinical trial of metformin and chloroquine in patients with idh1-mutated solid tumors. Cancers 13: 1–16. https://doi.org/10.3390/cancers13102474.
Liu X, Romero I, Litchfield LM, Lengyel E, Locasale JW (2016) Metformin targets central carbon metabolism and reveals mitochondrial requirements in humans cancer. Cell Metab 24:728–739. https://doi.org/10.1016/j.cmet.2016.09.005.Metformin. (PMID: 10.1016/j.cmet.2016.09.005.Metformin277460515889952)
Saladini S, Aventaggiato M, Barreca F, Morgante E, Sansone L, Russo MA, Marco Tafani (2019) Metformin impairs glutamine metabolism and autophagy in tumour cells. Cells 8. https://doi.org/10.3390/cells8010049.
1 antagonist. Canadian Journal of Physiology and Pharmacology 81: 142–149. https://doi.org/10.1139/y02-154.
Birzniece V, Lam T, McLean M, Reddy N, Shahidipour H, Hayden A, Gurney H, Stone G, Hjortebjerg R, Frystyk J (2022) Insulin-like growth factor role in determining the anti-cancer effect of metformin: RCT in prostate cancer patients. Endocr Connections 11. https://doi.org/10.1530/EC-21-0375.
Ma Y, Zhu Q, Liang J, Li Y, Li M, Zhang Y, Wang X, Zeng Y, Yuchen, Jiao (2020) A CRISPR knockout negative screen reveals synergy between CDKs inhibitor and metformin in the treatment of human cancer in vitro and in vivo. Signal Transduct Target Therapy 5:152. https://doi.org/10.1038/s41392-020-0203-1. (PMID: 10.1038/s41392-020-0203-1)
Md T, Islam, Nasrin S (2016) Beneficiary Effect of Combination Therapy of Metformin and Pitavastatin Drug on Alloxan Induced Diabetic rats comparing to single drug Therapy. Clin Experimental Pharmacol 06. https://doi.org/10.4172/2161-1459.1000217 . OMICS Publishing Group.
فهرسة مساهمة: Keywords: Glioblastoma; Metformin; Renin angiotensin system inhibitors; Therapeutics
المشرفين على المادة: 9100L32L2N (Metformin)
0 (Angiotensin-Converting Enzyme Inhibitors)
0 (Hypoglycemic Agents)
تواريخ الأحداث: Date Created: 20240624 Date Completed: 20240718 Latest Revision: 20240805
رمز التحديث: 20240806
DOI: 10.1007/s00280-024-04686-0
PMID: 38914751
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-0843
DOI:10.1007/s00280-024-04686-0