دورية أكاديمية

Microbial allies: exploring fungal endophytes for biosynthesis of terpenoid indole alkaloids.

التفاصيل البيبلوغرافية
العنوان: Microbial allies: exploring fungal endophytes for biosynthesis of terpenoid indole alkaloids.
المؤلفون: Khalkho JP; Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India., Beck A; Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India., Priyanka; Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India., Panda B; Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India., Chandra R; Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India. rameshchandra@bitmesra.ac.in.
المصدر: Archives of microbiology [Arch Microbiol] 2024 Jul 03; Vol. 206 (8), pp. 340. Date of Electronic Publication: 2024 Jul 03.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 0410427 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-072X (Electronic) Linking ISSN: 03028933 NLM ISO Abbreviation: Arch Microbiol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin, New York, Springer-Verlag.
مواضيع طبية MeSH: Endophytes*/metabolism , Endophytes*/genetics , Fungi*/metabolism , Fungi*/genetics , Secologanin Tryptamine Alkaloids*/metabolism, Bacteria/metabolism ; Bacteria/genetics ; Bacteria/classification ; Biosynthetic Pathways ; Plants, Medicinal/microbiology ; Plants, Medicinal/metabolism ; Biological Products/metabolism
مستخلص: Terpenoid indole alkaloids (TIAs) are natural compounds found in medicinal plants that exhibit various therapeutic activities, such as antimicrobial, anti-inflammatory, antioxidant, anti-diabetic, anti-helminthic, and anti-tumor properties. However, the production of these alkaloids in plants is limited, and there is a high demand for them due to the increasing incidence of cancer cases. To address this research gap, researchers have focused on optimizing culture media, eliciting metabolic pathways, overexpressing genes, and searching for potential sources of TIAs in organisms other than plants. The insufficient number of essential genes and enzymes in the biosynthesis pathway is the reason behind the limited production of TIAs. As the field of natural product discovery from biological species continues to grow, endophytes are being investigated more and more as potential sources of bioactive metabolites with a variety of chemical structures. Endophytes are microorganisms (fungi, bacteria, archaea, and actinomycetes), that exert a significant influence on the metabolic pathways of both the host plants and the endophytic cells. Bio-prospection of fungal endophytes has shown the discovery of novel, high-value bioactive compounds of commercial significance. The discovery of therapeutically significant secondary metabolites has been made easier by endophytic entities' abundant but understudied diversity. It has been observed that fungal endophytes have better intermediate processing ability due to cellular compartmentation. This paper focuses on fungal endophytes and their metabolic ability to produce complex TIAs, recent advancements in this area, and addressing the limitations and future perspectives related to TIA production.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Acharjee S, Kumar R, Kumar N (2022) Role of plant biotechnology in the enhancement of alkaloid production from cell culture system of Catharanthus roseus: a medicinal plant with potent anti-tumor properties. Ind Crops Prod 176:114298. https://doi.org/10.1016/j.indcrop.2021.114298. (PMID: 10.1016/j.indcrop.2021.114298)
Adeleke BS, Babalola OO (2021) The endosphere microbial communities, a great promise in agriculture. Int Microbiol 24(1):1–17. https://doi.org/10.1007/s10123-020-00140-2. (PMID: 10.1007/s10123-020-00140-232737846)
Aghdam SA, Brown AM (2021) Deep learning approaches for natural product discovery from plant endophytic microbiomes. Environ Microbiome 16(1):1–20. https://doi.org/10.1186/s40793-021-00375-0. (PMID: 10.1186/s40793-021-00375-0)
Albeshri A, Baeshen NA, Bouback TA, Aljaddawi AA (2021) A review of Rhazya stricta decne phytochemistry, bioactivities, pharmacological activities, toxicity, and folkloric medicinal uses. Plants 10(11):2508. https://doi.org/10.3390/plants10112508. (PMID: 10.3390/plants10112508348348718619226)
Alvin A, Miller KI, Neilan BA (2014) Exploring the potential of endophytes from medicinal plants as a source of antimycobacterial compounds. Microbiol Res 169(7–8):483–495. https://doi.org/10.1016/j.micres.2013.12.009. (PMID: 10.1016/j.micres.2013.12.009245827787126926)
Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41:1–16. https://doi.org/10.1007/s13225-010-0034-4. (PMID: 10.1007/s13225-010-0034-4)
Andriambeloson OH, Noah RM, Rigobert A, Jean-Marc C, Luciano R, Rado R (2021) Isolation of novel vincristine and vinblastine producing streptomyces species from Catharanthus Roseus rhizospheric soil. Res Sq. https://doi.org/10.21203/rs.3.rs-1082130/v1. (PMID: 10.21203/rs.3.rs-1082130/v1)
Archana O, Nagadesi PK (2022) Endophytic, non-endophytic fungal alkaloids and its applications. Saudi J Pathol Microbiol 7(1):4–19. https://doi.org/10.36348/sjpm.2022.v07i01.002. (PMID: 10.36348/sjpm.2022.v07i01.002)
Ariefta NR, Kristiana P, Aboshi T, Murayama T, Tawaraya K, Koseki T, Shiono Y (2018) New isocoumarins, naphthoquinones, and a cleistanthane-type diterpene from Nectria pseudotrichia 120–1NP. Fitoterapia 127:356–361. https://doi.org/10.1016/j.fitote.2018.03.012. (PMID: 10.1016/j.fitote.2018.03.01229621598)
Banyal A, Tiwari S, Sharma A, Chanana I, Patel SKS, Kulshrestha S, Kumar P (2023) Vinca alkaloids as a potential cancer therapeutics: recent update and future challenges. 3 Biotech 13(6):211. https://doi.org/10.1007/s13205-023-03636-6 . (PMID: 10.1007/s13205-023-03636-63725173110209376)
Baral B, Akhgari A, Metsä-Ketelä M (2018) Activation of microbial secondary metabolic pathways: avenues and challenges. Synth Syst Biotechnol 3(3):163–178. https://doi.org/10.1016/j.synbio.2018.09.001. (PMID: 10.1016/j.synbio.2018.09.001303454026190515)
Basit A, Shah ST, Ullah I, Ullah I, Mohamed HI (2021) Microbial bioactive compounds produced by endophytes (bacteria and fungi) and their uses in plant health. PGPM Sustain Biotic Abiotic Stress Manag. https://doi.org/10.1007/978-3-030-66587-6_11. (PMID: 10.1007/978-3-030-66587-6_11)
Beniddir MA, Kang KB, Genta-Jouve G, Huber F, Rogers S, Van Der Hooft JJ (2021) Advances in decomposing complex metabolite mixtures using substructure-and network-based computational metabolomics approaches. Nat Prod Rep 38(11):1967–1993. https://doi.org/10.1039/D1NP00023C. (PMID: 10.1039/D1NP00023C348212508597898)
Bitombo AN, Zintchem AAA, Atchade ADT, Moni Ndedi EDF, Khan A, Ngono Bikobo DS, Bochet CG (2022) Antimicrobial and cytotoxic activities of indole alkaloids and other constituents from the stem barks of Rauvolfia caffra Sond (Apocynaceae). Nat Prod Res 36(6):1467–1475. https://doi.org/10.1080/14786419.2021.1891054. (PMID: 10.1080/14786419.2021.189105433648401)
Bose SK, Upadhyay S, Srivastava Y (2022) Metabolic engineering of microbes for the production of plant-based compounds. Microbial Biotechnol Role Ecol Sustain Res. https://doi.org/10.1002/9781119834489.ch4. (PMID: 10.1002/9781119834489.ch4)
Brown S, Clastre M, Courdavault V, O’Connor SE (2015) De novo production of the plant-derived alkaloid strictosidine in yeast. PNAS 112(11):3205–3210. https://doi.org/10.1073/pnas.1423555112. (PMID: 10.1073/pnas.1423555112256755124371906)
Chandrika UG, Karunarathna U (2022) Anesthetics and analgesic activities of herbal medicine: review of the possible mechanism of action. In: Features and assessments of pain, anaesthesia, and analgesia, pp 47-56. https://doi.org/10.1016/B978-0-12-818988-7.00003-0.
Changxing L, Galani S, Rashid Z, Hassan FU, Naveed M, Fang D, Jianhua L (2019) Biotechnological approaches to the production of promising plant-derived anticancer agents: an update and overview. Authorea. https://doi.org/10.22541/au.157773076.65487214. (PMID: 10.22541/au.157773076.65487214)
Chen Y, Hu B, Xing J, Li C (2021) Endophytes: the novel sources for plant terpenoid biosynthesis. Appl Microbiol Biotechnol 105(11):4501–4513. https://doi.org/10.1007/s00253-021-11350-7. (PMID: 10.1007/s00253-021-11350-7340478178161352)
Chetia H, Kabiraj D, Bharali B, Ojha S, Barkataki MP, Saikia D, Bora U (2019) Exploring the benefits of endophytic fungi via omics. Advances in endophytic fungal research: present status and future challenges, 51–81. Doi- https://doi.org/10.1007/978-3-030-03589-1_4.
Collinge DB, Jensen B, Jørgensen HJ (2022) Fungal endophytes in plants and their relationship to plant disease. COMICR 69:102177. https://doi.org/10.1016/j.mib.2022.102177. (PMID: 10.1016/j.mib.2022.102177)
De Luca V, Salim V, Thamm A, Masada SA, Yu F (2014) Making iridoids/secoiridoids and monoterpenoid indole alkaloids: progress on pathway elucidation. Curr opin plant biol 19:35–42. https://doi.org/10.1016/j.pbi.2014.03.006. (PMID: 10.1016/j.pbi.2014.03.00624709280)
Dhakshinamoorthy M, Ponnusamy SK, Kannaian UPN, Srinivasan B, Shankar SN, Packiam KK (2021) Plant-microbe interactions implicated in the production of camptothecin–an anticancer biometabolite from Phyllosticta elongata MH458897 a novel endophytic strain isolated from medicinal plant of Western Ghats of India. Environ Res 201:111564. https://doi.org/10.1016/j.envres.2021.111564. (PMID: 10.1016/j.envres.2021.11156434228950)
Dhayanithy G, Subban K, Chelliah J (2019) Diversity and biological activities of endophytic fungi associated with Catharanthus roseus. BMC Microbiol 19(1):1–14. https://doi.org/10.1186/s12866-019-1386-x. (PMID: 10.1186/s12866-019-1386-x)
El-Hawary SS, Moawad AS, Bahr HS, Abdelmohsen UR, Mohammed R (2020) Natural product diversity from the endophytic fungi of the genus Aspergillus. RSC Adv 10(37):22058–22079. https://doi.org/10.1039/D0RA04290K. (PMID: 10.1039/D0RA04290K355166459054607)
El-Sayed M, Verpoorte R (2007) Catharanthus terpenoid indole alkaloids: biosynthesis and regulation. Phytochem Rev 6:277–305. https://doi.org/10.1007/s11101-006-9047-8. (PMID: 10.1007/s11101-006-9047-8)
El-Sayed AS, El-Sayed AI, Wadan KM, El-Saadany SS, Abd El-Hady NA (2024) Camptothecin bioprocessing from Aspergillus terreus, an endophyte of Catharanthus roseus: antiproliferative activity, topoisomerase inhibition and cell cycle analysis. Microb Cell Factories 23(1):15. https://doi.org/10.1186/s12934-023-02270-4. (PMID: 10.1186/s12934-023-02270-4)
Farrow SC, Kamileen MO, Meades J, Ameyaw B, Xiao Y, O'Connor SE (2018) Cytochrome P450 and O-methyltransferase catalyze the final steps in the biosynthesis of the anti-addictive alkaloid ibogaine from Tabernanthe iboga. J Biol Chem 293(36):13821–13833. https://doi.org/10.1074/jbc.RA118.004060. (PMID: 10.1074/jbc.RA118.004060300303746130943)
Frank AC, Saldierna Guzmán JP, Shay JE (2017) Transmission of bacterial endophytes. Microorganism 5(4):70. https://doi.org/10.3390/microorganisms5040070. (PMID: 10.3390/microorganisms5040070)
Galindo-Solís JM, Fernández FJ (2022) Endophytic fungal terpenoids: natural role and bioactivities. Microorganism 10(2):339. https://doi.org/10.3390/microorganisms10020339. (PMID: 10.3390/microorganisms10020339)
Ghedira K, Zeches-Hanrot M, Richard B, Massiot G, Le Men-Olivier L, Sevenet T, Goh SH (1988) Alkaloids of Alstonia angustifolia. Phytochem 27(12):3955–3962. https://doi.org/10.1016/0031-9422(88)83053-X. (PMID: 10.1016/0031-9422(88)83053-X)
Gongora-Castillo E, Childs KL, Fedewa G, Hamilton JP, Liscombe DK, Magallanes-Lundback M, Buell CR (2012) Development of transcriptomic resources for interrogating the biosynthesis of monoterpene indole alkaloids in medicinal plant species. PloS One 7(12):e52506. https://doi.org/10.1371/journal.pone.0052506. (PMID: 10.1371/journal.pone.0052506233006893530497)
Gouda S, Das G, Sen SK, Shin HS, Patra JK (2016) Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol 7:1538. https://doi.org/10.3389/fmicb.2016.01538. (PMID: 10.3389/fmicb.2016.01538277467675041141)
Govindarajan R, Duraiyan J, Kaliyappan K, Palanisamy M (2012) Microarray and its applications. J Pharm Bioallied Sci 4(Suppl 2):S310–S312. https://doi.org/10.4103/0975-7406.100283. (PMID: 10.4103/0975-7406.100283230662783467903)
Gupta S, Chaturvedi P, Kulkarni MG, Van Staden J (2020) A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnol Adv 39:107462. https://doi.org/10.1016/j.biotechadv.2019.107462. (PMID: 10.1016/j.biotechadv.2019.10746231669137)
Hashem AH, Attia MS, Kandil EK, Fawzi MM, Abdelrahman AS, Khader MS, Khodaira MA, Emam AE, Goma MA, Abdelaziz AM (2023) Bioactive compounds and biomedical applications of endophytic fungi: a recent review. Microb Cell Factories 22(1):107. https://doi.org/10.1186/s12934-023-02118-x. (PMID: 10.1186/s12934-023-02118-x)
Hautbergue T, Jamin EL, Debrauwer L, Puel O, Oswald IP (2018) From genomics to metabolomics, moving toward an integrated strategy for the discovery of fungal secondary metabolites. Nat Prod Rep 35(2):147–173. https://doi.org/10.1039/C7NP00032D. (PMID: 10.1039/C7NP00032D29384544)
He T, Li X, Iacovelli R, Hackl T, Haslinger K (2023) Genomic and metabolomic analysis of the endophytic fungus Fusarium sp. VM-40 isolated from the medicinal plant vinca minor. J Fungus 9(7):704. https://doi.org/10.3390/jof9070704. (PMID: 10.3390/jof9070704)
Huang Y, Tan H, Guo Z, Wu X, Zhang Q, Zhang L, Diao Y (2016) The biosynthesis and genetic engineering of bioactive indole alkaloids in plants. J Plant Biol 59:203–214. https://doi.org/10.1007/s12374-016-0032-5. (PMID: 10.1007/s12374-016-0032-5)
Irmler S, Schröder G, St-Pierre B, Crouch NP, Hotze M, Schmidt J, Schröder J (2000) Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase. Plant J 24(6):797–804. https://doi.org/10.1111/j.1365-313X.2000.00922.x. (PMID: 10.1111/j.1365-313X.2000.00922.x11135113)
Jayaram H, Marigowda V, Thara Saraswathi KJ (2021) Secondary metabolite production and terpenoid biosynthesis in endophytic fungi Cladosporium cladosporioides isolated from wild Cymbopogon martinii (Roxb.). Wats. Microbiol Res 12(4):812–828. https://doi.org/10.3390/microbiolres12040059. (PMID: 10.3390/microbiolres12040059)
Jha P, Kaur T, Panja A, Paul S, Kumar V, Malik T (2023) Endophytic fungi: Hidden treasure chest of antimicrobial metabolites interrelationship of endophytes and metabolites. Front Microbiol 14:1227830. https://doi.org/10.3389/fmicb.2023.1227830. (PMID: 10.3389/fmicb.2023.12278303749753810366620)
Jiao C, Wei M, Fan H, Song C, Wang Z, Cai Y, Jin Q (2022) Transcriptomic analysis of genes related to alkaloid biosynthesis and the regulation mechanism under precursor and methyl jasmonate treatment in Dendrobium officinale. Front Plant Sci 13:941231. https://doi.org/10.3389/fpls.2022.941231. (PMID: 10.3389/fpls.2022.941231359373649355482)
Kaul S, Gupta S, Ahmed M, Dhar MK (2012) Endophytic fungi from medicinal plants: a treasure hunt for bioactive metabolites. Phytochem Rev 11:487–505. https://doi.org/10.1007/s11101-012-9260-6. (PMID: 10.1007/s11101-012-9260-6)
Kaur P, Kumar V, Singh R, Dwivedi P, Dey A, Pandey DK (2020) Biotechnological strategies for the production of camptothecin from fungal and bacterial endophytes. S Afr J Bot 134:135–145. https://doi.org/10.1016/j.sajb.2020.07.001. (PMID: 10.1016/j.sajb.2020.07.001)
Kjærbølling I, Mortensen UH, Vesth T, Andersen MR (2019) Strategies to establish the link between biosynthetic gene clusters and secondary metabolites. Fungal Genet Biol 130:107–121. https://doi.org/10.1016/j.fgb.2019.06.001. (PMID: 10.1016/j.fgb.2019.06.00131195124)
Kousar R, Naeem M, Jamaludin MI, Arshad A, Shamsuri AN, Ansari N, Al-Harrasi A (2022) Exploring the anticancer activities of novel bioactive compounds derived from endophytic fungi: mechanisms of action, current challenges and future perspectives. Am J Cancer Res 12(7):2897. (PMID: 359683479360238)
Kumar A, Patil D, Rajamohanan PR, Ahmad A (2013) Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS ONE 8(9):71805. https://doi.org/10.1371/journal.pone.0071805. (PMID: 10.1371/journal.pone.0071805)
Kumar S, Singh A, Bajpai V, Srivastava M, Singh BP, Kumar B (2016) Structural characterization of monoterpene indole alkaloids in ethanolic extracts of Rauwolfia species by liquid chromatography with quadrupole time-of-flight mass spectrometry. J Pharm Anal 6(6):363–373. https://doi.org/10.1016/j.jpha.2016.04.008. (PMID: 10.1016/j.jpha.2016.04.008294040055762928)
Kumar SR, Shilpashree HB, Nagegowda DA (2018) Terpene moiety enhancement by overexpression of geranyl (geranyl) diphosphate synthase and geraniol synthase elevates monomeric and dimeric monoterpene indole alkaloids in transgenic Catharanthus roseus. Front Plant Sci 9:942. https://doi.org/10.3389/fpls.2018.00942. (PMID: 10.3389/fpls.2018.00942300344066043680)
Kumari P, Deepa N, Trivedi PK, Singh BK, Srivastava V, Singh A (2023) Plants and endophytes interaction: a “secret wedlock” for sustainable biosynthesis of pharmaceutically important secondary metabolites. Microb Cell Factories 22(1):226. https://doi.org/10.1186/s12934-023-02234-8. (PMID: 10.1186/s12934-023-02234-8)
Kusari S, Spiteller M (2012) Metabolomics of endophytic fungi producing associated plant secondary metabolites: progress, challenges, and opportunities. Metabolomics. Rijeka, Croatia, In-Tech 241–266.
Kusari S, Zühlke S, Spiteller M (2009) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72(1):2–7. https://doi.org/10.1021/np800455b. (PMID: 10.1021/np800455b19119919)
Kusari S, Košuth J, Čellárová E, Spiteller M (2011) Survival-strategies of endophytic Fusarium solani against indigenous camptothecin biosynthesis. Fungal Ecol 4(3):219–223. https://doi.org/10.1016/j.funeco.2010.11.002. (PMID: 10.1016/j.funeco.2010.11.002)
Lackman P, González-Guzmán M, Tilleman S, Carqueijeiro I, Pérez AC, Moses T, Goossens A (2011) Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. PNAS 108(14):5891–5896. https://doi.org/10.1073/pnas.1103010108. (PMID: 10.1073/pnas.1103010108214360413078376)
Li HY, Wei DQ, Shen M, Zhou ZP (2012) Endophytes and their role in phytoremediation. Fungal Divers 54:11–18. https://doi.org/10.1007/s13225-012-0165-x. (PMID: 10.1007/s13225-012-0165-x)
Li F, Wang W, Zhao N, Xiao B, Cao P, Wu X, Fan L (2015) Regulation of nicotine biosynthesis by an endogenous target mimicry of microRNA in tobacco. Plant Physiol 169(2):1062–1071. https://doi.org/10.1104/pp.15.00649. (PMID: 10.1104/pp.15.00649262464504587456)
Linden JC (2006) Secondary products from plant tissue culture. Encycl Life Support Syst (UNESCO-EOLSS) Biotechnol. 4:1–9. https://doi.org/10.1023/A:1013374417961. (PMID: 10.1023/A:1013374417961)
Linh TM, Mai NC, Hoe PT, Ngoc NT, Thao PTH, Ban NK, Van NT (2021) Development of a cell suspension culture system for promoting alkaloid and vinca alkaloid biosynthesis using endophytic fungi isolated from local Catharanthus roseus. Plants 10(4):672. https://doi.org/10.3390/plants10040672. (PMID: 10.3390/plants10040672338074158066771)
Liu Y, Liu W, Liang Z (2015) Endophytic bacteria from Pinellia ternata, a new source of purine alkaloids and bacterial manure. Pharm Biol 5:1545–1548. https://doi.org/10.3109/13880209.1016580. (PMID: 10.3109/13880209.1016580)
Liu J, Gao F, Ren J, Lu X, Ren G, Wang R (2017) A novel AP2/ERF transcription factor CR1 regulates the accumulation of vindoline and serpentine in Catharanthus roseus. Front Plant Sci 8:2082. https://doi.org/10.3389/fpls.2017.02082. (PMID: 10.3389/fpls.2017.02082292701855724233)
Liu Y, Patra B, Singh SK, Paul P, Zhou Y, Li Y, Yuan L (2021) Terpenoid indole alkaloid biosynthesis in Catharanthus roseus: effects and prospects of environmental factors in metabolic engineering. Biotechnol Lett. https://doi.org/10.1007/s10529-021-03179-x. (PMID: 10.1007/s10529-021-03179-x346989728510960)
Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T (2017) Transcriptomics technologies. PLoS Comput Biol 13(5):e1005457. https://doi.org/10.1371/journal.pcbi.1005457. (PMID: 10.1371/journal.pcbi.1005457285451465436640)
Ludwig-Müller J (2015) Plants and endophytes: equal partners in secondary metabolite production. Biotechnol Lett 37(7):1325–1334. https://doi.org/10.1007/s10529-015-1814-4. (PMID: 10.1007/s10529-015-1814-425792513)
Maehara S, Agusta A, Kitamura C, Ohashi K, Shibuya H (2016) Composition of the endophytic filamentous fungi associated with cinchona ledgeriana seeds and production of cinchona alkaloids. J Nat Med 70:271–275. https://doi.org/10.1007/s11418-015-0954-0. (PMID: 10.1007/s11418-015-0954-026645397)
Mehrotra S, Goel MK, Srivastava V, Rahman LU (2015) Hairy root biotechnology of Rauwolfia serpentina: a potent approach for the production of pharmaceutically important terpenoid indole alkaloids. Biot lett 37:253–263. https://doi.org/10.1007/s10529-014-1695-y. (PMID: 10.1007/s10529-014-1695-y)
Meyer V, Andersen MR, Brakhage AA, Braus GH, Caddick MX, Cairns TC, Head RM (2016) Current challenges of research on filamentous fungi in relation to human welfare and a sustainable bio-economy: a white paper. Fungal Boil Biotechnol 3(1):1–17. https://doi.org/10.1186/s40694-016-0024-8. (PMID: 10.1186/s40694-016-0024-8)
Ming Q, Han T, Li W, Zhang Q, Zhang H, Zheng C, Huang F, Rahman K, Qin L (2012) Tanshinone IIA and tanshinone I production by Trichoderma atroviride D16, an endophytic fungus in Salvia miltiorrhiza. Phytomedicine 19:330–333. https://doi.org/10.1016/j.phymed.2011.09.076. (PMID: 10.1016/j.phymed.2011.09.07622035769)
Mishra S, Sharma S (2022) Metabolomic insights into endophyte-derived bioactive compounds. Front Microbiol 13:835–931. https://doi.org/10.3389/fmicb.2022.835931. (PMID: 10.3389/fmicb.2022.835931)
Mishra R, Kushveer JS, Revanthbabu P, Sarma VV (2019) Endophytic fungi and their enzymatic potential. Adv Endophytic Fungal Res: Present Status Fut Chall. https://doi.org/10.1007/978-3-030-03589-1_14. (PMID: 10.1007/978-3-030-03589-1_14)
Mishra Y, Sharma L, Dhiman M, Sharma MM (2021) Endophytic fungal diversity of selected medicinal plants and their bio-potential applications. In Fungi bio-prospects in sustainable agriculture, environment and nano-technology. Academic Press, pp 227-283. https://doi.org/10.1016/B978-0-12-821394-0.00010-X.
Mohammed AE, Abdul-Hameed ZH, Alotaibi MO, Bawakid NO, Sobahi TR, Abdel-Lateff A, Alarif WM (2021) Chemical diversity and bioactivities of monoterpene indole alkaloids (MIAs) from six Apocynaceae genera. Mol 26(2):488. https://doi.org/10.3390/molecules26020488. (PMID: 10.3390/molecules26020488)
Mohana Kumara P, Zuehlke S, Priti V, Ramesha BT, Shweta S, Ravikanth G, Uma Shaanker R (2012) Fusarium proliferatum, an endophytic fungus from Dysoxylum binectariferum Hook. f, produces rohitukine, a chromane alkaloid possessing anti-cancer activity. Antonie Leeuwenhoek 101:323–329. https://doi.org/10.1007/s10482-011-9638-2. (PMID: 10.1007/s10482-011-9638-221898150)
Mohinudeen IAHK, Kanumuri R, Soujanya KN, Shaanker RU, Rayala SK, Srivastava S (2021) Sustainable production of camptothecin from an Alternaria sp isolated from nothapodytes nimmoniana. Sci Rep 11:1478. https://doi.org/10.1038/s41598-020-79239-5. (PMID: 10.1038/s41598-020-79239-5334467147809410)
Mora-Vásquez S, Wells-Abascal GG, Espinosa-Leal C, Cardineau GA, García-Lara S (2022) Application of metabolic engineering to enhance the content of alkaloids in medicinal plants. Metab Eng Commun 14:00194. https://doi.org/10.1007/s10482-011-9638-2. (PMID: 10.1007/s10482-011-9638-2)
Musavi SF, Dhavale A, Balakrishnan RM (2015) Optimization and kinetic modeling of cell-associated camptothecin production from an endophytic Fusarium oxysporum NFX06. Prep Biochem Biotechnol 45:158–172. https://doi.org/10.1080/10826068.2014.907177. (PMID: 10.1080/10826068.2014.90717724840354)
Na R, Jiajia L, Dongliang Y, Yingzi P, Juan H, Xiong L, Yitian L (2016) Identification of vincamine indole alkaloids producing endophytic fungi isolated from Nerium indicum, Apocynaceae. Microbiol Res 192:114–121. https://doi.org/10.1016/j.micres.2016.06.008. (PMID: 10.1016/j.micres.2016.06.00827664729)
Nagarajan K, Ibrahim B, Ahmad Bawadikji A, Lim JW, Tong WY, Leong CR, Khaw KY, Tan WN (2021) Recent developments in metabolomics studies of endophytic fungi. J Fungi 8(1):28. https://doi.org/10.3390/jof8010028. (PMID: 10.3390/jof8010028)
Naidoo CM, Naidoo Y, Dewir YH, Murthy HN, El-Hendawy S, Al-Suhaibani N (2021) Major bioactive alkaloids and biological activities of Tabernaemontana species (Apocynaceae). Plants 10(2):313. https://doi.org/10.3390/plants10020313. (PMID: 10.3390/plants10020313335628937915066)
Naik S, Shaanker RU, Ravikanth G, Dayanandan S (2019) How and why do endophytes produce plant secondary metabolites? Symbiosis 78:193–201. https://doi.org/10.1007/s13199-019-00614-6. (PMID: 10.1007/s13199-019-00614-6)
Nakabayashi R, Takeda-Kamiya N, Yamada Y, Mori T, Uzaki M, Nirasawa T, Toyooka K, Saito K (2021) A multimodal metabolomics approach using imaging mass spectrometry and liquid chromatography-tandem mass spectrometry for spatially characterizing monoterpene indole alkaloids secreted from roots. Plant Biotechnol 38(3):305–310. https://doi.org/10.5511/plantbiotechnology.21.0504a. (PMID: 10.5511/plantbiotechnology.21.0504a)
Notarte KI, Devanadera MK, Mayor AB, Cada MC, Pecundo MH, Macabeo AP (2019) Toxicity, antibacterial, and antioxidant activities of fungal endophytes Colletotrichum and Nigrospora spp. Isolated from Uvaria grandiflora. Philipp J Sci 148(3).
Omar F, Tareq AM, Alqahtani AM, Dhama K, Sayeed MA, Emran TB, Simal-Gandara J (2021) Plant-based indole alkaloids: a comprehensive overview from a pharmacological perspective. Mol 26(8):2297. https://doi.org/10.3390/molecules26082297. (PMID: 10.3390/molecules26082297)
Omojate Godstime C, Enwa Felix O, Jewo Augustina O, Eze Christopher O (2014) Mechanisms of antimicrobial actions of phytochemicals against enteric pathogens–a review. J Pharm Chem Biol Sci 2(2):77–85.
Palem PP, Kuriakose GC, Jayabaskaran C (2015) An endophytic fungus, Talaromyces radicus, isolated from Catharanthus roseus, produces vincristine and vinblastine, which induce apoptotic cell death. PLoS ONE 10(12):e0144476. https://doi.org/10.1371/journal.pone.0144476. (PMID: 10.1371/journal.pone.0144476266978754689362)
Pan F, Su X, Hu B, Yang N, Chen Q, Wu W (2015) Fusarium redolens 6WBY3, an endophytic fungus isolated from Fritillaria unibracteata var. wabuensis, produces peimisine and imperialine-3β-d-glucoside. Fitoterapia 103:213–221. https://doi.org/10.1016/j.fitote.2015.04.006. (PMID: 10.1016/j.fitote.2015.04.00625869849)
Pan Q, Mustafa NR, Tang K, Choi YH, Verpoorte R (2016) Monoterpenoid indole alkaloids biosynthesis and its regulation in Catharanthus roseus: a literature review from genes to metabolites. Phytochem Rev 15:221–250. https://doi.org/10.1007/s11101-015-9406-4. (PMID: 10.1007/s11101-015-9406-4)
Pan R, Bai X, Chen J, Zhang H, Wang H (2019) Exploring structural diversity of microbe secondary metabolites using OSMAC strategy: a literature review. Front Microbiol 10:294. https://doi.org/10.3389/fmicb.2019.00294. (PMID: 10.3389/fmicb.2019.00294308633776399155)
Pandey SS, Singh S, Babu CS, Shanker K, Srivastava NK, Shukla AK, Kalra A (2016) Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis. Sci Rep 6:26583. https://doi.org/10.1038/srep26583. (PMID: 10.1038/srep26583272207744879578)
Park SY, Yang D, Ha SH, Lee SY (2018) Metabolic engineering of microorganisms for the production of natural compounds. Adv Biosyst 2(1):1700190. https://doi.org/10.1002/adbi.201700190. (PMID: 10.1002/adbi.201700190)
Parthasarathy R, Shanmuganathan R, Pugazhendhi A (2020) Vinblastine production by the endophytic fungus Curvularia verruculosa from the leaves of Catharanthus roseus and its in vitro cytotoxicity against HeLa cell line. Anal Biochem 593:113530. https://doi.org/10.1016/j.ab.2019.113530. (PMID: 10.1016/j.ab.2019.11353031794703)
Peng W, Ming Q, Zhai X, Zhang Q, Rahman K, Wu S, Qin L, Han T (2019) Polysaccharide fraction extracted from the endophytic fungus Trichoderma atroviride D16 has an influence on the proteomics profile of the Salvia miltiorrhiza hairy roots. Biomolecules 9:415. https://doi.org/10.3390/biom9090415. (PMID: 10.3390/biom9090415314550386769542)
Puri SC, Nazir A, Chawla R, Arora R, Riyaz-ul-Hasan S, Amna T, Qazi GN (2006) The endophytic fungus Trametes hirsuta is a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotech 122(4):494–510. https://doi.org/10.1016/j.jbiotec.2005.10.015. (PMID: 10.1016/j.jbiotec.2005.10.015)
Rai N, Gupta P, Keshri PK, Verma A, Mishra P, Kumar D, Gautam V (2022) Fungal endophytes: an accessible source of bioactive compounds with potential anticancer activity. Appl Biochem Biotechnol 194(7):3296–3319. https://doi.org/10.1007/s12010-022-03872-1. (PMID: 10.1007/s12010-022-03872-135349089)
Rajashekara S, Reena D, Mainavi MV, Sandhya LS, Baro U (2022) Biological isolation and characterization of Catharanthus roseus (L.) G. Don methanolic leaves extracts and their assessment for antimicrobial, cytotoxic, and apoptotic activities. BMC Complement Med Ther 22(1):328. https://doi.org/10.1186/s12906-022-03810-y. (PMID: 10.1186/s12906-022-03810-y364946929733275)
Ramawat KG, Arora J (2021) Medicinal plants domestication, cultivation, improvement, and alternative technologies for the production of high-value therapeutics: an overview. Medicinal plants: domestication, biotechnology, and regional importance, 1-29. Doi- https://doi.org/10.1007/978-3-030-74779-4_1.
Ran X, Zhang G, Li S, Wang J (2017) Characterization and antitumor activity of camptothecin from endophytic fungus Fusarium Solani isolated from Camptotheca Acuminate. Afr Health Sci 17:566–574. https://doi.org/10.4314/ahs.v17i2.34. (PMID: 10.4314/ahs.v17i2.34290623555637045)
Rehman S, Shawl AS, Kour A, Andrabi R, Sudan P, Sultan P, Qazi GN (2008) An endophytic Neurospora sp. from nothapodytes foetida producing camptothecin. Appl Biochem Microbiol 44:203–209. https://doi.org/10.1134/S0003683808020130. (PMID: 10.1134/S0003683808020130)
Rosales PF, Bordin GS, Gower AE, Moura S (2020) Indole alkaloids: 2012 until now, highlighting the new chemical structures and biological activities. Fitoterapia 143:104558. https://doi.org/10.1016/j.fitote.2020.104558. (PMID: 10.1016/j.fitote.2020.10455832198108)
Ruan Q, Patel G, Wang J, Luo E, Zhou W, Sieniawska E, Kai G (2021) Current advances of endophytes as a platform for the production of anti-cancer drug camptothecin. Food Chem Toxicol 151:112113. https://doi.org/10.1016/j.fct.2021.112113. (PMID: 10.1016/j.fct.2021.11211333722602)
Rutkowska N, Drożdżyński P, Ryngajłło M, Marchut-Mikołajczyk O (2023) Plants as the extended phenotype of endophytes—the actual source of bioactive compounds. Int J Mol Sci 24(12):10096. https://doi.org/10.3390/ijms241210096. (PMID: 10.3390/ijms2412100963737324110298476)
Sagita R, Quax WJ, Haslinger K (2021) Current state and future directions of genetics and genomics of endophytic fungi for bioprospecting efforts. Front Bioeng Biotechnol 9:649906. https://doi.org/10.3389/fbioe.2021.649906. (PMID: 10.3389/fbioe.2021.649906337912898005728)
Saiman MZ, Mustafa NR, Choi YH, Verpoorte R, Schulte AE (2015) Metabolic alterations and distribution of five-carbon precursors in jasmonic acid-elicited Catharanthus roseus cell suspension cultures. Plant Cell Tissue Organ Cult (PCTOC) 122:351–362. https://doi.org/10.1007/s11240-015-0773-8. (PMID: 10.1007/s11240-015-0773-8)
Samreen T, Naveed M, Nazir MZ, Asghar HN, Khan MI, Zahir ZA, Kanwal S, Jeevan B, Sharma D, Meena VS, Meena SK (2021) Seed associated bacterial and fungal endophytes: diversity, life cycle, transmission, and application potential. Appl Soil Ecol 168:104191. https://doi.org/10.1016/j.apsoil.2021.104191. (PMID: 10.1016/j.apsoil.2021.104191)
Schmidt-Dannert C (2015) Biosynthesis of terpenoid natural products in fungi. Biotechnol Isoprenoids. https://doi.org/10.1007/10_2014_283. (PMID: 10.1007/10_2014_283)
Sharma MK, Kumar M (2021) Biosynthesis and modulation of terpenoid indole alkaloids Catharanthus roseus a review of targeting genes and secondary metabolites. JPAM. https://doi.org/10.22207/JPAM.15.4.05. (PMID: 10.22207/JPAM.15.4.05)
Shih ML, Morgan JA (2020) Metabolic flux analysis of secondary metabolism in plants. Metab Eng Commun 10:e00123. https://doi.org/10.1016/j.mec.2020.e00123. (PMID: 10.1016/j.mec.2020.e00123320998037031320)
Singh VK, Kumar A (2023) Secondary metabolites from endophytic fungi: production, methods of analysis, and diverse pharmaceutical potential. Symbiosis 90(2):111–125. https://doi.org/10.1007/s13199-023-00925-9. (PMID: 10.1007/s13199-023-00925-9)
Singh SK, Verma M, Ranjan A, Singh RK (2016) Antibacterial activity and preliminary phytochemical screening of endophytic fugal extract of Rauvolfia Serpentina. Open Conf Proc J 7(1):104–113. (PMID: 10.2174/2210289201607010104)
Singh M, Kumar A, Singh R, Pandey KD (2017) Endophytic bacteria: a new source of bioactive compounds. 3 Biotech 7:1–14. https://doi.org/10.1007/s13205-017-0942-z. (PMID: 10.1007/s13205-017-0942-z)
Singh P, Prasad R, Tewari R, Jaidi M, Kumar S, Rout PK, Rahman LU (2018) Silencing of quinolinic acid phosphoribosyl transferase (QPT) gene for enhanced production of scopolamine in hairy root culture of Duboisia leichhardtii. Sci Rep 8(1):13939. https://doi.org/10.1038/s41598-018-32396-0. (PMID: 10.1038/s41598-018-32396-0302247636141460)
Singh S, Pandey SS, Shanker K, Kalra A (2020a) Endophytes enhance the production of root alkaloids ajmalicine and serpentine by modulating the terpenoid indole alkaloid pathway in Catharanthus roseus roots. J Appl Microbiol 128(4):1128–1142. https://doi.org/10.1111/jam.14546. (PMID: 10.1111/jam.1454631821696)
Singh SK, Patra B, Paul P, Liu Y, Pattanaik S, Yuan L (2020b) Revisiting the ORCA gene cluster that regulates terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant Sci 293:110408. https://doi.org/10.1016/j.plantsci.2020.110408. (PMID: 10.1016/j.plantsci.2020.11040832081258)
Singh S, Pandey SS, Tiwari R, Pandey A, Shanker K, Kalra A (2021) Endophytic consortium with growth-promoting and alkaloid enhancing capabilities enhance key terpenoid indole alkaloids of Catharanthus roseus in the winter and summer seasons. Ind Crops Prod 166:113437. https://doi.org/10.1016/j.indcrop.2021.113437. (PMID: 10.1016/j.indcrop.2021.113437)
Singh SK, Patra B, Singleton JJ, Liu Y, Paul P, Sui X, Yuan L (2022) Identification and characterization of transcription factors regulating terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Catharanthus roseus: methods and protocols. Springer US, New York, NY, pp 203–221. (PMID: 10.1007/978-1-0716-2349-7_15)
Srivastava M, Misra P (2017) Enhancement of medicinally important bioactive compounds in hairy root cultures of Glycyrrhiza, Rauwolfia, and Solanum through in vitro stress application. Prod Plant Deriv Natl Compd Hairy Root Cult. https://doi.org/10.1007/978-3-319-69769-7. (PMID: 10.1007/978-3-319-69769-7)
Staniek A, Bouwmeester H, Fraser PD, Kayser O, Martens S, Tissier A, Warzecha H (2013) Natural products modifying metabolite pathways in plants. Biotechnol J 8(10):1159–1171. https://doi.org/10.1002/biot.201300224. (PMID: 10.1002/biot.20130022424092673)
Sun W, Xue H, Liu H, Lv B, Yu Y, Wang Y, Huang M, Li C (2020) Controlling chemo- and regioselectivity of a plant P450 in yeast cell toward rare licorice triterpenoid biosynthesis. ACS Catal 10:4253–4260. https://doi.org/10.1021/acscatal.0c00128. (PMID: 10.1021/acscatal.0c00128)
Teimoori-Boghsani Y, Ganjeali A, Cernava T, Müller H, Asili J, Berg G (2020) Endophytic fungi of native Salvia abrotanoides plants reveal high taxonomic diversity and unique profiles of secondary metabolites. Front Microbiol 10:3013. https://doi.org/10.3389/fmicb.2019.03013. (PMID: 10.3389/fmicb.2019.03013320100876978743)
Tiwari P, Bae H (2022) Endophytic fungi: key insights, emerging prospects, and challenges in natural product drug discovery. Microorganism 10(2):360. https://doi.org/10.3390/microorganisms10020360. (PMID: 10.3390/microorganisms10020360)
Toju H, Tanabe AS, Sato H (2018) Network hubs in root-associated fungal metacommunities. Microbiome 6(1):1–16. https://doi.org/10.1186/s40168-018-0497-1. (PMID: 10.1186/s40168-018-0497-1)
Van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Sci 289(5477):295–297. https://doi.org/10.1126/science.289.5477.295. (PMID: 10.1126/science.289.5477.295)
Venugopalan A, Srivastava S (2015) Endophytes as in vitro production platforms of high-value plant secondary metabolites. Biotechnol Adv 33(6):873–887. https://doi.org/10.1016/j.biotechadv.2015.07.004. (PMID: 10.1016/j.biotechadv.2015.07.00426225453)
Venugopalan A, Potunuru UR, Dixit M, Srivastava S (2016) Reprint of: effect of fermentation parameters, elicitors and precursors on camptothecin production from the endophyte Fusarium solani. Bioresour Technol 13:311–318. https://doi.org/10.1016/j.biortech.2016.05.023. (PMID: 10.1016/j.biortech.2016.05.023)
Verma P, Mathur AK, Srivastava A, Mathur A (2012) Emerging trends in research on spatial and temporal organization of terpenoid indole alkaloid pathway in Catharanthus roseus: a literature update. Protoplasma 249:255–268. https://doi.org/10.1007/s00709-011-0291-4. (PMID: 10.1007/s00709-011-0291-421630129)
Verma SK, Goyary D, Singh AK, Anandhan S, Raina SN, Pandey S, Khare N (2024) Modulation of terpenoid indole alkaloid pathway via elicitation with phytosynthesized silver nanoparticles for the enhancement of ajmalicine, a pharmaceutically important alkaloid. Planta 259(2):30. https://doi.org/10.1007/s00425-023-04311-z. (PMID: 10.1007/s00425-023-04311-z)
Walton K, Berry JP (2016) Indole alkaloids of the Stigonematales (Cyanophyta): chemical diversity, biosynthesis, and biological activity. Mar Drugs 14(4):73. https://doi.org/10.3390/md14040073. (PMID: 10.3390/md14040073270585464849077)
Wang Y, Li H, Zhao W, He X, Chen J, Geng X, Xiao M (2010) Induction of toluene degradation and growth promotion in corn and wheat by horizontal gene transfer within endophytic bacteria. Soil Biol Biochem 42(7):1051–1057. https://doi.org/10.1016/j.soilbio.2010.03.002. (PMID: 10.1016/j.soilbio.2010.03.002)
Wang Z, Wang L, Pan Y, Zheng X, Liang X, Sheng L, Wang Q (2023) Research advances on endophytic fungi and their bioactive metabolites. Bioprocess Biosyst Eng 46(2):165–170. https://doi.org/10.1007/s00449-022-02840-7. (PMID: 10.1007/s00449-022-02840-736565343)
Wani AK, Akhtar N, Naqash N, Chopra C, Singh R, Kumar V, Kumar S, Mulla SI, Américo-Pinheiro JH (2022) Bioprospecting culturable and unculturable microbial consortia through metagenomics for bioremediation. CLCE 2:100017. https://doi.org/10.1016/j.clce.2022.100017. (PMID: 10.1016/j.clce.2022.100017)
Wei Y, Liu L, Zhou X, Lin J, Sun X, Tang K (2012) Engineering taxol biosynthetic pathway for improving taxol yield in taxol-producing endophytic fungus EFY-21 (Ozonium sp.). Afr J Biotechnol 11(37):9094–9101. https://doi.org/10.5897/AJB10.1896. (PMID: 10.5897/AJB10.1896)
Wei Q, Bai J, Yan D, Bao X, Li W, Liu B, Zhang D, Qi X, Yu D, Hu Y (2021) Genome mining combined metabolic shunting and OSMAC strategy of an endophytic fungus leads to the production of diverse natural products. Acta Pharm Sin B 11(2):572–587. https://doi.org/10.1016/j.apsb.2020.07.020. (PMID: 10.1016/j.apsb.2020.07.02033643832)
Widjajanti H, Nurnawati E, Tripuspita V (2022) The potency of endophytic fungi isolated from Hippobroma longiflora (L) G. Don as an antioxidant source. IOP Conf Ser: Earth Environ Sci 976(1):012045. https://doi.org/10.1088/1755-1315/976/1/012045. (PMID: 10.1088/1755-1315/976/1/012045)
Wu H, Yang HY, You XL, Li YH (2013) Diversity of endophytic fungi from roots of Panax ginseng and their saponin yield capacities. Springerplus 2:1–9. https://doi.org/10.1186/2193-1801-2-107. (PMID: 10.1186/2193-1801-2-107)
Wu W, Chen W, Liu S, Wu J, Zhu Y, Qin L, Zhu B (2021) Beneficial relationships between endophytic bacteria and medicinal plants. Front Plant Sci 12:646146. https://doi.org/10.3389/fpls.2021.646146. (PMID: 10.3389/fpls.2021.646146339681038100581)
Xu W, Gavia DJ, Tang Y (2014) Biosynthesis of fungal indole alkaloids. Nat prod rep 31(10):1474–1487. https://doi.org/10.1039/C4NP00073K. (PMID: 10.1039/C4NP00073K251806194162825)
Yuan YX, Guo F, He HP, Zhang Y, Hao XJ (2018) Two new monoterpenoid indole alkaloids from Alstonia rostrata. Nat Prod Res 32(7):844–848. https://doi.org/10.1080/14786419.2017.1360886. (PMID: 10.1080/14786419.2017.136088628768429)
Zhai X, Luo D, Li X, Han T, Jia M, Kong Z, Ji J, Rahman K, Qin L, Zheng C (2018) Endophyte Chaetomium globosum D38 promotes bioactive constituents accumulation and root production in Salvia miltiorrhiza. Front Microbiol. https://doi.org/10.3389/fmicb.2017.02694. (PMID: 10.3389/fmicb.2017.02694303567236189331)
Zhang D, Satake M, Fukuzawa S, Sugahara K, Niitsu A, Shirai T, Tachibana K (2012) Two new indole alkaloids, 2-(3, 3-dimethylprop-1-ene)-costaclavine and 2-(3, 3-dimethylprop-1-ene)-epicostaclavine, from the marine-derived fungus Aspergillus fumigatus. J Nat Med 66:222–226. https://doi.org/10.1007/s11418-011-0565-3. (PMID: 10.1007/s11418-011-0565-321792727)
Zhang P, Li XM, Liu H, Li X, Wang BG (2015) Two new alkaloids from Penicillium oxalicum EN-201, an endophytic fungus derived from the marine mangrove plant Rhizophora stylosa. Phytochem Lett 13:160–164. https://doi.org/10.1016/j.phytol.2015.06.009. (PMID: 10.1016/j.phytol.2015.06.009)
Zhang P, Lee Y, Wei X, Wu J, Liu Q, Wan S (2018) Enhanced production of tanshinone IIA in endophytic fungi Emericella foeniculicola by genome shuffling. Pharm Biol 56(1):357–362. https://doi.org/10.1080/13880209.2018.1481108. (PMID: 10.1080/13880209.2018.1481108302660716171462)
Zhao J, Verpoorte R (2007) Manipulating indole alkaloid production by Catharanthus roseus cell cultures in bioreactors: from biochemical processing to metabolic engineering. Phytochem Rev. https://doi.org/10.1007/s11101-006-9050-0. (PMID: 10.1007/s11101-006-9050-0)
Zhao J, Shan T, Mou Y, Zhou L (2011) Plant-derived bioactive compounds produced by endophytic fungi. Mini Rev Med Chem 11(2):159–168. https://doi.org/10.2174/138955711794519492. (PMID: 10.2174/13895571179451949221222580)
Zhao K, Yu L, Jin Y, Ma X, Liu D, Wang X (2016) Advances and prospects of taxol biosynthesis by endophytic fungi. Sheng Wu Gong Cheng Xue Bao Chin J Biotechnol 32(8):1038–1051. https://doi.org/10.13345/j.cjb.150519. (PMID: 10.13345/j.cjb.150519)
Zhong Z, Liu S, Han S, Li Y, Tao M, Liu A, Tian J (2021) Integrative omic analysis reveals the improvement of alkaloid accumulation by ultraviolet-B radiation and its upstream regulation in Catharanthus roseus. Ind Crops Prod 166: https://doi.org/10.1016/j.indcrop.2021.113448. (PMID: 10.1016/j.indcrop.2021.113448)
Zhu X, Zeng X, Sun C, Chen S (2014) Biosynthetic pathway of terpenoid indole alkaloids in Catharanthus roseus. Front Med 8:285–293. https://doi.org/10.1007/s11684-014-0350-2. (PMID: 10.1007/s11684-014-0350-225159992)
Zhu J, Wang M, Wen W, Yu R (2015) Biosynthesis and regulation of terpenoid indole alkaloids in Catharanthus roseus. Phcog Rev 9(17):24. https://doi.org/10.4103/0973-7847.156323. (PMID: 10.4103/0973-7847.156323260096894441158)
معلومات مُعتمدة: Award No. 202021-NFST-JHA-03517 National Fellowship and Scholarship for the Higher Education of ST Students (NFST); Award No. 202223-NFST-JHA-00832 National Fellowship and Scholarship for the Higher Education of ST Students (NFST)
فهرسة مساهمة: Keywords: Bioactive compounds; Cancer drugs; Endophytes; Terpenoid indole alkaloids
المشرفين على المادة: 0 (Secologanin Tryptamine Alkaloids)
0 (Biological Products)
تواريخ الأحداث: Date Created: 20240703 Date Completed: 20240703 Latest Revision: 20240814
رمز التحديث: 20240814
DOI: 10.1007/s00203-024-04067-4
PMID: 38960981
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-072X
DOI:10.1007/s00203-024-04067-4