دورية أكاديمية

Escalation by duplication: Milkweed bug trumps Monarch butterfly.

التفاصيل البيبلوغرافية
العنوان: Escalation by duplication: Milkweed bug trumps Monarch butterfly.
المؤلفون: Beran F; Population Ecology Group, Friedrich-Schiller Universität Jena, Jena, Germany.; Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany., Heckel DG; Emeritus Group Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany.
المصدر: Molecular ecology [Mol Ecol] 2024 Jul; Vol. 33 (14), pp. e17443. Date of Electronic Publication: 2024 Jun 29.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Scientific Publications Country of Publication: England NLM ID: 9214478 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-294X (Electronic) Linking ISSN: 09621083 NLM ISO Abbreviation: Mol Ecol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford, UK : Blackwell Scientific Publications, c1992-
مواضيع طبية MeSH: Butterflies*/genetics , Sodium-Potassium-Exchanging ATPase*/genetics , Sodium-Potassium-Exchanging ATPase*/metabolism , Asclepias*/genetics , Asclepias*/chemistry, Animals ; Cardenolides ; Gene Duplication ; Cardiac Glycosides/pharmacology ; Larva
مستخلص: The iconic Monarch butterfly is probably the best-known example of chemical defence against predation, as pictures of vomiting naive blue jays in countless textbooks vividly illustrate. Larvae of the butterfly take up toxic cardiac glycosides from their milkweed hostplants and carry them over to the adult stage. These compounds (cardiotonic steroids, including cardenolides and bufadienolides) inhibit the animal transmembrane sodium-potassium ATPase (Na,K-ATPase), but the Monarch enzyme resists this inhibition thanks to amino acid substitutions in its catalytic alpha-subunit. Some birds also have substitutions and can feast on cardiac glycoside-sequestering insects with impunity. A flurry of recent work has shown how the alpha-subunit gene has been duplicated multiple times in separate insect lineages specializing in cardiac glycoside-producing plants. In this issue of Molecular Ecology, Herbertz et al. toss the beta-subunit into the mix, by expressing all nine combinations of three alpha- and three beta-subunits of the milkweed bug Na,K-ATPase and testing their response to a cardenolide from the hostplant. The findings suggest that the diversification and subfunctionalization of genes allow milkweed bugs to balance trade-offs between resistance towards sequestered host plant toxins that protect the bugs from predators, and physiological costs in terms of Na,K-ATPase activity.
(© 2024 The Author(s). Molecular Ecology published by John Wiley & Sons Ltd.)
References: Agrawal, A. A., Del Alba, L. E., López‐Goldar, X., Hastings, A. P., White, R. A., Halitschke, R., Dobler, S., Petschenka, G., & Duplais, C. (2022). Functional evidence supports adaptive plant chemical defense along a geographical cline. Proceedings of the National Academy of Sciences of the United States of America, 119(25), e2205073119.
Agrawal, A. A., Petschenka, G., Bingham, R. A., Weber, M. G., & Rasmann, S. (2012). Toxic cardenolides: Chemical ecology and coevolution of specialized plant‐herbivore interactions. New Phytologist, 194(1), 28–45.
Beran, F., & Petschenka, G. (2022). Sequestration of plant defense compounds by insects: From mechanisms to insect‐plant coevolution. Annual Review of Entomology, 67, 163–180.
Bramer, C., Dobler, S., Deckert, J., Stemmer, M., & Petschenka, G. (2015). Na+/K+‐ATPase resistance and cardenolide sequestration: Basal adaptations to host plant toxins in the milkweed bugs (Hemiptera: Lygaeidae: Lygaeinae). Proceedings of the Royal Society B: Biological Sciences, 282, 20142346.
Dalla, S., & Dobler, S. (2016). Gene duplications circumvent trade‐offs in enzyme function: Insect adaptation to toxic host plants. Evolution, 70(12), 2767–2777.
Dobler, S., Dalla, S., Wagschal, V., & Agrawal, A. A. (2012). Community‐wide convergent evolution in insect adaptation to toxic cardenolides by substitutions in the Na,K‐ATPase. Proceedings of the National Academy of Sciences of the United States of America, 109(32), 13040–13045.
Herbertz, M., Dalla, S., Wagschal, V., Turjalei, R., Heiser, M., & Dobler, S. (2023). Coevolutionary escalation led to differentially adapted paralogs of an insect's Na,K‐ATPase optimizing resistance to host plant toxins. Molecular Ecology, e17041.
Herbertz, M., Harder, S., Schlüter, H., Lohr, C., & Dobler, S. (2022). Na,K‐ATPase α1 and β‐subunits show distinct localizations in the nervous tissue of the large milkweed bug. Cell and Tissue Research, 388(3), 503–519.
Lohr, J. N., Meinzer, F., Dalla, S., Romey‐Gluesing, R., & Dobler, S. (2017). The function and evolutionary significance of a triplicated Na,K‐ATPase gene in a toxin‐specialized insect. BMC Evolutionary Biology, 17, 256.
Petschenka, G., Wagschal, V., von Tschirnhaus, M., Donath, A., & Dobler, S. (2017). Convergently evolved toxic secondary metabolites in plants drive the parallel molecular evolution of insect resistance. American Naturalist, 190, S29–S43.
Yang, L., Ravikanthachari, N., Mariño‐Pérez, R., Deshmukh, R., Wu, M., Rosenstein, A., Kunte, K., Song, H., & Andolfatto, P. (2019). Predictability in the evolution of orthopteran cardenolide insensitivity. Philosophical Transactions of the Royal Society, B: Biological Sciences, 374, 20180246.
Zhen, Y., Aardema, M. L., Medina, E. M., Schumer, M., & Andolfatto, P. (2012). Parallel molecular evolution in an herbivore community. Science, 337(6102), 1634–1637.
فهرسة مساهمة: Keywords: adaptation; coevolution; ecological genetics; insects; invertebrates; molecular evolution
المشرفين على المادة: EC 7.2.2.13 (Sodium-Potassium-Exchanging ATPase)
0 (Cardenolides)
0 (Cardiac Glycosides)
تواريخ الأحداث: Date Created: 20240629 Date Completed: 20240708 Latest Revision: 20240708
رمز التحديث: 20240708
DOI: 10.1111/mec.17443
PMID: 38943372
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-294X
DOI:10.1111/mec.17443