دورية أكاديمية

In vivo imaging using surface enhanced spatially offset raman spectroscopy (SESORS): balancing sampling frequency to improve overall image acquisition.

التفاصيل البيبلوغرافية
العنوان: In vivo imaging using surface enhanced spatially offset raman spectroscopy (SESORS): balancing sampling frequency to improve overall image acquisition.
المؤلفون: Nicolson F; Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA.; Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA02215, USA., Andreiuk B; Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA02215, USA.; Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA., Lee E; HORIBA Instruments Incorporated, Piscataway, NJ 08854, USA., O'Donnell B; HORIBA Instruments Incorporated, Piscataway, NJ 08854, USA.; Honeywell International Inc., Fort Washington, PA 19034, USA., Whitley A; HORIBA Instruments Incorporated, Piscataway, NJ 08854, USA., Riepl N; College of Science, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA., Burkhart DL; Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA., Cameron A; Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA02215, USA., Protti A; Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA02215, USA., Rudder S; Innovative Photonic Solutions, Monmouth Junction, Plainsboro Township, NJ 08852, USA., Yang J; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China., Mabbott S; Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, College Station, TX 77840, USA.; Center for Remote Health Technologies & Systems, Texas A & M Engineering Experiment Station, 600 Discovery Drive, College Station, TX 77840, USA., Haigis KM; Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA.
المصدر: Npj imaging [Npj Imaging] 2024; Vol. 2 (1). Date of Electronic Publication: 2024 Apr 03.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Nature Country of Publication: Switzerland NLM ID: 9918733285306676 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2948-197X (Electronic) Linking ISSN: 2948197X NLM ISO Abbreviation: Npj Imaging Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: [Cham, Switzerland] : Springer Nature, [2023]-
مستخلص: In the field of optical imaging, the ability to image tumors at depth with high selectivity and specificity remains a challenge. Surface enhanced resonance Raman scattering (SERRS) nanoparticles (NPs) can be employed as image contrast agents to specifically target cells in vivo; however, this technique typically requires time-intensive point-by-point acquisition of Raman spectra. Here, we combine the use of "spatially offset Raman spectroscopy" (SORS) with that of SERRS in a technique known as "surface enhanced spatially offset resonance Raman spectroscopy" (SESORRS) to image deep-seated tumors in vivo. Additionally, by accounting for the laser spot size, we report an experimental approach for detecting both the bulk tumor, subsequent delineation of tumor margins at high speed, and the identification of a deeper secondary region of interest with fewer measurements than are typically applied. To enhance light collection efficiency, four modifications were made to a previously described custom-built SORS system. Specifically, the following parameters were increased: (i) the numerical aperture (NA) of the lens, from 0.2 to 0.34; (ii) the working distance of the probe, from 9 mm to 40 mm; (iii) the NA of the fiber, from 0.2 to 0.34; and (iv) the fiber diameter, from 100 μm to 400 μm. To calculate the sampling frequency, which refers to the number of data point spectra obtained for each image, we considered the laser spot size of the elliptical beam (6 × 4 mm). Using SERRS contrast agents, we performed in vivo SESORRS imaging on a GL261-Luc mouse model of glioblastoma at four distinct sampling frequencies: par-sampling frequency (12 data points collected), and over-frequency sampling by factors of 2 (35 data points collected), 5 (176 data points collected), and 10 (651 data points collected). In comparison to the previously reported SORS system, the modified SORS instrument showed a 300% improvement in signal-to-noise ratios (SNR). The results demonstrate the ability to acquire distinct Raman spectra from deep-seated glioblastomas in mice through the skull using a low power density (6.5 mW/mm 2 ) and 30-times shorter integration times than a previous report (0.5 s versus 15 s). The ability to map the whole head of the mouse and determine a specific region of interest using as few as 12 spectra (6 s total acquisition time) is achieved. Subsequent use of a higher sampling frequency demonstrates it is possible to delineate the tumor margins in the region of interest with greater certainty. In addition, SESORRS images indicate the emergence of a secondary tumor region deeper within the brain in agreement with MRI and H&E staining. In comparison to traditional Raman imaging approaches, this approach enables improvements in the detection of deep-seated tumors in vivo through depths of several millimeters due to improvements in SNR, spectral resolution, and depth acquisition. This approach offers an opportunity to navigate larger areas of tissues in shorter time frames than previously reported, identify regions of interest, and then image the same area with greater resolution using a higher sampling frequency. Moreover, using a SESORRS approach, we demonstrate that it is possible to detect secondary, deeper-seated lesions through the intact skull.
Competing Interests: Competing interests S.R. has several pending patents in the areas of Wavelength Stabilized Lasers, Raman Probes, Raman Concatenation, dual wavelength lasers for fluorescence mitigation and fluid analysis using Raman spectroscopy.
References: J Control Release. 2000 Mar 1;65(1-2):271-84. (PMID: 10699287)
J Biophotonics. 2020 Jan;13(1):e201960092. (PMID: 31595708)
J Biomed Opt. 2018 Jun;23(7):1-23. (PMID: 29956506)
Nanotheranostics. 2022 Mar 21;6(3):337-349. (PMID: 35721665)
Biomaterials. 2017 Aug;135:42-52. (PMID: 28486147)
Nat Med. 2012 Apr 15;18(5):829-34. (PMID: 22504484)
Nat Protoc. 2017 Jul;12(7):1400-1414. (PMID: 28686581)
Sci Transl Med. 2015 Jan 21;7(271):271ra7. (PMID: 25609167)
Nat Commun. 2019 Apr 26;10(1):1926. (PMID: 31028250)
Analyst. 2010 Oct;135(10):2512-22. (PMID: 20725670)
Theranostics. 2016 May 07;6(8):1075-84. (PMID: 27279902)
Nat Protoc. 2016 Apr;11(4):664-87. (PMID: 26963630)
ACS Nano. 2018 Jan 23;12(1):24-43. (PMID: 29257865)
Appl Spectrosc. 2022 Jul;76(7):801-811. (PMID: 35081779)
Clin Radiol. 2010 Jul;65(7):500-16. (PMID: 20541650)
Chem Soc Rev. 2021 Jan 7;50(1):556-568. (PMID: 33169761)
J Biomed Opt. 2018 Jan;23(1):1-6. (PMID: 29318812)
Adv Mater. 2017 Jun;29(21):. (PMID: 28374940)
Appl Spectrosc. 2005 Apr;59(4):393-400. (PMID: 15901323)
ACS Nano. 2019 Feb 26;13(2):1354-1364. (PMID: 30624916)
ACS Nano. 2016 May 24;10(5):5015-26. (PMID: 27078225)
Chem Commun (Camb). 2018 Jul 26;54(61):8530-8533. (PMID: 30010164)
Analyst. 2018 Dec 3;143(24):6049-6060. (PMID: 30420993)
Mol Imaging Biol. 2023 Feb;25(1):240-264. (PMID: 36745354)
Small Methods. 2023 Feb;7(2):e2201334. (PMID: 36572635)
Nanotheranostics. 2022 Jan 1;6(1):31-49. (PMID: 34976579)
ACS Nano. 2020 Mar 24;14(3):3075-3095. (PMID: 32078303)
Nat Biotechnol. 2008 Jan;26(1):83-90. (PMID: 18157119)
Appl Spectrosc. 2007 Mar;61(3):251-9. (PMID: 17389064)
Nanomaterials (Basel). 2018 Nov 20;8(11):. (PMID: 30463284)
Adv Mater. 2017 Jun;29(21):. (PMID: 28295679)
Analyst. 2020 Mar 7;145(5):1885-1893. (PMID: 31971169)
Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13511-6. (PMID: 19666578)
J Nucl Med. 2020 Oct;61(10):1419-1427. (PMID: 32764124)
Cancers (Basel). 2022 Mar 29;14(7):. (PMID: 35406513)
Anal Chem. 2021 May 4;93(17):6755-6762. (PMID: 33886282)
IEEE Trans Image Process. 2004 Apr;13(4):600-12. (PMID: 15376593)
Proc SPIE Int Soc Opt Eng. 2020 Feb;11222:. (PMID: 32255887)
Sci Transl Med. 2011 Apr 20;3(79):79ra33. (PMID: 21508310)
ACS Nano. 2017 Feb 28;11(2):1488-1497. (PMID: 27992724)
Clin Cancer Res. 2019 Jul 15;25(14):4332-4342. (PMID: 31015345)
ACS Nano. 2022 Jul 26;16(7):10341-10353. (PMID: 35675533)
ACS Appl Mater Interfaces. 2022 Jul 20;14(28):31613-31624. (PMID: 35801671)
J Vis Exp. 2019 Mar 25;(145):. (PMID: 30958459)
Chem Sci. 2018 Mar 26;9(15):3788-3792. (PMID: 29780511)
Theranostics. 2019 Aug 13;9(20):5899-5913. (PMID: 31534527)
Eur J Nucl Med Mol Imaging. 2022 Jun;49(7):2364-2376. (PMID: 35102436)
Anal Chem. 2017 Jun 6;89(11):5688-5692. (PMID: 28493674)
Sci Transl Med. 2015 Feb 11;7(274):274ra19. (PMID: 25673764)
Nat Commun. 2015 Mar 24;6:6570. (PMID: 25800697)
معلومات مُعتمدة: K99 CA266921 United States CA NCI NIH HHS; R00 CA266921 United States CA NCI NIH HHS; R25 CA174650 United States CA NCI NIH HHS
تواريخ الأحداث: Date Created: 20240628 Latest Revision: 20240630
رمز التحديث: 20240630
مُعرف محوري في PubMed: PMC11210722
DOI: 10.1038/s44303-024-00011-9
PMID: 38939049
قاعدة البيانات: MEDLINE
الوصف
تدمد:2948-197X
DOI:10.1038/s44303-024-00011-9