دورية أكاديمية

LncRNA SNHG12 suppresses adipocyte inflammation and insulin resistance by regulating the HDAC9/Nrf2 axis.

التفاصيل البيبلوغرافية
العنوان: LncRNA SNHG12 suppresses adipocyte inflammation and insulin resistance by regulating the HDAC9/Nrf2 axis.
المؤلفون: Huang X; Department of Genetics, Metabolism and Endocrinology, Hainan Women and Children's Medical Center, Haikou, China., Chen J; Department of Medical Care Center, Hainan Provincial People's Hospital, Haikou, China., Li H; Department of Genetics, Metabolism and Endocrinology, Hainan Women and Children's Medical Center, Haikou, China., Cai Y; Department of Genetics, Metabolism and Endocrinology, Hainan Women and Children's Medical Center, Haikou, China., Liu L; Department of Genetics, Metabolism and Endocrinology, Hainan Women and Children's Medical Center, Haikou, China., Dong Q; Department of Genetics, Metabolism and Endocrinology, Hainan Women and Children's Medical Center, Haikou, China., Li Y; Department of Genetics, Metabolism and Endocrinology, Hainan Women and Children's Medical Center, Haikou, China., Ren Y; Department of Pediatrics, Haikou Hospital of the Maternal and Child Health, Haikou, China., Xiang W; Hainan Women and Children's Medical Center, Haikou, China., He X; Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.
المصدر: FASEB journal : official publication of the Federation of American Societies for Experimental Biology [FASEB J] 2024 Jul 15; Vol. 38 (13), pp. e23794.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Federation of American Societies for Experimental Biology Country of Publication: United States NLM ID: 8804484 Publication Model: Print Cited Medium: Internet ISSN: 1530-6860 (Electronic) Linking ISSN: 08926638 NLM ISO Abbreviation: FASEB J Subsets: MEDLINE
أسماء مطبوعة: Publication: 2020- : [Bethesda, Md.] : Hoboken, NJ : Federation of American Societies for Experimental Biology ; Wiley
Original Publication: [Bethesda, Md.] : The Federation, [c1987-
مواضيع طبية MeSH: RNA, Long Noncoding*/genetics , RNA, Long Noncoding*/metabolism , Insulin Resistance* , Inflammation*/metabolism , Inflammation*/genetics , Adipocytes*/metabolism , Histone Deacetylases*/metabolism , Histone Deacetylases*/genetics , NF-E2-Related Factor 2*/metabolism , NF-E2-Related Factor 2*/genetics , Mice, Inbred C57BL* , Diet, High-Fat*/adverse effects , Obesity*/metabolism , Obesity*/genetics , Repressor Proteins*/metabolism , Repressor Proteins*/genetics, Animals ; Mice ; Male ; Signal Transduction ; Macrophages/metabolism
مستخلص: Obesity is often associated with low-grade inflammation. The incidence of obesity has increased annually worldwide, which seriously affects human health. A previous study indicated that long noncoding RNA SNHG12 was downregulated in obesity. Nevertheless, the role of SNHG12 in obesity remains to be elucidated. In this study, qRT-PCR, western blot, and ELISA were utilized to examine the gene and protein expression. Flow cytometry was employed to investigate the M2 macrophage markers. RNA pull-down assay and RIP were utilized to confirm the interactions of SNHG12, hnRNPA1, and HDAC9. Eventually, a high-fat diet-fed mouse model was established for in vivo studies. SNHG12 overexpression suppressed adipocyte inflammation and insulin resistance and promoted M2 polarization of macrophages that was caused by TNF-α treatment. SNHG12 interacted with hnRNPA1 to downregulate HDAC9 expression, which activated the Nrf2 signaling pathway. HDAC9 overexpression reversed the effect of SNHG12 overexpression on inflammatory response, insulin resistance, and M2 phenotype polarization. Overexpression of SNHG12 improved high-fat diet-fed mouse tissue inflammation. This study revealed the protective effect of SNHG12 against adipocyte inflammation and insulin resistance. This result further provides a new therapeutic target for preventing inflammation and insulin resistance in obesity.
(© 2024 Federation of American Societies for Experimental Biology.)
References: Ellulu MS, Patimah I, Khaza'ai H, Rahmat A, Abed Y. Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci. 2017;13(4):851‐863.
Hruby A, Hu FB. The epidemiology of obesity: a big picture. PharmacoEconomics. 2015;33(7):673‐689.
Xia W, Zhou Y, Wang L, et al. Tauroursodeoxycholic acid inhibits TNF‐α‐induced lipolysis in 3T3‐L1 adipocytes via the IRE‐JNK‐perilipin—a signaling pathway. Mol Med Rep. 2017;15(4):1753‐1758.
Boutens L, Stienstra R. Adipose tissue macrophages: going off track during obesity. Diabetologia. 2016;59(5):879‐894.
Lee CH, Lam KS. Obesity‐induced insulin resistance and macrophage infiltration of the adipose tissue: a vicious cycle. J Diabetes Investig. 2019;10(1):29‐31.
Nawaz A, Tobe K. M2‐like macrophages serve as a niche for adipocyte progenitors in adipose tissue. J Diabetes Investig. 2019;10(6):1394‐1400.
Shin KC, Hwang I, Choe SS, et al. Macrophage VLDLR mediates obesity‐induced insulin resistance with adipose tissue inflammation. Nat Commun. 2017;8(1):1087.
Beermann J, Piccoli MT, Viereck J, Thum T. Non‐coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev. 2016;96(4):1297‐1325.
Wijesinghe SN, Nicholson T, Tsintzas K, Jones SW. Involvements of long noncoding RNAs in obesity‐associated inflammatory diseases. Obes Rev. 2021;22(4):e13156.
Stapleton K, das S, Reddy MA, et al. Novel long noncoding RNA, macrophage inflammation‐suppressing transcript (MIST), regulates macrophage activation during obesity. Arterioscler Thromb Vasc Biol. 2020;40(4):914‐928.
Han YB, Tian M, Wang XX, et al. Berberine ameliorates obesity‐induced chronic inflammation through suppression of ER stress and promotion of macrophage M2 polarization at least partly via downregulating lncRNA Gomafu. Int Immunopharmacol. 2020;86:106741.
Qian M, Ling W, Ruan Z. Long non‐coding RNA SNHG12 promotes immune escape of ovarian cancer cells through their crosstalk with M2 macrophages. Aging (Albany NY). 2020;12(17):17122‐17136.
Zheng D, Worthington J, Timms JF, Woo P. HNRNPA1 interacts with a 5′‐flanking distal element of interleukin‐6 and upregulates its basal transcription. Genes Immun. 2013;14(8):479‐486.
Zhu C, Yang J, Zhu Y, et al. Celastrol alleviates comorbid obesity and depression by directly binding amygdala HnRNPA1 in a mouse model. Clin Transl Med. 2021;11(6):e394.
Yao ZT, Yang YM, Sun MM, et al. New insights into the interplay between long non‐coding RNAs and RNA‐binding proteins in cancer. Cancer Commun (Lond). 2022;42(2):117‐140.
Bagchi RA, Weeks KL. Histone deacetylases in cardiovascular and metabolic diseases. J Mol Cell Cardiol. 2019;130:151‐159.
Nijhawan P, Behl T, Khullar G, Pal G, Kandhwal M, Goyal A. HDAC in obesity: a critical insight. Obes Med. 2020;18:100212.
Bricambert J, Favre D, Brajkovic S, et al. Impaired histone deacetylases 5 and 6 expression mimics the effects of obesity and hypoxia on adipocyte function. Mol Metab. 2016;5(12):1200‐1207.
Chatterjee TK, Basford JE, Yiew KH, Stepp DW, Hui DY, Weintraub NL. Role of histone deacetylase 9 in regulating adipogenic differentiation and high fat diet‐induced metabolic disease. Adipocytes. 2014;3(4):333‐338.
Chatterjee TK, Basford JE, Knoll E, et al. HDAC9 knockout mice are protected from adipose tissue dysfunction and systemic metabolic disease during high‐fat feeding. Diabetes. 2014;63(1):176‐187.
Cao Q, Rong S, Repa JJ, Clair RS, Parks JS, Mishra N. Histone deacetylase 9 represses cholesterol efflux and alternatively activated macrophages in atherosclerosis development. Arterioscler Thromb Vasc Biol. 2014;34(9):1871‐1879.
He F, Ru X, Wen T. NRF2, a transcription factor for stress response and beyond. Int J Mol Sci. 2020;21(13):4777.
Kim CY, Kang B, Suh HJ, Choi HS. Parthenolide, a feverfew‐derived phytochemical, ameliorates obesity and obesity‐induced inflammatory responses via the Nrf2/Keap1 pathway. Pharmacol Res. 2019;145:104259.
Liu F, di Y, Ma W, Kang X, Li X, Ji Z. HDAC9 exacerbates myocardial infarction via inactivating Nrf2 pathways. J Pharm Pharmacol. 2022;74(4):565‐572.
Kim Y, Park Y, Namkoong S, Lee J. Esculetin inhibits the inflammatory response by inducing heme oxygenase‐1 in cocultured macrophages and adipocytes. Food Funct. 2014;5(9):2371‐2377.
Datta Chaudhuri A, Yelamanchili S, Fox H. Combined fluorescent in situ hybridization for detection of microRNAs and immunofluorescent labeling for cell‐type markers. Front Cell Neurosci. 2013;7:160.
Romeo GR, Pae M, Eberlé D, Lee J, Shoelson SE. Profilin‐1 haploinsufficiency protects against obesity‐associated glucose intolerance and preserves adipose tissue immune homeostasis. Diabetes. 2013;62(11):3718‐3726.
Magaki S, Hojat SA, Wei B, So A, Yong WH. An introduction to the performance of immunohistochemistry. Methods Mol Biol. 2019;1897:289‐298.
Mohallem R, Aryal UK. Regulators of TNFα mediated insulin resistance elucidated by quantitative proteomics. Sci Rep. 2020;10(1):20878.
Engin A. The pathogenesis of obesity‐associated adipose tissue inflammation. Adv Exp Med Biol. 2017;960:221‐245.
Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol. 2020;877:173090.
Haemmig S, Yang D, Sun X, et al. Long noncoding RNA SNHG12 integrates a DNA‐PK‐mediated DNA damage response and vascular senescence. Sci Transl Med. 2020;12(531):eaaw1868.
Zhao XY, Li S, DelProposto JL, et al. The long noncoding RNA Blnc1 orchestrates homeostatic adipose tissue remodeling to preserve metabolic health. Mol Metab. 2018;14:60‐70.
Schmidt E, Dhaouadi I, Gaziano I, et al. LincRNA H19 protects from dietary obesity by constraining expression of monoallelic genes in brown fat. Nat Commun. 2018;9(1):3622.
Surmi BK, Hasty AH. Macrophage infiltration into adipose tissue: initiation, propagation and remodeling. Future Lipidol. 2008;3(5):545‐556.
Scacalossi KR, van Solingen C, Moore KJ. Long non‐coding RNAs regulating macrophage functions in homeostasis and disease. Vasc Pharmacol. 2019;114:122‐130.
Tamang S, Acharya V, Roy D, et al. SNHG12: an LncRNA as a potential therapeutic target and biomarker for human cancer. Front Oncol. 2019;9:901.
Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non‐coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22(2):96‐118.
Yoon JH, Abdelmohsen K, Gorospe M. Posttranscriptional gene regulation by long noncoding RNA. J Mol Biol. 2013;425(19):3723‐3730.
Zhang T, Beeharry MK, Zheng Y, et al. Long noncoding RNA SNHG12 promotes gastric cancer proliferation by binding to HuR and stabilizing YWHAZ expression through the AKT/GSK‐3β pathway. Front Oncol. 2021;11:645832.
Tan D, Li G, Zhang P, Peng C, He B. LncRNA SNHG12 in extracellular vesicles derived from carcinoma‐associated fibroblasts promotes cisplatin resistance in non‐small cell lung cancer cells. Bioengineered. 2022;13(1):1838‐1857.
Sahu I, Sangith N, Ramteke M, Gadre R, Venkatraman P. A novel role for the proteasomal chaperone PSMD9 and hnRNPA1 in enhancing IκBα degradation and NF‐κB activation ‐ functional relevance of predicted PDZ domain‐motif interaction. FEBS J. 2014;281(11):2688‐2709.
Wang J, Yang W, Chen Z, et al. Long noncoding RNA lncSHGL recruits hnRNPA1 to suppress hepatic gluconeogenesis and lipogenesis. Diabetes. 2018;67(4):581‐593.
Zhang Y, Xu L, Ren Z, et al. LINC01615 maintains cell survival in adaptation to nutrient starvation through the pentose phosphate pathway and modulates chemosensitivity in colorectal cancer. Cell Mol Life Sci. 2022;80(1):20.
Lan Z, Yao X, Sun K, Li A, Liu S, Wang X. The interaction between lncRNA SNHG6 and hnRNPA1 contributes to the growth of colorectal cancer by enhancing aerobic glycolysis through the regulation of alternative splicing of PKM. Front Oncol. 2020;10:363.
Liu Y, Du M, Lin H‐Y. Histone deacetylase 9 deficiency exaggerates uterine M2 macrophage polarization. J Cell Mol Med. 2021;25(16):7690‐7708.
Ahmed SMU, Luo L, Namani A, Wang XJ, Tang X. Nrf2 signaling pathway: pivotal roles in inflammation. Biochim Biophys Acta Mol basis Dis. 2017;1863(2):585‐597.
Kobayashi EH, Suzuki T, Funayama R, et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun. 2016;7(1):11624.
Wang YR, Zhang XN, Meng FG, Zeng T. Targeting macrophage polarization by Nrf2 agonists for treating various xenobiotics‐induced toxic responses. Toxicol Mech Methods. 2021;31(5):334‐342.
Saha S, Buttari B, Panieri E, Profumo E, Saso L. An overview of Nrf2 signaling pathway and its role in inflammation. Molecules. 2020;25(22):5474.
Chevalier S, Burgess SC, Malloy CR, Gougeon R, Marliss EB, Morais JA. The greater contribution of gluconeogenesis to glucose production in obesity is related to increased whole‐body protein catabolism. Diabetes. 2006;55(3):675‐681.
Batchuluun B, Pinkosky SL, Steinberg GR. Lipogenesis inhibitors: therapeutic opportunities and challenges. Nat Rev Drug Discov. 2022;21(4):283‐305.
معلومات مُعتمدة: ZDYF2021SHFZ226 Key Research and Development Project of Hainan Province; ZDKJ2019010 Major Science and Technology Program of Hainan Province; QWYH202175 Hainan Province Clinical Medical Center
فهرسة مساهمة: Keywords: HDAC9; Nrf2 signaling pathway; SNHG12; insulin resistance; obesity
المشرفين على المادة: 0 (RNA, Long Noncoding)
EC 3.5.1.98 (Histone Deacetylases)
0 (NF-E2-Related Factor 2)
EC 3.5.1.98 (Hdac9 protein, mouse)
0 (Nfe2l2 protein, mouse)
0 (Repressor Proteins)
تواريخ الأحداث: Date Created: 20240705 Date Completed: 20240705 Latest Revision: 20240713
رمز التحديث: 20240713
DOI: 10.1096/fj.202400236RR
PMID: 38967258
قاعدة البيانات: MEDLINE
الوصف
تدمد:1530-6860
DOI:10.1096/fj.202400236RR