دورية أكاديمية

Investigating the Impact of Blunt Force Trauma: A Probabilistic Study of Behind Armor Blunt Trauma Risk.

التفاصيل البيبلوغرافية
العنوان: Investigating the Impact of Blunt Force Trauma: A Probabilistic Study of Behind Armor Blunt Trauma Risk.
المؤلفون: Kote VB; Southwest Research Institute, San Antonio, TX, USA. vivek.kote@swri.org., Frazer LL; Southwest Research Institute, San Antonio, TX, USA., Hostetler ZS; Elemance, LLC, Winston-Salem, NC, USA., Jones DA; Elemance, LLC, Winston-Salem, NC, USA., Davis M; Elemance, LLC, Winston-Salem, NC, USA., Op't Eynde J; Duke University, Durham, NC, USA., Kait J; Duke University, Durham, NC, USA., Pang D; Duke University, Durham, NC, USA., Bass D; Wayne State University, Detroit, MI, USA., Koser J; Medical College of Wisconsin, Milwaukee, WI, USA., Shah A; Medical College of Wisconsin, Milwaukee, WI, USA., Yoganandan N; Medical College of Wisconsin, Milwaukee, WI, USA., Stemper B; Medical College of Wisconsin, Milwaukee, WI, USA., Bentley T; Office of Naval Research, Arlington, VA, USA., Nicolella DP; Southwest Research Institute, San Antonio, TX, USA.
المصدر: Annals of biomedical engineering [Ann Biomed Eng] 2024 Jun 26. Date of Electronic Publication: 2024 Jun 26.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Science + Business Media Country of Publication: United States NLM ID: 0361512 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-9686 (Electronic) Linking ISSN: 00906964 NLM ISO Abbreviation: Ann Biomed Eng Subsets: MEDLINE
أسماء مطبوعة: Publication: 2005- : New York : Springer Science + Business Media
Original Publication: New York, Academic Press.
مستخلص: Evaluating Behind Armor Blunt Trauma (BABT) is a critical step in preventing non-penetrating injuries in military personnel, which can result from the transfer of kinetic energy from projectiles impacting body armor. While the current NIJ Standard-0101.06 standard focuses on preventing excessive armor backface deformation, this standard does not account for the variability in impact location, thorax organ and tissue material properties, and injury thresholds in order to assess potential injury. To address this gap, Finite Element (FE) human body models (HBMs) have been employed to investigate variability in BABT impact conditions by recreating specific cases from survivor databases and generating injury risk curves. However, these deterministic analyses predominantly use models representing the 50th percentile male and do not investigate the uncertainty and variability inherent within the system, thus limiting the generalizability of investigating injury risk over a diverse military population. The DoD-funded I-PREDICT Future Naval Capability (FNC) introduces a probabilistic HBM, which considers uncertainty and variability in tissue material and failure properties, anthropometry, and external loading conditions. This study utilizes the I-PREDICT HBM for BABT simulations for three thoracic impact locations-liver, heart, and lower abdomen. A probabilistic analysis of tissue-level strains resulting from a BABT event is used to determine the probability of achieving a Military Combat Incapacitation Scale (MCIS) for organ-level injuries and the New Injury Severity Score (NISS) is employed for whole-body injury risk evaluations. Organ-level MCIS metrics show that impact at the heart can cause severe injuries to the heart and spleen, whereas impact to the liver can cause rib fractures and major lacerations in the liver. Impact at the lower abdomen can cause lacerations in the spleen. Simulation results indicate that, under current protection standards, the whole-body risk of injury varies between 6 and 98% based on impact location, with the impact at the heart being the most severe, followed by impact at the liver and the lower abdomen. These results suggest that the current body armor protection standards might result in severe injuries in specific locations, but no injuries in others.
(© 2024. The Author(s) under exclusive licence to Biomedical Engineering Society.)
References: Cannon, L. Behind armour blunt trauma-an emerging problem. BMJ Military Health. 147:87–96, 2001.
Prather, R. N., C. L. Swann, and C.E. Hawkins. Backface Signatures of Soft Body Armors and the Associated Trauma Effects. US Department of Commerce, Technology Administration, National Technical Information Service, 1977.
Tam, W. The Development of a Physical Model of Non-penetrating Ballistic Injury Surgeon Lieutenant Commander L Cannon Royal Navy, 2001.
Mayorga, M., I. Anderson, J. van Bree, et al. Thoracic Response to Undefeated Body Armour. NATO Task Group TG-001, RTO, Report No RTO-TR-IST-999, 2010. https://booksgooglecoin/books/about/Thoracic_Response_to_Undefeated_Body_Arm.html.
Yoganandan, N., A. Shah, L. Somberg, et al. A novel paradigm to develop regional thoracoabdominal criteria for behind armor blunt trauma based on original data. Mil. Med. 188:598–605, 2023. https://doi.org/10.1093/milmed/usad272 . (PMID: 10.1093/milmed/usad27237948200)
US Department of Justice. Ballistic Resistance of Body Armor NIJ Standard-0101.06. US Department of Justice.
Goldfarb, M. A., T. F. Ciurej, M. A. Weinstein, and L. Metker. A Method for Soft Body Armor Evaluation: Medical Assessment. Edgewood Arsenal Aberdeen Proving Ground, Report No EB-TR-74073, 1975.
Hanlon, E., and P. Gillich. Origin of the 44-mm behind-armor blunt trauma standard. Mil. Med. 177:333–339, 2012. (PMID: 10.7205/MILMED-D-11-0030322479923)
Wilhelm, M. R. A Biomechanical Assessment of Female Body Armor. Detroit: Wayne State University, 2003.
Park, J. L., Y. S. Chi, M. H. Hahn, and T. J. Kang. Kinetic dissipation in ballistic tests of soft body armors. Exp. Mech. 52:1239–1250, 2012. https://doi.org/10.1007/s11340-011-9583-z . (PMID: 10.1007/s11340-011-9583-z)
Jennings, R. M., C. Malbon, F. Brock, et al. A preliminary study into injuries due to non-perforating ballistic impacts into soft body armour over the spine. Injury. 49:1251–1257, 2018. https://doi.org/10.1016/j.injury.2018.05.015 . (PMID: 10.1016/j.injury.2018.05.01529861310)
Bass, C. R., R. S. Salzar, S. R. Lucas, et al. Injury risk in behind armor blunt thoracic trauma. Int. J. Occup. Saf. Ergon. 12:429–442, 2006. (PMID: 10.1080/10803548.2006.1107670217156618)
Roberts, J. C., E. E. Ward, A. C. Merkle, and J. V. O’Connor. Assessing behind armor blunt trauma in accordance with the National Institute of Justice Standard for Personal Body Armor Protection using finite element modeling. J. Trauma Acute Care Surg. 62:1127–1133, 2007. (PMID: 10.1097/01.ta.0000231779.99416.ee)
Carr, D. J., I. Horsfall, and C. Malbon. Is behind armour blunt trauma a real threat to users of body armour? A systematic review. J. R. Army Med. Corps. 162:8–11, 2016. https://doi.org/10.1136/jramc-2013-000161 . (PMID: 10.1136/jramc-2013-00016124227791)
Schmitt, K.-U., P. F. Niederer, M. H. Muser, and F. Walz. Methods in trauma biomechanics. In: Trauma Biomechanics: Accidental Injury in Traffic and Sports, edited by K.-U. Schmitt, P. F. Niederer, M. H. Muser, and F. Walz. Berlin: Springer, 2009, pp. 17–62.
Prat, N., F. Rongieras, J.-C. Sarron, et al. Contemporary body armor: technical data, injuries, and limits. Eur. J. Trauma Emerg. Surg. 38:95–105, 2012. https://doi.org/10.1007/s00068-012-0175-0 . (PMID: 10.1007/s00068-012-0175-026815825)
Bir, C., R. Lance, S. Stojsih-Sherman, and J. Cavanaugh. Behind armor blunt trauma: recreation of field cases for the assessment of backface signature testing. In: 30th International Symposium on Ballistics, 2017. https://doi.org/10.12783/ballistics2017/16912 .
Roberts, J. C., A. C. Merkle, P. J. Biermann, et al. Computational and experimental models of the human torso for non-penetrating ballistic impact. J. Biomech. 40:125–136, 2007. https://doi.org/10.1016/j.jbiomech.2005.11.003 . (PMID: 10.1016/j.jbiomech.2005.11.00316376354)
Roberts, J. C., J. V. O’Connor, and E. E. Ward. Modeling the effect of non-penetrating ballistic impact as a means of detecting behind armor blunt trauma. J. Trauma. 58:1241–1251, 2005. https://doi.org/10.1097/01.ta.0000169805.81214.dc . (PMID: 10.1097/01.ta.0000169805.81214.dc15995477)
Merkle, A. C., E. E. Ward, J. V. O’Connor, and J. C. Roberts. Assessing behind armor blunt trauma (BABT) under NIJ standard-0101.04 conditions using human torso models. J. Trauma. 64:1555–1561, 2008. https://doi.org/10.1097/TA.0b013e318160ff3a . (PMID: 10.1097/TA.0b013e318160ff3a18545123)
Raftenberg, M. N. Modeling Thoracic Blunt Trauma; Towards a Finite-Element-Based Design Methodology for Body Armor. Army Research Lab Aberdeen Proving Ground MD.
Shen, W., Y. Niu, L. Bykanova, et al. Characterizing the interaction among bullet, body armor, and human and surrogate targets. J. Biomech. Eng. 2010. https://doi.org/10.1115/1.4002699 . (PMID: 10.1115/1.400269921142315)
Bracq, A., R. Delille, C. Maréchal, et al. Rib fractures prediction method for kinetic energy projectile impact: from blunt ballistic experiments on SEBS gel to impact modeling on a human torso FE model. Forensic Sci. Int. 297:177–183, 2019. https://doi.org/10.1016/j.forsciint.2019.02.007 . (PMID: 10.1016/j.forsciint.2019.02.00730802646)
Chaufer, M., R. Delille, B. Bourel, et al. A new biomechanical FE model for blunt thoracic impact. Front. Bioeng. Biotechnol. 11:1152508, 2023. https://doi.org/10.3389/fbioe.2023.1152508 . (PMID: 10.3389/fbioe.2023.11525083703425410073536)
Thompson, A. B., F. S. Gayzik, D. P. Moreno, et al. A paradigm for human body finite element model integration from a set of regional models. Biomed. Sci. Instrum. 48:423–430, 2012. (PMID: 22846315)
Iwamoto, M., Y. Nakahira, and H. Kimpara. Development and validation of the Total HUman Model for Safety (THUMS) toward further understanding of occupant injury mechanisms in precrash and during crash. Traffic Inj. Prev. 16:S36–S48, 2015. https://doi.org/10.1080/15389588.2015.1015000 . (PMID: 10.1080/15389588.2015.101500026027974)
Shigeta, K., Y. Kitagawa, and T. Yasuki. Development of next generation human FE model capable of organ injury prediction. In: Proceedings of the 21st Annual Enhanced Safety of Vehicles, 2009, pp. 15–18.
Schwartz, D., B. Guleyupoglu, B. Koya, et al. Development of a computationally efficient full human body finite element model. Traffic Inj. Prev. 16:S49–S56, 2015. https://doi.org/10.1080/15389588.2015.1021418 . (PMID: 10.1080/15389588.2015.102141826027975)
Gierczycka, D., B. Watson, and D. Cronin. Investigation of occupant arm position and door properties on thorax kinematics in side impact crash scenarios—comparison of ATD and human models. Int. J. Crashworthiness. 20:242–269, 2015. https://doi.org/10.1080/13588265.2014.998000 . (PMID: 10.1080/13588265.2014.998000)
Campbell, B. M., and D. S. Cronin. Coupled human body and side impact model to predict thoracic response. Int. J. Crashworthiness. 19:394–413, 2014. https://doi.org/10.1080/13588265.2014.909561 . (PMID: 10.1080/13588265.2014.909561)
Nicolella, D. P., B. H. Thacker, H. Katoozian, and D. T. Davy. Probabilistic risk analysis of a cemented hip implant. In: ASME-Publications-BED, 2001, vol 50, pp. 427–428.
Nicolella, D., W. Francis, A. Bonivtch, et al. Development, verification, and validation of a parametric cervical spine injury prediction model. In: 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; 14th AIAA/ASME/AHS Adaptive Structures Conference; 7th American Institute of Aeronautics and Astronautics, Newport, Rhode Island, 2006.
Thacker, B. H., D. P. Nicolella, S. Kumaresan, et al. Probabilistic injury analysis of the human cervical spine. In: ASME-Publications-BED, 2001, vol 50, pp. 879–880.
Nicolella, D. P., B. H. Thacker, H. Katoozian, and D. T. Davy. The effect of three-dimensional shape optimization on the probabilistic response of a cemented femoral hip prosthesis. J. Biomech. 39:1265–1278, 2006. (PMID: 10.1016/j.jbiomech.2005.03.01015961093)
Iraeus, J., K. Brolin, and B. Pipkorn. Generic finite element models of human ribs, developed and validated for stiffness and strain prediction—to be used in rib fracture risk evaluation for the human population in vehicle crashes. J. Mech. Behav. Biomed. Mater.106:103742, 2020. https://doi.org/10.1016/j.jmbbm.2020.103742 . (PMID: 10.1016/j.jmbbm.2020.10374232250953)
Rampersadh, C., A. M. Agnew, S. Malcolm, et al. Factors affecting the numerical response and fracture location of the GHBMC M50 rib in dynamic anterior–posterior loading. J. Mech. Behav. Biomed. Mater.136:105527, 2022. (PMID: 10.1016/j.jmbbm.2022.10552736306670)
Schoell, S. L., A. A. Weaver, N. A. Vavalle, and J. D. Stitzel. Age- and sex-specific thorax finite element model development and simulation. Traffic Inj. Prev. 16:S57–S65, 2015. (PMID: 10.1080/15389588.2015.100520826027976)
Cronin, D., M. Bustamante, J. Barker, et al. Assessment of thorax finite element model response for behind armor blunt trauma impact loading using an epidemiological database. J. Biomech. Eng.143:031007, 2021. (PMID: 10.1115/1.404864433009546)
Bustamante, M., and D. Cronin. Impact location dependence of behind armor blunt trauma injury assessed using a human body finite element model. J. Biomech. Eng. 146(3):1–24, 2023.
Frazer, L., V. Kote, Z. Hostetler, et al. A comparative analysis of dimensionality reduction surrogate modeling techniques for full human body finite element impact simulations. Comput. Methods Biomech. Biomed. Eng. 2023. https://doi.org/10.1080/10255842.2023.2236747 . (PMID: 10.1080/10255842.2023.2236747)
Lawnick, M. M., H. R. Champion, T. Gennarelli, et al. Combat injury coding: a review and reconfiguration. J. Trauma Acute Care Surg. 75:573, 2013. https://doi.org/10.1097/TA.0b013e3182a53bc6 . (PMID: 10.1097/TA.0b013e3182a53bc624064868)
Osler, T., S. P. Baker, and W. Long. A modification of the injury severity score that both improves accuracy and simplifies scoring. J. Trauma 43:922–925; discussion 925–926, 1997. https://doi.org/10.1097/00005373-199712000-00009 .
Op‘t Eynde, J., C. P. Eckersley, R.S. Salzar, and B. D. Stemper. Behind armour blunt trauma (BABT) indenter simulating high-velocity impacts from rifle rounds on hard body armour. In: Personal Armour Systems Symposium, Copenhagen, Denmark, 2020.
Hostetler, Z. Development of a 50th percentile male warfighter model for incapacitation prediction in behind armor blunt trauma. In: Military Health System Research Symposium, 2023.
Eliason, T., J. Coogan, and D. Nicolella. Hierarchical verification and validation of human body computational models. In: IRCOBI Conference Proceedings, 2016.
Zeng, W., S. Mukherjee, A. Caudillo, et al. Evaluation and validation of thorax model responses: a hierarchical approach to achieve high biofidelity for thoracic musculoskeletal system. Front. Bioeng. Biotechnol. 2021. https://doi.org/10.3389/fbioe.2021.712656 . (PMID: 10.3389/fbioe.2021.712656350878028741272)
Thacker, B. H., W. L. Francis, and D. P. Nicolella. Model validation and uncertainty quantification applied to cervical spine injury assessment. In: Computational Uncertainty in Military Vehicle Design 26-1. NATO, 2007.
Avants, B. B., N. J. Tustison, G. Song, et al. A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage. 54:2033–2044, 2011. https://doi.org/10.1016/j.neuroimage.2010.09.025 . (PMID: 10.1016/j.neuroimage.2010.09.02520851191)
McFarland, J. M., J. A. Dimeo, and B. J. Bichon. Gaussian process response surface modeling and global sensitivity analysis using NESSUS. In: International Conference on Uncertainty Quantification in Computational Sciences and Engineering, UNCECOMP 2017, 2nd ECCOMAS Thematic Conference, 2017.
Norton, N., S. Crimmons, Z. Hostetler, et al. The I-PREDICT 50th percentile male warfighter finite element model: development and validation of the head and neck. Ann. Biomed. Eng.
DiSerafino, D., D. Jones, Z. Hostetler, et al. The I-PREDICT 50th percentile male warfighter finite element model: development and validation of the thoracolumbar spine. Ann. Biomed. Eng. 2024. https://doi.org/10.1007/s10439-024-03522-z . (PMID: 10.1007/s10439-024-03522-z38780890)
Hostetler, Z., D. DiSerafino, A. Kalmar-Gonzalo, et al. The I-PREDICT 50th percentile male warfighter finite element model: development and validation of the torso for incapacitation prediction in behind armor blunt trauma.
Kroell, C. K., D. C. Schneider, and A. M. Nahum. Impact tolerance and response of the human thorax II. SAE Trans. 83:3724–3762, 1974.
Villani, C. The Wasserstein distances. In: Optimal Transport: Old and New, edited by C. Villani. Berlin: Springer, 2009, pp. 93–111. (PMID: 10.1007/978-3-540-71050-9_6)
Seifert, J., J. Koser, A. Shah, et al. Impactor displacement as a predictor of thoraco-abdominal organ injury: comparison of isolated organ to whole body tests (in review). Ann. Biomed. Eng.
Forman, J. L., R. W. Kent, K. Mroz, et al. Predicting rib fracture risk with whole-body finite element models: development and preliminary evaluation of a probabilistic analytical framework. Ann. Adv. Automot. Med. 56:109–124, 2012. (PMID: 231691223503420)
Moore, E. E., T. H. Cogbill, M. A. Malangoni, et al. Organ injury scaling. Surg. Clin. N. Am. 75:293–303, 1995. https://doi.org/10.1016/s0039-6109(16)46589-8 . (PMID: 10.1016/s0039-6109(16)46589-87899999)
Kozar, R. A., M. Crandall, K. Shanmuganathan, et al. Organ injury scaling 2018 update: spleen, liver, and kidney. J. Trauma Acute Care Surg. 85:1119–1122, 2018. https://doi.org/10.1097/TA.0000000000002058 . (PMID: 10.1097/TA.000000000000205830462622)
Gennarelli, T. A., and E. Wodzin. AIS 2005: a contemporary injury scale. Injury. 37:1083–1091, 2006. https://doi.org/10.1016/j.injury.2006.07.009 . (PMID: 10.1016/j.injury.2006.07.00917092503)
Wagner, R. B., W. O. Crawford, and P. P. Schimpf. Classification of parenchymal injuries of the lung. Radiology. 167:77–82, 1988. https://doi.org/10.1148/radiology.167.1.3347751 . (PMID: 10.1148/radiology.167.1.33477513347751)
Melvin, J. W., A. M. Nahum, and N. Yoganandan. Accidental Injury: Biomechanics and Prevention. New York: Springer, 2015.
Li, Z., M. W. Kindig, J. R. Kerrigan, et al. Rib fractures under anterior–posterior dynamic loads: experimental and finite-element study. J. Biomech. 43:228–234, 2010. https://doi.org/10.1016/j.jbiomech.2009.08.040 . (PMID: 10.1016/j.jbiomech.2009.08.04019875122)
Holcombe, S. A., Y.-S. Kang, B. A. Derstine, et al. Regional maps of rib cortical bone thickness and cross-sectional geometry. J. Anat. 235:883–891, 2019. https://doi.org/10.1111/joa.13045 . (PMID: 10.1111/joa.13045312259156794212)
Zhao, J., and G. Narwani. Development of a human body finite element model for restraint system R&D applications. In: The 19th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper, 2005. Citeseer, 2005.
Gaur, P., A. Chawla, K. Verma, et al. Characterisation of human diaphragm at high strain rate loading. J. Mech. Behav. Biomed. Mater. 60:603–616, 2016. https://doi.org/10.1016/j.jmbbm.2016.02.031 . (PMID: 10.1016/j.jmbbm.2016.02.03127062242)
Comley, K., and N. Fleck. The compressive response of porcine adipose tissue from low to high strain rate. Int. J. Impact Eng. 46:1–10, 2012. https://doi.org/10.1016/j.ijimpeng.2011.12.009 . (PMID: 10.1016/j.ijimpeng.2011.12.009)
Hampton, C. E., and M. Kleinberger. Material Models for the Human Torso Finite Element Model. US Army Research Laboratory (ARL), Aberdeen Proving Ground, MD, 2018.
Zhai, X., and W. W. Chen. Compressive mechanical response of porcine muscle at intermediate (100/s–102/s) strain rates. Exp. Mech. 59:1299–1305, 2019. https://doi.org/10.1007/s11340-018-00456-1 . (PMID: 10.1007/s11340-018-00456-1)
Song, B., W. Chen, Y. Ge, and T. Weerasooriya. Dynamic and quasi-static compressive response of porcine muscle. J. Biomech. 40:2999–3005, 2007. https://doi.org/10.1016/j.jbiomech.2007.02.001 . (PMID: 10.1016/j.jbiomech.2007.02.00117448479)
Shergold, O. A., N. A. Fleck, and D. Radford. The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates. Int. J. Impact Eng. 32:1384–1402, 2006. https://doi.org/10.1016/j.ijimpeng.2004.11.010 . (PMID: 10.1016/j.ijimpeng.2004.11.010)
Kemper, A. R., C. McNally, E. A. Kennedy, et al. Material properties of human rib cortical bone from dynamic tension coupon testing. Stapp Car Crash J. 49:199–230, 2005. https://doi.org/10.4271/2005-22-0010 . (PMID: 10.4271/2005-22-001017096275)
Katzenberger, M. J., D. L. Albert, A. M. Agnew, and A. R. Kemper. Effects of sex, age, and two loading rates on the tensile material properties of human rib cortical bone. J. Mech. Behav. Biomed. Mater.102:103410, 2020. https://doi.org/10.1016/j.jmbbm.2019.103410 . (PMID: 10.1016/j.jmbbm.2019.10341031655338)
Gayzik, F. S., J. J. Hoth, M. Daly, et al. A finite element-based injury metric for pulmonary contusion: investigation of candidate metrics through correlation with computed tomography. Stapp Car Crash J. 51:189–209, 2007. https://doi.org/10.4271/2007-22-0009 . (PMID: 10.4271/2007-22-000918278598)
Kemper, A. R., A. C. Santago, J. D. Stitzel, et al. Biomechanical response of human spleen in tensile loading. J. Biomech. 45:348–355, 2012. https://doi.org/10.1016/j.jbiomech.2011.10.022 . (PMID: 10.1016/j.jbiomech.2011.10.02222078273)
Snedeker, J. G., M. Barbezat, P. Niederer, et al. Strain energy density as a rupture criterion for the kidney: impact tests on porcine organs, finite element simulation, and a baseline comparison between human and porcine tissues. J. Biomech. 38:993–1001, 2005. https://doi.org/10.1016/j.jbiomech.2004.05.030 . (PMID: 10.1016/j.jbiomech.2004.05.03015797581)
Yamada, H. Strength of Biological Materials. Philadelphia: Williams & Wilkins, 1970.
Kemper, A. R., A. C. Santago, J. D. Stitzel, et al. Biomechanical response of human liver in tensile loading. Ann. Adv. Automot. Med. 54:15–26, 2010. (PMID: 210505883242546)
Javali, R. H., A. Patil, and M. Srinivasarangan. Comparison of injury severity score, new injury severity score, revised trauma score and trauma and injury severity score for mortality prediction in elderly trauma patients. Indian J. Crit. Care Med. Peer Rev. Off. Publ. Indian Soc. Crit. Care Med. 23:73, 2019.
Tommasini, S. M., P. Nasser, M. B. Schaffler, and K. J. Jepsen. Relationship between bone morphology and bone quality in male tibias: implications for stress fracture risk. J. Bone Miner. Res. 20:1372–1380, 2005. https://doi.org/10.1359/JBMR.050326 . (PMID: 10.1359/JBMR.05032616007335)
Murach, M. M., Y.-S. Kang, S. D. Goldman, et al. Rib geometry explains variation in dynamic structural response: potential implications for frontal impact fracture risk. Ann. Biomed. Eng. 45:2159–2173, 2017. https://doi.org/10.1007/s10439-017-1850-4 . (PMID: 10.1007/s10439-017-1850-4285476605860670)
Bredbenner, T. L., R. L. Mason, L. M. Havill, et al. Fracture risk predictions based on statistical shape and density modeling of the proximal femur. J. Bone Miner. Res. 29:2090–2100, 2014. https://doi.org/10.1002/jbmr.2241 . (PMID: 10.1002/jbmr.224124692132)
Miller, P. R., M. A. Croce, T. K. Bee, et al. ARDS after pulmonary contusion: accurate measurement of contusion volume identifies high-risk patients. J. Trauma Acute Care Surg. 51:223, 2001. (PMID: 10.1097/00005373-200108000-00003)
معلومات مُعتمدة: MTEC 18-04-I-PREDICT (W81XWH1590001) Office of Naval Research
فهرسة مساهمة: Keywords: Behind armor blunt trauma; Military combat incapacitation scale; New injury severity score; Probabilistic finite element modeling; Response surface model
تواريخ الأحداث: Date Created: 20240626 Latest Revision: 20240626
رمز التحديث: 20240626
DOI: 10.1007/s10439-024-03564-3
PMID: 38922366
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-9686
DOI:10.1007/s10439-024-03564-3