دورية أكاديمية

Experimental and Theoretical Elucidation of the Luminescence Quenching Mechanism in Highly Efficient Hg 2+ and Sulfadiazine Sensing by Ln-MOF.

التفاصيل البيبلوغرافية
العنوان: Experimental and Theoretical Elucidation of the Luminescence Quenching Mechanism in Highly Efficient Hg 2+ and Sulfadiazine Sensing by Ln-MOF.
المؤلفون: Yu X; Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., 630090, Novosibirsk, Russia.; Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090, Novosibirsk, Russia., Pavlov DI; Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., 630090, Novosibirsk, Russia.; Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090, Novosibirsk, Russia., Ryadun AA; Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., 630090, Novosibirsk, Russia.; Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090, Novosibirsk, Russia., Kovalenko KA; Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090, Novosibirsk, Russia., Guselnikova TY; Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090, Novosibirsk, Russia., Benassi E; Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., 630090, Novosibirsk, Russia.; Present address: Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Giuseppe Campi 213/B, 41125, Modena, Italy., Potapov AS; Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., 630090, Novosibirsk, Russia.; Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090, Novosibirsk, Russia., Fedin VP; Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., 630090, Novosibirsk, Russia.; Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090, Novosibirsk, Russia.
المصدر: Angewandte Chemie (International ed. in English) [Angew Chem Int Ed Engl] 2024 Jul 01, pp. e202410509. Date of Electronic Publication: 2024 Jul 01.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 0370543 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-3773 (Electronic) Linking ISSN: 14337851 NLM ISO Abbreviation: Angew Chem Int Ed Engl Subsets: MEDLINE
أسماء مطبوعة: Publication: <2004-> : Weinheim : Wiley-VCH
Original Publication: Weinheim/Bergstr. : New York, : Verlag Chemie ; Academic Press, c1962-
مستخلص: Heavy metal ions and antibiotic contamination have become a major environmental concern worldwide. The development of efficient recognition strategies of these pollutants at ultra-low concentrations in aqueous solutions as well as the elucidation of the intrinsic sensing mechanism are challenging tasks. In this work, unique luminescent Ln-MOF materials (NIIC-3-Ln) were assembled by rational ligand design. Among them, NIIC-3-Tb demonstrated highly selective luminescence quenching response toward Hg 2+ and sulfadiazine (SDI) at subnanomolar concentrations in less than 7 s. In addition, a Hg 2+ sensing mechanism through chelation was proposed on the basis of single-crystal X-ray diffraction analysis and Hg 2+ adsorption study. The interaction mechanism of NIIC-3-Tb with SDI was revealed using a newly developed approach involving a (TD-)DFT based quantification of the charge transfer of a MOF-analyte supramolecular complex model in the ground and excited states. Effect of ultrasonic treatment on the surface morphology important for MOF sensing performance was revealed by gas adsorption experiments. The presented results indicate that NIIC-3-Ln is not only an advanced sensing material for the efficient detection of Hg 2+ and SDI at ultra-low concentrations, but also opens up a new approach to study the sensing mechanism at the molecular level at ultra-low concentrations.
(© 2024 Wiley-VCH GmbH.)
References: R. Hao, R. Zhao, S. Qiu, L. Wang, H. Song, Science 2015, 348, 1100–1101.
D. G. J. Larsson, C.-F. Flach, Nat. Rev. Microbiol. 2022, 20, 257–269.
G. Aragay, J. Pons, A. Merkoçi, Chem. Rev. 2011, 111, 3433–3458.
L. Järup, Br. Med. Bull. 2003, 68, 167–182.
J. R. Gerson, S. N. Topp, C. M. Vega, J. R. Gardner, X. Yang, L. E. Fernandez, E. S. Bernhardt, T. M. Pavelsky, Sci. Adv. 2020, 6, eabd4953.
F. Beckers, J. Rinklebe, Crit. Rev. Environ. Sci. Technol. 2017, 47, 693–794.
P. J. Blanchfield, J. W. M. Rudd, L. E. Hrenchuk, M. Amyot, C. L. Babiarz, K. G. Beaty, R. A. D. Bodaly, B. A. Branfireun, C. C. Gilmour, J. A. Graydon, B. D. Hall, R. C. Harris, A. Heyes, H. Hintelmann, J. P. Hurley, C. A. Kelly, D. P. Krabbenhoft, S. E. Lindberg, R. P. Mason, M. J. Paterson, C. L. Podemski, K. A. Sandilands, G. R. Southworth, V. L. St Louis, L. S. Tate, M. T. Tate, Nature 2022, 601, 74–78.
J. D. Blum, B. N. Popp, J. C. Drazen, C. Anela Choy, M. W. Johnson, Nat. Geosci. 2013, 6, 879–884.
W. Tang, X. Bai, Y. Zhou, C. Sonne, M. Wu, S. S. Lam, H. Hintelmann, C. P. J. Mitchell, A. Johs, B. Gu, L. Nunes, C. Liu, N. Feng, S. Yang, J. Rinklebe, Y. Lin, L. Chen, Y. Zhang, Y. Yang, J. Wang, S. Li, Q. Wu, Y. S. Ok, D. Xu, H. Li, X.-X. Zhang, H. Ren, G. Jiang, Z. Chai, Y. Gao, J. Zhao, H. Zhong, Nat Food 2024, 5, 72–82.
M. Negahdary, B. G. Santos, L. Angnes, Science 2022, 377, 1392–1392.
C. T. Driscoll, R. P. Mason, H. M. Chan, D. J. Jacob, N. Pirrone, Environ. Sci. Technol. 2013, 47, 4967–4983.
D. W. Boening, Chemosphere 2000, 40, 1335–1351.
B. Li, Y. Zhang, D. Ma, Z. Shi, S. Ma, Nat. Commun. 2014, 5, 5537.
C. D. Souza, O. C. Braga, I. C. Vieira, A. Spinelli, Sens. Actuators B 2008, 135, 66–73.
M. Wang, Z. Xu, J. Wang, J. Kang, Y. Tang, T. Ma, Q. Dong, Chem. Eng. J. 2023, 466, 143013.
W. Hela, M. Brandtner, R. Widek, R. Schuh, Food Chem. 2003, 83, 601–608.
F. Hayati, A. A. Isari, B. Anvaripour, M. Fattahi, B. Kakavandi, Chem. Eng. J. 2020, 381, 122636.
A. Payan, A. Akbar Isari, N. Gholizade, Chem. Eng. J. 2019, 361, 1121–1141.
X. Yao, Z. Cheng, E. Agathokleous, Y. Wei, X. Feng, H. Li, T. Zhang, S. Li, G. Dhawan, X.-S. Luo, Environ. Pollut. 2024, 345, 123454.
X. Yu, Y. Yang, Q. Shen, Y. Sun, Q. Kang, D. Shen, Food Chem. 2024, 434, 137461.
X. Wang, Y. Jiang, A. Tissot, C. Serre, Coord. Chem. Rev. 2023, 497, 215454.
Y. Cui, Y. Yue, G. Qian, B. Chen, Chem. Rev. 2012, 112, 1126–1162.
B. Zheng, J. Fan, B. Chen, X. Qin, J. Wang, F. Wang, R. Deng, X. Liu, Chem. Rev. 2022, 122, 5519–5603.
X. Yu, A. A. Ryadun, D. I. Pavlov, T. Y. Guselnikova, A. S. Potapov, V. P. Fedin, Angew. Chem. Int. Ed. 2023, 62, e202306680.
H. Jiang, D. Alezi, M. Eddaoudi, Nat. Rev. Mater. 2021, 6, 466–487.
H. Min, Z. Chen, Z. Han, K. Wang, J. Xu, W. Shi, P. Cheng, Commun. Chem. 2022, 5, 74.
Y. Chen, K. B. Idrees, M. R. Mian, F. A. Son, C. Zhang, X. Wang, O. K. Farha, J. Am. Chem. Soc. 2023, 145, 3055–3063.
R. Freund, S. Canossa, S. M. Cohen, W. Yan, H. Deng, V. Guillerm, M. Eddaoudi, D. G. Madden, D. Fairen-Jimenez, H. Lyu, L. K. Macreadie, Z. Ji, Y. Zhang, B. Wang, F. Haase, C. Wöll, O. Zaremba, J. Andreo, S. Wuttke, C. S. Diercks, Angew. Chem. Int. Ed. 2021, 60, 23946–23974.
M. Wang, Z. Han, K. Wang, B. Zhao, T. Sun, Y. Wu, P. Cheng, W. Shi, Angew. Chem. Int. Ed. 2024, 63, e202318722.
H. Yang, D. Qi, X. Si, Z. Yan, L. Guo, C. Shao, W. Zhang, L. Yang, J. Solid State Chem. 2022, 310, 123008.
J. Yang, Z. Wang, Y. Li, Q. Zhuang, W. Zhao, J. Gu, RSC Adv. 2016, 6, 69807–69814.
P. Wu, Y. Liu, Y. Liu, J. Wang, Y. Li, W. Liu, J. Wang, Inorg. Chem. 2015, 54, 11046–11048.
R. Goswami, S. C. Mandal, N. Seal, B. Pathak, S. Neogi, J. Mater. Chem. A 2019, 7, 19471–19484.
Z. Yang, J. Tang, B. Chen, X. Qu, ACS Appl. Nano Mater. 2023, 6, 23245–23253.
X. Wang, N. Ye, X. Hu, Q. Liu, J. Li, L. Peng, X. Ma, Electrophoresis 2018, 39, 2236–2245.
S. Xing, S. Cheng, M. Tan, Crit. Rev. Food Sci. Nutr. 2023, 0, 1–17.
M. S. Jagirani, W. Zhou, A. Nazir, M. Y. Akram, P. Huo, Y. Yan, Crit. Rev. Anal. Chem. 2024, 0, 1–22.
X. Yu, A. A. Ryadun, A. S. Potapov, V. P. Fedin, J. Hazard. Mater. 2023, 452, 131289.
W. Wu, Y. Li, P. Song, Q. Xu, N. Long, P. Li, L. Zhou, B. Fu, J. Wang, W. Kong, Trends Food Sci. Technol. 2023, 138, 238–271.
S. Kamal, M. Khalid, M. S. Khan, M. Shahid, Coord. Chem. Rev. 2023, 474, 214859.
P. Gimeno-Fonquernie, J. Albalad, J. R. Price, W. M. Bloch, J. D. Evans, C. J. Doonan, C. J. Sumby, J. Mater. Chem. C 2024, 12, 2359–2369.
P. Gimeno-Fonquernie, J. Albalad, J. D. Evans, J. Price, C. J. Doonan, C. J. Sumby, Inorg. Chem. 2023, 62, 19208–19217.
J. F. Smernik, P. Gimeno-Fonquernie, J. Albalad, T. S. Jones, R. J. Young, N. R. Champness, C. J. Doonan, J. D. Evans, C. J. Sumby, CrystEngComm 2023, 25, 6539–6548.
P. Gimeno-Fonquernie, W. Liang, J. Albalad, A. Kuznicki, J. R. Price, E. D. Bloch, C. J. Doonan, C. J. Sumby, Chem. Commun. 2022, 58, 957–960.
P. Alemany, D. Casanova, S. Alvarez, C. Dryzun, D. Avnir, in Reviews in Computational Chemistry, John Wiley & Sons, Ltd 2017, pp. 289–352.
D. Casanova, M. Llunell, P. Alemany, S. Alvarez, Chem. Eur. J. 2005, 11, 1479–1494.
L. Yang, M. Lu, Y. Wu, Z. Jiang, Z.-H. Chen, Y. Tang, Q. Li, J. Am. Chem. Soc. 2023, 145, 26169–26178.
T.-Y. Luo, P. Das, D. L. White, C. Liu, A. Star, N. L. Rosi, J. Am. Chem. Soc. 2020, 142, 2897–2904.
S. Wu, Y. Lin, J. Liu, W. Shi, G. Yang, P. Cheng, Adv. Funct. Mater. 2018, 28, 1707169.
R. E. Marsh, Acta Crystallogr. Sect. B 2005, 61, 359–359.
A. Cingolani, A. Lorenzotti, G. Gioia Lobbia, D. Leonesi, F. Bonati, B. Bovio, Inorg. Chim. Acta 1987, 132, 167–176.
A. Beheshti, A. Lalegani, F. Behvandi, F. Safaeiyan, A. Sarkarzadeh, G. Bruno, H. Amiri Rudbari, J. Mol. Struct. 2015, 1082, 143–150.
A. Lalegani, M. Khaledi Sardashti, H. Salavati, A. Asadi, R. Gajda, K. Woźniak, J. Mol. Struct. 2016, 1108, 288–293.
B. Morzyk, D. Michalska, Spectrochim. Acta Part A 1998, 55, 73–78.
S. Chongdar, U. Mondal, T. Chakraborty, P. Banerjee, A. Bhaumik, ACS Appl. Mater. Interfaces 2023, 15, 14575–14586.
X. Yu, A. A. Ryadun, D. I. Pavlov, T. Y. Guselnikova, A. S. Potapov, V. P. Fedin, Adv. Mater. n.d., n/a, 2311939.
A. Asghar, N. Iqbal, T. Noor, Polyhedron 2020, 181, 114463.
N. P. Burlutskiy, A. S. Potapov, Molecules 2021, 26, 413.
E. A. Pershina, D. I. Pavlov, N. P. Burlutskiy, A. S. Potapov, Molbank 2021, 2021, M1298.
A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652.
C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785–789.
B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 1989, 157, 200–206.
Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215–241.
A. D. McLean, G. S. Chandler, J. Chem. Phys. 2008, 72, 5639–5648.
R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 2008, 72, 650–654.
S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456–1465.
J. Tomasi, B. Mennucci, E. Cancès, J. Mol. Struct. 1999, 464, 211–226.
A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. I. Goddard, W. M. Skiff, J. Am. Chem. Soc. 1992, 114, 10024–10035.
A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378–6396.
T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett. 2004, 393, 51–57.
C. M. Breneman, K. B. Wiberg, J. Comput. Chem. 1990, 11, 361–373.
J. Cioslowski, J. Am. Chem. Soc. 1989, 111, 8333–8336.
G. B. Bacskay, Chem. Phys. 1981, 61, 385–404.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision C.01, Gaussian, Inc., Wallin-Gaussian 16, Revision C.01, Gaussian, Inc., Wallin 2019.
S. Feng, F. Tang, F. Wu, J. Zhang, Food Chem. 2024, 432, 137173.
L. Zhang, J. Wang, T. Du, W. Zhang, W. Zhu, C. Yang, T. Yue, J. Sun, T. Li, J. Wang, Inorg. Chem. 2019, DOI 10.1021/acs.inorgchem.9b01242.
J. Li, C. Sun, C. Wen, L. Wang, Y. Zhao, W. Li, Z. Chang, J. Environ. Chem. Eng. 2022, 10, 107880.
N. D. Rudd, H. Wang, E. M. A. Fuentes-Fernandez, S. J. Teat, F. Chen, G. Hall, Y. J. Chabal, J. Li, ACS Appl. Mater. Interfaces 2016, 8, 30294–30303.
K. Manna, S. Natarajan, Inorg. Chem. 2023, 62, 508–519.
P. Jia, K. Yang, J. Hou, Y. Cao, X. Wang, L. Wang, J. Hazard. Mater. 2021, 408, 124469.
A. Pankajakshan, D. Kuznetsov, S. Mandal, Inorg. Chem. 2019, 58, 1377–1381.
M. M. Avval, R. Khani, A. Farrokhi, Spectrochim. Acta Part A 2024, 308, 123716.
B. Wang, J.-H. Liu, J. Yu, J. Lv, C. Dong, J.-R. Li, J. Hazard. Mater. 2020, 382, 121018.
D. B. Kanzariya, R. Goswami, D. Muthukumar, R. S. Pillai, T. K. Pal, ACS Appl. Mater. Interfaces 2022, 14, 48658–48674.
B. Wang, X.-L. Lv, D. Feng, L.-H. Xie, J. Zhang, M. Li, Y. Xie, J.-R. Li, H.-C. Zhou, J. Am. Chem. Soc. 2016, 138, 6204–6216.
معلومات مُعتمدة: 23-43-00017 Russian Science Foundation; 121031700321-3 Ministry of Education and Science of the Russian Federation; 202008090088 China Scholarship Council
فهرسة مساهمة: Keywords: antibiotic; lantanides; mechanism; mercury; metal–organic frameworks
تواريخ الأحداث: Date Created: 20240701 Latest Revision: 20240816
رمز التحديث: 20240816
DOI: 10.1002/anie.202410509
PMID: 38946458
قاعدة البيانات: MEDLINE
الوصف
تدمد:1521-3773
DOI:10.1002/anie.202410509