دورية أكاديمية

Overexpression of tonoplast Ca 2+ -ATPase in guard cells synergistically enhances stomatal opening and drought tolerance.

التفاصيل البيبلوغرافية
العنوان: Overexpression of tonoplast Ca 2+ -ATPase in guard cells synergistically enhances stomatal opening and drought tolerance.
المؤلفون: Su J; Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China., He B; Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China., Li P; Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China., Yu B; Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China., Cen Q; Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China., Xia L; Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, G12 8QQ, UK., Jing Y; BGI Research, Sanya, 572025, China., Wu F; Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China., Karnik R; Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, G12 8QQ, UK., Xue D; College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China., Blatt MR; Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, G12 8QQ, UK., Wang Y; Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China.; Zhejiang Provincial Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China.
المصدر: Journal of integrative plant biology [J Integr Plant Biol] 2024 Aug; Vol. 66 (8), pp. 1587-1602. Date of Electronic Publication: 2024 Jun 24.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Pub Country of Publication: China (Republic : 1949- ) NLM ID: 101250502 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1744-7909 (Electronic) Linking ISSN: 16729072 NLM ISO Abbreviation: J Integr Plant Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: [China] : Wiley-Blackwell Pub
Original Publication: [Carlton South, Victoria] : Blackwell Pub., 2005-
مواضيع طبية MeSH: Calcium-Transporting ATPases*/metabolism , Calcium-Transporting ATPases*/genetics , Drought Resistance*/genetics , Plant Stomata*/physiology , Plant Stomata*/genetics , Plants, Genetically Modified*, Abscisic Acid/pharmacology ; Abscisic Acid/metabolism ; Arabidopsis/genetics ; Arabidopsis/physiology ; Calcium/metabolism ; Gene Expression Regulation, Plant ; Vacuoles/metabolism
مستخلص: Stomata play a crucial role in plants by controlling water status and responding to drought stress. However, simultaneously improving stomatal opening and drought tolerance has proven to be a significant challenge. To address this issue, we employed the OnGuard quantitative model, which accurately represents the mechanics and coordination of ion transporters in guard cells. With the guidance of OnGuard, we successfully engineered plants that overexpressed the main tonoplast Ca 2+ -ATPase gene, ACA11, which promotes stomatal opening and enhances plant growth. Surprisingly, these transgenic plants also exhibited improved drought tolerance due to reduced water loss through their stomata. Again, OnGuard assisted us in understanding the mechanism behind the unexpected stomatal behaviors observed in the ACA11 overexpressing plants. Our study revealed that the overexpression of ACA11 facilitated the accumulation of Ca 2+ in the vacuole, thereby influencing Ca 2+ storage and leading to an enhanced Ca 2+ elevation in response to abscisic acid. This regulatory cascade finely tunes stomatal responses, ultimately leading to enhanced drought tolerance. Our findings underscore the importance of tonoplast Ca 2+ -ATPase in manipulating stomatal behavior and improving drought tolerance. Furthermore, these results highlight the diverse functions of tonoplast-localized ACA11 in response to different conditions, emphasizing its potential for future applications in plant enhancement.
(© 2024 Institute of Botany, Chinese Academy of Sciences.)
References: Bertolino, L.T., Caine, R.S., and Gray, J.E. (2019). Impact of stomatal density and morphology on water‐use efficiency in a changing world. Front. Plant Sci. 10: 225.
Blatt, M.R. (1999). Reassessing roles for Ca2+ in guard cell signalling. J. Exp. Bot. 50: 989–999.
Blatt, M.R. (2000). Ca2+ signalling and control of guard‐cell volume in stomatal movements. Curr. Opin. Plant Biol. 3: 196–204.
Blatt, M.R., Brodribb, T.J., and Torii, K.U. (2017). Small pores with a big impact. Plant Physiol. 174: 467–469.
Blatt, M.R., Jezek, M., Lew, V.L., and Hills, A. (2022). What can mechanistic models tell us about guard cells, photosynthesis, and water use efficiency? Trends Plant Sci. 27: 166–179.
Blatt, M.R., and Thiel, G. (1993). Hormonal‐control of ion channel gating. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 543–567.
Bossi, J.G., Kumar, K., Barberini, M.L., Dominguez, G.D., Guerrero, Y.D.C.R., Marino‐Buslje, C., Obertello, M., Muschietti, J.P., and Estevez, J.M. (2020). The role of P‐type IIA and P‐type IIB Ca2+‐ATPases in plant development and growth. J. Exp. Bot. 71: 1239–1248.
Boursiac, Y., Lee, S.M., Romanowsky, S., Blank, R., Sladek, C., Chung, W.S., and Harper, J.F. (2010). Disruption of the vacuolar calcium‐ATPases in Arabidopsis results in the activation of a salicylic acid‐dependent programmed cell death pathway. Plant Physiol. 154: 1158–1171.
Chen, Z.H., Hills, A., Baetz, U., Amtmann, A., Lew, V.L., and Blatt, M.R. (2012). Systems dynamic modeling of the stomatal guard cell predicts emergent behaviors in transport, signaling, and volume control. Plant Physiol. 159: 1235–1251.
Dodd, A.N., Kudla, J., and Sanders, D. (2010). The language of calcium signaling. Annu. Rev. Plant Biol. 61: 593–620.
Evans, D.E., and Williams, L.E. (1998). P‐type calcium ATPases in higher plants—Biochemical, molecular and functional properties. Biochimica Et Biophysica Acta‐Rev. Biomembr. 1376: 1–25.
Franks, P.J., Doheny‐Adams, T.W., Britton‐Harper, Z.J., and Gray, J.E. (2015). Increasing water‐use efficiency directly through genetic manipulation of stomatal density. New Phytol. 207: 188–195.
Garcia‐Mata, C., Gay, R., Sokolovski, S., Hills, A., Lamattina, L., and Blatt, M.R. (2003). Nitric oxide regulates K+ and Cl−channels in guard cells through a subset of abscisic acid‐evoked signaling pathways. Proc. Natl. Acad. Sci. U. S. A. 100: 11116–11121.
Geisler, M., Axelsen, K.B., Harper, J.F., and Palmgren, M.G. (2000). Molecular aspects of higher plant P‐type Ca2+‐ATPases. Biochimica Et Biophysica Acta‐Biomembr. 1465: 52–78.
Geisler, M., Frangne, N., Gomès, E., Martinoia, E., and Palmgren, M.G. (2000). The ACA4 gene of Arabidopsis encodes a vacuolar membrane calcium pump that improves salt tolerance in yeast. Plant Physiol. 124: 1814–1827.
Grabov, A., and Blatt, M.R. (1998). Membrane voltage initiates Ca2+ waves and potentiates Ca2+ increases with abscisic acid in stomatal guard cells. Proc. Natl. Acad. Sci. U. S. A. 95: 4778–4783.
Grabov, A., and Blatt, M.R. (1999). A steep dependence of inward‐rectifying potassium channels on cytosolic free calcium concentration increase evoked by hyperpolarization in guard cells. Plant Physiol. 119: 277–287.
Grefen, C., Donald, N., Hashimoto, K., Kudla, J., Schumacher, K., and Blatt, M.R. (2010). A ubiquitin‐10 promoter‐based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. Plant J. 64: 355–365.
Gupta, A., Rico‐Medina, A., and Cano‐Delgado, A.I. (2020). The physiology of plant responses to drought. Science 368: 266–269.
Hamilton, D.W.A., Hills, A., and Blatt, M.R. (2001). Extracellular Ba2+ and voltage interact to gate Ca2+ channels at the plasma membrane of stomatal guard cells. FEBS Lett. 491: 99–103.
Hamilton, D.W.A., Hills, A., Kohler, B., and Blatt, M.R. (2000). Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proc. Natl. Acad. Sci. U. S. A. 97: 4967–4972.
Harper, J.F., Hong, B., Hwang, I., Guo, H.Q., Stoddard, R., Huang, J.F., Palmgren, M.G., and Sze, H. (1998). A novel calmodulin‐regulated Ca2+‐ATPase (ACA2) from Arabidopsis with an N‐terminal autoinhibitory domain. J. Biol. Chem. 273: 1099–1106.
Hayashi, M., Inoue, S., Ueno, Y., and Kinoshita, T. (2017). A Raf‐like protein kinase BHP mediates blue light‐dependent stomatal opening. Sci. Rep. 7: 45586.
Hetherington, A.M., and Woodward, F.I. (2003). The role of stomata in sensing and driving environmental change. Nature 424: 901–908.
Hills, A., Chen, Z.H., Amtmann, A., Blatt, M.R., and Lew, V.L. (2012). OnGuard, a computational platform for quantitative kinetic modeling of guard cell physiology. Plant Physiol. 159: 1026–1042.
Horaruang, W., Klejchova, M., Carroll, W., Silva‐Alvim, F.A.L., Waghmare, S., Papanatsiou, M., Amtmann, A., Hills, A., Alvim, J.C., Blatt, M.R., et al. (2022). Engineering a K+ channel ‘sensory antenna’ enhances stomatal kinetics, water use efficiency and photosynthesis. Nat. Plants 8: 1262–1274.
Hosy, E., Vavasseur, A., Mouline, K., Dreyer, I., Gaymard, F., Porée, F., Boucherez, J., Lebaudy, A., Bouchez, D., Véry, A.A., et al. (2003). The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc. Natl. Acad. Sci. U. S. A. 100: 5549–5554.
Jezek, M., and Blatt, M.R. (2017). The membrane transport system of the guard cell and its integration for Stomatal Dynamics. Plant Physiol. 174: 487–519.
Jezek, M., Hills, A., Blatt, M.R., and Lew, V.L. (2019). A constraint‐relaxation‐recovery mechanism for stomatal dynamics. Plant Cell Environ. 42: 2399–2410.
Jezek, M., Silva‐Alvim, F.A.L., Hills, A., Donald, N., Ishka, M.R., Shadbolt, J., He, B., Lawson, T., Harper, J.F., Wang, Y., et al. (2021). Guard cell endomembrane Ca2+‐ATPases underpin a ‘carbon memory’ of photosynthetic assimilation that impacts on water‐use efficiency. Nat. Plants 7: 1301–1313.
Kim, T.H., Bohmer, M., Hu, H.H., Nishimura, N., and Schroeder, J.I. (2010). Guard cell signal transduction network: Advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu. Rev. Plant Biol. 61: 561–591.
Kudla, J., Becker, D., Grill, E., Hedrich, R., Hippler, M., Kummer, U., Parniske, M., Romeis, T., and Schumacher, K. (2018). Advances and current challenges in calcium signaling. New Phytol. 218: 414–431.
Kusumi, K., Hashimura, A., Yamamoto, Y., Negi, J., and Iba, K. (2017). Contribution of the S‐type anion channel SLAC1 to stomatal control and its dependence on developmental stage in rice. Plant Cell Physiol. 58: 2085–2094.
Kwak, J.M., Mori, I.C., Pei, Z.M., Leonhardt, N., Torres, M.A., Dangl, J.L., Bloom, R.E., Bodde, S., Jones, J.D.G., and Schroeder, J.I. (2003). NADPH oxidase AtrbohD and AtrbohF genes function in ROS‐dependent ABA signaling in Arabidopsis. EMBO J. 22: 2623–2633.
Laanemets, K., Wang, Y.F., Lindgren, O., Wu, J.Y., Nishimura, N., Lee, S., Caddell, D., Merilo, E., Brosche, M., Kilk, K., et al. (2013). Mutations in the SLAC1 anion channel slow stomatal opening and severely reduce K+ uptake channel activity via enhanced cytosolic Ca2+ and increased Ca2+ sensitivity of K+ uptake channels. New Phytol. 197: 88–98.
Lawson, T., and Blatt, M.R. (2014). Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol. 164: 1556–1570.
Lawson, T., and Vialet‐Chabrand, S. (2019). Speedy stomata, photosynthesis and plant water use efficiency. New Phytol. 221: 93–98.
Lawson, T., von Caemmerer, S., and Baroli, I. (2011). Photosynthesis and stomatal behaviour. In Progress in Botany 72, U. Luttge, W. Beyschlag, B. Budel, D. Francis, eds, 72, pp. 265–304.
Lee, S.C., and Luan, S. (2012). ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ. 35: 53–60.
Lee, S.M., Kim, H.S., Han, H.J., Moon, B.C., Kim, C.Y., Harper, J.F., and Chung, W.S. (2007). Identification of a calmodulin‐regulated autoinhibited Ca2+‐ATPase (ACA11) that is localized to vacuole membranes in Arabidopsis. FEBS Lett. 581: 3943–3949.
Malmström, S., Askerlund, P., and Palmgren, M.G. (1997). A calmodulin‐stimulated Ca2+‐ATPase from plant vacuolar membranes with a putative regulatory domain at its N‐terminus. FEBS Lett. 400: 324–328.
McAinsh, M.R., and Pittman, J.K. (2009). Shaping the calcium signature. New Phytol. 181: 275–294.
Minguet‐Parramona, C., Wang, Y., Hills, A., Vialet‐Chabrand, S., Griffiths, H., Rogers, S., Lawson, T., Lew, V.L., and Blatt, M.R. (2016). An optimal frequency in Ca2+ oscillations for stomatal closure is an emergent property of ion transport in guard cells. Plant Physiol. 170: 33–42.
Mori, I.C., Kwak, J.M., Leonhardt, N., Bloom, R., Bodde, S., and Schroeder, J.I. (2004). Reactive oxigen species regulation in ABA signaling in Arabidopsis guard cells. Plant Cell Physiol. 45: S52.
Munemasa, S., Hauser, F., Park, J., Waadt, R., Brandt, B., and Schroeder, J.I. (2015). Mechanisms of abscisic acid‐mediated control of stomatal aperture. Curr. Opin. Plant Biol. 28: 154–162.
Negi, J., Matsuda, O., Nagasawa, T., Oba, Y., Takahashi, H., Kawai‐Yamada, M., Uchimiya, H., Hashimoto, M., and Iba, K. (2008). CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452: 483–486.
Nguyen, T.H., Silva‐Alvim, F.A.L., Hills, A., and Blatt, M.R. (2023). OnGuard3e: A predictive, ecophysiology‐ready tool for gas exchange and photosynthesis research. Plant Cell Environ. 46: 3644–3658.
Papanatsiou, M., Petersen, J., Henderson, L., Wang, Y., Christie, J.M., and Blatt, M.R. (2019). Optogenetic manipulation of stomatal kinetics improves carbon assimilation, water use, and growth. Science 363: 1456–1459.
Pilot, G., Gaymard, F., Mouline, K., Chérel, I., and Sentenac, H. (2003). Regulated expression of Arabidopsis Shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Mol. Biol. 51: 773–787.
Qu, M., Essemine, J., Xu, J., Ablat, G., Perveen, S., Wang, H., Chen, K., Zhao, Y., Chen, G., Chu, C., et al. (2020). Alterations in stomatal response to fluctuating light increase biomass and yield of rice under drought conditions. Plant J. 104: 1334–1347.
Rui, M., Jing, Y., Jiang, H., and Wang, Y. (2022). Quantitative system modeling bridges the gap between macro‐ and microscopic stomatal model. Adv. Biol. 6: 2200131.
Sanders, D., Brownlee, C., and Harper, J.F. (1999). Communicating with calcium. Plant Cell 11: 691–706.
Shafaque, S., Ma, Y., Rui, M., He, B., Zhu, Z., Cao, F., Wu, F., and Wang, Y. (2020). Optimized protocol for OnGuard2 software in studying guard cell membrane transport and stomatal physiology. Front. Plant Sci. 11: 131.
Tanaka, Y., Sugano, S.S., Shimada, T., and Hara‐Nishimura, I. (2013). Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis. New Phytol. 198: 757–764.
Tidow, H., Poulsen, L.R., Andreeva, A., Knudsen, M., Hein, K.L., Wiuf, C., Palmgren, M.G., and Nissen, P. (2012). A bimodular mechanism of calcium control in eukaryotes. Nature 491: 468–472.
Ueno, K., Kinoshita, T., Inoue, S., Emi, T., and Shimazaki, K. (2005). Biochemical characterization of plasma membrane H+‐ATPase activation in guard cell protoplasts of Arabidopsis thaliana in response to blue light. Plant Cell Physiol. 46: 955–963.
Vahisalu, T., Kollist, H., Wang, Y.F., Nishimura, N., Chan, W.Y., Valerio, G., Lamminmaki, A., Brosche, M., Moldau, H., Desikan, R., et al. (2008). SLAC1 is required for plant guard cell S‐type anion channel function in stomatal signalling. Nature 452: 487–491.
Wang, Y., Blatt, M.R., Chen, Z.H. (2018). Ion transport at the plant plasma membrane. In eLS. (Chichester: John Wiley & Sons, Ltd).
Wang, Y., Chen, Z.H., Zhang, B., Hills, A., and Blatt, M.R. (2013). PYR/PYL/RCAR abscisic acid receptors regulate K+ and Cl− channels through reactive oxygen species‐mediated activation of Ca2+ channels at the plasma membrane of intact Arabidopsis guard cells. Plant Physiol. 163: 566–577.
Wang, Y., Hills, A., and Blatt, M.R. (2014a). Systems analysis of guard cell membrane transport for enhanced stomatal dynamics and water use efficiency. Plant Physiol. 164: 1593–1599.
Wang, Y., Hills, A., Vialet‐Chabrand, S., Papanatsiou, M., Griffiths, H., Rogers, S., Lawson, T., Lew, V.L., and Blatt, M.R. (2017). Unexpected connections between humidity and ion transport discovered using a model to bridge guard cell‐to‐leaf scales. Plant Cell 29: 2921–2939.
Wang, Y., Noguchi, K., Ono, N., Inoue, S.i, Terashima, I., and Kinoshita, T. (2014b). Overexpression of plasma membrane H+‐ATPase in guard cells promotes light‐induced stomatal opening and enhances plant growth. Proc. Natl. Acad. Sci. U. S. A. 111: 533–538.
Wang, Y., Papanatsiou, M., Eisenach, C., Karnik, R., Williams, M., Hills, A., Lew, V.L., and Blatt, M.R. (2012). Systems dynamic modeling of a guard cell Cl‐ channel mutant uncovers an emergent homeostatic network regulating stomatal transpiration. Plant Physiol. 160: 1956–1967.
Wang, Y., Wang, Y., Tang, Y., and Zhu, X.G. (2022). Stomata conductance as a goalkeeper for increased photosynthetic efficiency. Curr. Opin. Plant Biol. 70: 102310.
White, P.J., and Broadley, M.R. (2003). Calcium in plants. Ann. Bot. 92: 487–511.
Yamamoto, Y., Negi, J., Wang, C., Isogai, Y., Schroeder, J.I., and Iba, K. (2016). The transmembrane region of guard cell SLAC1 channels perceives CO2 signals via an ABA‐independent pathway in Arabidopsis. Plant Cell 28: 557–567.
Yamori, W., Kusumi, K., Iba, K., and Terashima, I. (2020). Increased stomatal conductance induces rapid changes to photosynthetic rate in response to naturally fluctuating light conditions in rice. Plant Cell Environ. 43: 1230–1240.
Yoo, C.Y., Pence, H.E., Jin, J.B., Miura, K., Gosney, M.J., Hasegawa, P.M., and Mickelbart, M.V. (2010). The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1. Plant Cell 22: 4128–4141.
معلومات مُعتمدة: URF\R\211002 Royal Society University Research Fellowship awards; B21HJ0220 Hainan Seed Industry Laboratory; 31871537 National Natural Science Foundation of China; 32372017 National Natural Science Foundation of China; U2003115 National Natural Science Foundation of China; LR21C020001 Zhejiang Provincial Outstanding Youth Science Foundation; BB/S017348/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; BB/W001217/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council
فهرسة مساهمة: Keywords: ACA11; drought; guard cells; modeling; stomata
المشرفين على المادة: 72S9A8J5GW (Abscisic Acid)
SY7Q814VUP (Calcium)
EC 7.2.2.10 (Calcium-Transporting ATPases)
تواريخ الأحداث: Date Created: 20240626 Date Completed: 20240816 Latest Revision: 20240820
رمز التحديث: 20240820
DOI: 10.1111/jipb.13721
PMID: 38923303
قاعدة البيانات: MEDLINE
الوصف
تدمد:1744-7909
DOI:10.1111/jipb.13721