دورية أكاديمية

Deciphering Pteronia's evolution in the Cape Floristic Region: A comprehensive study disputes polyploid deficiency and affirms diploid radiation.

التفاصيل البيبلوغرافية
العنوان: Deciphering Pteronia's evolution in the Cape Floristic Region: A comprehensive study disputes polyploid deficiency and affirms diploid radiation.
المؤلفون: Chumová Z; Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic., Havlíčková E; Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic.; Department of Botany, Faculty of Science, Charles University, Benátská 2, Prague, CZ-12800, Czech Republic., Zeisek V; Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic.; Department of Botany, Faculty of Science, Charles University, Benátská 2, Prague, CZ-12800, Czech Republic., Šemberová K; Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic., Mandáková T; Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic.; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, CZ-625 00, Czech Republic., Euston-Brown D; Independent Botanist, Scarborough, 7975, Cape Town, South Africa., Trávníček P; Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic.
المصدر: The Plant journal : for cell and molecular biology [Plant J] 2024 Sep; Vol. 119 (5), pp. 2236-2254. Date of Electronic Publication: 2024 Jul 09.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Scientific Publishers and BIOS Scientific Publishers in association with the Society for Experimental Biology Country of Publication: England NLM ID: 9207397 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-313X (Electronic) Linking ISSN: 09607412 NLM ISO Abbreviation: Plant J Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford : Blackwell Scientific Publishers and BIOS Scientific Publishers in association with the Society for Experimental Biology, c1991-
مواضيع طبية MeSH: Polyploidy* , Genome, Plant*/genetics , Phylogeny* , Diploidy* , Asteraceae*/genetics, Genome Size ; Biological Evolution ; Biodiversity ; Evolution, Molecular
مستخلص: The Greater Cape Floristic Region (GCFR) is renowned for its exceptional biodiversity, accommodating over 11 000 plant species, notable degree of endemism, and substantial diversification within limited plant lineages, a phenomenon ascribed to historical radiation events. While both abiotic and biotic factors contribute to this diversification, comprehensive genomic alterations, recognized as pivotal in the diversification of angiosperms, are perceived as uncommon. This investigation focuses on the genus Pteronia, a prominent representative of the Asteraceae family in the GCFR. Employing NGS-based HybSeq and RADSeq methodologies, flow cytometry, karyology, and ecological modeling, we scrutinize the intricacies of its polyploid evolution. Phylogenetic reconstructions using 951 low-copy nuclear genes confirm Pteronia as a well-supported, distinct clade within the tribe Astereae. The ingroup displays a structure indicative of rapid radiation likely antedating polyploid establishment, with the two main groups demarcated by their presence or absence in the fynbos biome. Genome size analysis encompasses 1293 individuals across 347 populations, elucidating significant variation ranging from 6.1 to 34.2 pg (2C-value). Pteronia demonstrates substantially large genome sizes within Astereae and phanerophytes. Polyploidy is identified in 31% of the studied species, with four discerned ploidy levels (2x, 4x, 6x, 8x). Cytotypes exhibit marked distinctions in environmental traits, influencing their distribution across biomes and augmenting their niche differentiation. These revelations challenge the presumed scarcity of polyploidy in the Cape flora, underscoring the imperative need for detailed population studies. The intricate evolutionary history of Pteronia, characterized by recent polyploidy and genome size variation, contributes substantially to the comprehension of diversification patterns within the GCFR biodiversity hotspot.
(© 2024 The Author(s). The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.)
References: Alix, K., Gérard, P.R., Schwarzacher, T. & Heslop‐Harrison, J.S. (2017) Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants. Annals of Botany, 120, 183–194.
Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990) Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.
Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. et al. (1997) Gapped BLAST and PSI‐BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.
Atlas of Namibia Team. (2022) Atlas of Namibia: its land, water and life, Namibia, Windhoek: Namibia Nature Foundation. Available from: https://atlasofnamibia.online/ [Accessed 15th November 2023].
Barker, M.S., Li, Z., Kidder, T.I., Reardon, C.R., Lai, Z., Oliveira, L.O. et al. (2016) Most Compositae (Asteraceae) are descendants of a paleohexaploid and all share a paleotetraploid ancestor with the Calyceraceae. American Journal of Botany, 103, 1203–1211.
Beckmann, M., Václavík, T., Manceur, A.M., Šprtová, L., von Wehrden, H., Welk, E. et al. (2014) glUV: A global UV‐B radiation data set for macroecological studies. Methods in Ecology and Evolution, 5, 372–383.
Bello, A.O. (2018) A systematic study of Pteronia L. (Asteraceae). Doctoral thesis. South Africa: University of Johannesburg.
Bello, A.O., Boatwright, J.S., Bank, M.V.D. & Magee, A.R. (2021) Taxonomic revision of the Pteronia adenocarpa group (Astereae, Asteraceae). Phytotaxa, 523, 73–88.
Bello, A.O., Boatwright, J.S., Tilney, P.M., van der Bank, M. & Magee, A.R. (2017) A taxonomic revision of the Pteronia camphorata group (Astereae, Asteraceae). South Afr. J. Bot., 113, 277–287.
Bello, A.O., Boatwright, J.S., van der Bank, M. & Magee, A.R. (2022) Taxonomic revision of the Pteronia uncinata group (Asteraceae: Astereae) and the resurrection of Pteronia trigona. Kew Bulletin, 77, 271–292.
Bolger, A.M., Lohse, M. & Usadel, B. (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30, 2114–2120.
Bonfield, J.K., Marshall, J., Danecek, P., Li, H., Ohan, V., Whitwham, A. et al. (2021) HTSlib: C library for reading/writing high‐throughput sequencing data. GigaScience, 10, giab007.
Born, J., Linder, H.P. & Desmet, P. (2006) The greater cape floristic region. Journal of Biogeography, 34, 147–162.
Broennimann, O., Fitzpatrick, M.C., Pearman, P.B., Petitpierre, B., Pellissier, L., Yoccoz, N.G. et al. (2012) Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21, 481–497.
Brouillet, L., Lowrey, T.K., Urbatsch, L.E., Karaman‐Castro, V., Sancho, G., Wagstaff, S. et al. (2009) Astereae. In: Funk, V.A., Susanna, A., Stuessy, T.F. & Bayer, R.J. (Eds.) Systematics, evolution, and biogeography of compositae. Vienna, Austria: International Association for Plant Taxonomy (IAPT), pp. 589–629.
Bushnell, B., Rood, J. & Singer, E. (2017) BBMerge – Accurate paired shotgun read merging via overlap. PLoS One, 12, e0185056.
Catchen, J.M., Amores, A., Hohenlohe, P., Cresko, W. & Postlethwait, J.H. (2011) Stacks: building and genotyping loci de novo from short‐read sequences. G3: Genes, Genomes, Genetics, 1, 171–182.
Chapman, B. & Chang, J. (2000) Biopython: python tools for computational biology. ACM SIGBIO Newsl., 20, 15–19.
Chumová, Z., Belyayev, A., Mandáková, T., Zeisek, V., Hodková, E., Šemberová, K. et al. (2022) The relationship between transposable elements and ecological niches in the greater cape floristic region: a study on the genus Pteronia (Asteraceae). Frontiers in Plant Science, 13, 982852.
Chumová, Z., Monier, Z., Šemberová, K., Havlíčková, E., Euston‐Brown, D., Muasya, A.M. et al. (2024) Diploid and tetraploid cytotypes of the flagship cape species Dicerothamnus rhinocerotis (Asteraceae): variation in distribution, ecological niche, morphology and genetics. Annals of Botany, 133, 851–870.
Chumová, Z., Záveská, E., Hloušková, P., Ponert, J., Schmidt, P.‐A., Čertner, M. et al. (2021) Repeat proliferation and partial endoreplication jointly shape the patterns of genome size evolution in orchids. The Plant Journal, 107, 511–524.
Cock, P.J.A., Antao, T., Chang, J.T., Chapman, B.A., Cox, C.J., Dalke, A. et al. (2009) Biopython: freely available python tools for computational molecular biology and bioinformatics. Bioinformatics, 25, 1422–1423.
Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A. et al. (2011) The variant call format and VCFtools. Bioinformatics, 27, 2156–2158.
Denelle, P., Weigelt, P. & Kreft, H. (2023) GIFT—an R package to access the global inventory of floras and traits. Methods in Ecology and Evolution, 14, 2738–2748.
Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F.T., D'Amen, M., Randin, C. et al. (2017) Ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography, 40, 774–787.
Dogan, M., Pouch, M., Mandáková, T., Hloušková, P., Guo, X., Winter, P. et al. (2021) Evolution of tandem repeats is mirroring post‐polyploid cladogenesis in Heliophila (Brassicaceae). Frontiers in Plant Science, 11, 607893.
Doležel, J., Greilhuber, J. & Suda, J. (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols, 2, 2233–2244.
Dray, S. & Dufour, A.‐B. (2007) The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software, 22, 1–20.
Edgeloe, J.M., Severn‐Ellis, A.A., Bayer, P.E., Mehravi, S., Breed, M.F., Krauss, S.L. et al. (2022) Extensive polyploid clonality was a successful strategy for seagrass to expand into a newly submerged environment. Proceedings of the Royal Society B: Biological Sciences, 289, 20220538.
Elliott, T.L., Muasya, A.M. & Bureš, P. (2023) Complex patterns of ploidy in a holocentric plant clade (Schoenus, Cyperaceae) in the cape biodiversity hotspot. Annals of Botany, 131, 143–156.
Ellis, A.G., Anthony Verboom, G., van der Niet, T., Johnson, S.D. & Peter Linder, H. (2014) Speciation and extinction in the Greater Cape Floristic Region. In: Allsopp, N., Colville, J.F. & Verboom, G.A. (Eds.) Fynbos: Ecology, Evolution, and Conservation of a Megadiverse Region. Oxford; New York: Oxford University Press, pp. 119–141.
Evanno, G., Regnaut, S. & Goudet, J. (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology, 14, 2611–2620.
Francis, R.M. (2017) Pophelper: an R package and web app to analyse and visualize population structure. Molecular Ecology Resources, 17, 27–32.
Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G. & François, O. (2014) Fast and efficient estimation of individual ancestry coefficients. Genetics, 196, 973–983.
Frichot, E. & François, O. (2015) LEA: An R package for landscape and ecological association studies. Methods in Ecology and Evolution, 6, 925–929.
Glennon, K.L., Suda, J. & Cron, G.V. (2019) DNA ploidy variation and population structure of the morphologically variable Helichrysum odoratissimum (L.) sweet (Asteraceae) in South Africa. International Journal of Plant Sciences, 180, 755–767.
Goldblatt, P. (1978) An analysis of the flora of southern Africa: its characteristics, relationships, and origins. Annals of the Missouri Botanical Garden, 65, 369.
Gower, J.C. (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53, 325–338.
Hijmans, R.J., Bivand, R., Pebesma, E. & Sumner, M.D. (2022) terra: Spatial data analysis. Available from: https://CRAN.R‐project.org/package=terra [Accessed 8th December 2022].
Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q. & Vinh, L.S. (2018) UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35, 518–522.
Huang, C.‐H., Zhang, C., Liu, M., Hu, Y., Gao, T., Qi, J. et al. (2016) Multiple polyploidization events across Asteraceae with two nested events in the early history revealed by nuclear phylogenomics. Molecular Biology and Evolution, 33, 2820–2835.
Huson, D.H. & Bryant, D. (2006) Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23, 254–267.
Hutchinson, J. & Phillips, E.P. (1917) A revision of the genus Pteronia (Compositae). Annals. South African Museum, 9, 277–329.
Jiao, Y., Wickett, N.J., Ayyampalayam, S., Chanderbali, A.S., Landherr, L., Ralph, P.E. et al. (2011) Ancestral polyploidy in seed plants and angiosperms. Nature, 473, 97–100.
Johnson, M.G., Gardner, E.M., Liu, Y., Medina, R., Goffinet, B., Shaw, A.J. et al. (2016) HybPiper: extracting coding sequence and introns for phylogenetics from high‐throughput sequencing reads using target enrichment. Applications in Plant Sciences, 4, 1–7.
Jombart, T. & Ahmed, I. (2011) Adegenet 1.3‐1: new tools for the analysis of genome‐wide SNP data. Bioinformatics, 27, 3070–3071.
Jombart, T., Devillard, S. & Balloux, F. (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics, 11, 94.
Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria‐Auza, R.W. et al. (2017) Climatologies at high resolution for the earth's land surface areas. Scientific Data, 4, 170122.
Knaus, B.J. & Grünwald, N.J. (2017) vcfr: A package to manipulate and visualize variant call format data in R. Molecular Ecology Resources, 17, 44–53.
Knight, C.A. & Ackerly, D.D. (2002) Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecology Letters, 5, 66–76.
Kolberg, H. & van Slageren, M. (2014) A synopsis of the genus Pteronia (Compositae: Astereae) in Namibia including the resurrection of Pteronia quadrifaria. Kew Bulletin, 69, 9488.
Krejčíková, J., Sudová, R., Lučanová, M., Trávníček, P., Urfus, T., Vít, P. et al. (2013) High ploidy diversity and distinct patterns of cytotype distribution in a widespread species of oxalis in the greater cape floristic region. Annals of Botany, 111, 641–649.
Krejčíková, J., Sudová, R., Oberlander, K.C., Dreyer, L.L. & Suda, J. (2013) Cytogeography of Oxalis pes‐caprae in its native range: where are the pentaploids? Biological Invasions, 15, 1189–1194.
Kuhner, M.K. & Felsenstein, J. (1994) A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Molecular Biology and Evolution, 11, 459–468.
Leistner, O.A. & South African National Biodiversity Institute. (2005) Seed plants of southern tropical Africa: families and genera. Pretoria: SABONET.
Leitch, I.J. & Bennett, M.D. (2004) Genome downsizing in polyploid plants. Biological Journal of the Linnean Society, 82, 651–663.
Li, H. (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA‐MEM. Available at: http://arxiv.org/abs/1303.3997 [Accessed June 27, 2022].
Linder, H.P. (2003) The radiation of the cape flora, southern Africa. Biological Reviews, 78, 597–638.
Linder, H.P. & Hardy, C.R. (2004) Evolution of the species‐rich cape flora. Philos. Trans. R. Soc. B Biol. Sci., 359, 1623–1632.
Linder, H.P., Suda, J., Weiss‐Schneeweiss, H., Trávníček, P. & Bouchenak‐Khelladi, Y. (2017) Patterns, causes and consequences of genome size variation in Restionaceae of the cape flora. Botanical Journal of the Linnean Society, 183, 515–531.
Lischer, H.E.L. & Excoffier, L. (2012) PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics, 28, 298–299.
Mai, U. & Mirarab, S. (2018) TreeShrink: fast and accurate detection of outlier long branches in collections of phylogenetic trees. BMC Genomics, 19, 272.
Mandáková, T. & Lysak, M.A. (2016) Chromosome preparation for cytogenetic analyses in Arabidopsis. In: Stacey, G., Birchler, J., Ecker, J., Martin, C.R., Stitt, M. & Zhou, J.‐M. (Eds.) Current Protocols in Plant Biology, Vol. 1. Hoboken, NJ, USA: John Wiley & Sons, Inc., pp. 43–51. Accessed 7th December, 2018. Available from: https://doi.org/10.1002/cppb.20009.
Mandel, J.R., Dikow, R.B., Siniscalchi, C.M., Thapa, R., Watson, L.E. & Funk, V.A. (2019) A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae. Proceedings of the National Academy of Sciences of the United States of America, 116, 14083–14088.
Manning, J. & Goldblatt, P. (2012) Plants of the Greater Cape Floristic Region. 1: The Core Cape flora. Available from: https://www.cabdirect.org/cabdirect/abstract/20143052132 [Accessed 4th April, 2022].
Milton, S.J., Gourlay, I.D. & Dean, W.R.J. (1997) Shrub growth and demography in arid Karoo, South Africa: inference from wood rings. Journal of Arid Environments, 37, 487–496.
Mucina, L. & Rutherford, M. (Eds.). (2006) The Vegetation of South Africa. Lesotho and Swaziland, Pretoria: SANBI.
Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B. & Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853–858.
Naimi, B., Hamm, N.A.S., Groen, T.A., Skidmore, A.K. & Toxopeus, A.G. (2014) Where is positional uncertainty a problem for species distribution modelling? Ecography, 37, 191–203.
Nesom, G.L. (2020) Revised subtribal classification of Astereae (Asteraceae). Phyton, 53, 1–39.
Nguyen, L.‐T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ‐TREE: a fast and effective stochastic algorithm for estimating maximum‐likelihood phylogenies. Molecular Biology and Evolution, 32, 268–274.
Oberlander, K.C., Dreyer, L.L., Goldblatt, P., Suda, J. & Linder, H.P. (2016) Species‐rich and polyploid‐poor: insights into the evolutionary role of whole‐genome duplication from the cape flora biodiversity hotspot. American Journal of Botany, 103, 1336–1347.
Olšavská, K., Perný, M., Španiel, S. & Šingliarová, B. (2012) Nuclear DNA content variation among perennial taxa of the genus cyanus (Asteraceae) in Central Europe and adjacent areas. Plant Systematics and Evolution, 298, 1463–1482.
Orme, D., Freckleton, R., Thomas, G., Petzoldt, T., Fritz, S., Isaac, N. et al. (2018) caper: Comparative Analyses of Phylogenetics and Evolution in R. R package version 1.0.1. Available from: https://cran.r‐project.org/web/packages/caper/index.html [Accessed 13th January 2019].
Ortiz, E.M. (2019) vcf2phylip v2.0: convert a VCF matrix into several matrix formats for phylogenetic analysis. Available from: https://zenodo.org/record/2540861#.YGYaJK8zaUk [Accessed 1st April 2021].
Paradis, E. & Schliep, K. (2019) Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526–528.
Paris, J.R., Stevens, J.R. & Catchen, J.M. (2017) Lost in parameter space: a road map for stacks. Methods in Ecology and Evolution, 8, 1360–1373.
Pellicer, J., Hidalgo, O., Dodsworth, S. & Leitch, I.J. (2018) Genome size diversity and its impact on the evolution of land plants. Genes, 9, 88.
Pellicer, J. & Leitch, I.J. (2020) The plant DNA C‐values database (release 7.1): an updated online repository of plant genome size data for comparative studies. The New Phytologist, 226, 301–305.
Peterson, B.K., Weber, J.N., Kay, E.H., Fisher, H.S. & Hoekstra, H.E. (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non‐model species. PLoS One, 7, e37135.
Poggio, L., de Sousa, L.M., Batjes, N.H., Heuvelink, G.B.M., Kempen, B., Ribeiro, E. et al. (2021) SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. The Soil, 7, 217–240.
Powell, R.F., Pulido Suarez, L., Magee, A.R., Boatwright, J.S., Kapralov, M.V. & Young, A.J. (2020) Genome size variation and endopolyploidy in the diverse succulent plant family Aizoaceae. Botanical Journal of the Linnean Society, 194, 47–68.
POWO. (2024) Plants of the world online. Facilitated by the Royal Botanic Gardens, Kew. Available from: http://www.plantsoftheworldonline.org/ [Accessed 1st November 2023].
Pritchard, J.K., Stephens, M. & Donnelly, P. (2000) Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.
Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A. & Korobeynikov, A. (2020) Using SPAdes de novo assembler. Current Protocols in Bioinformatics, 70, e102.
R Core Team. (2022) A language and environment for statistical computing R Foundation for statistical computing. Vienna: Austria. Available at: https://www.R‐project.org/.
Revell, L.J. (2012) Phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217–223.
Salomón, L., Nicola, M.V., Kandziora, M., Kolář, F. & Sklenář, P. (2022) Center of origin and evolutionary history in the high Andean genus Oritrophium (Astereae, Asteraceae). Alpine Botany, 132, 123–139.
Sayyari, E. & Mirarab, S. (2016) Fast coalescent‐based computation of local branch support from quartet frequencies. Molecular Biology and Evolution, 33, 1654–1668.
Schley, R.J., Pellicer, J., Ge, X.‐J., Barrett, C., Bellot, S., Guignard, M.S. et al. (2022) The ecology of palm genomes: repeat‐associated genome size expansion is constrained by aridity. The New Phytologist, 236, 433–446.
Schliep, K.P. (2011) Phangorn: phylogenetic analysis in R. Bioinformatics, 27, 592–593.
Schmickl, R., Liston, A., Zeisek, V., Oberlander, K., Weitemier, K., Straub, S.C.K. et al. (2016) Phylogenetic marker development for target enrichment from transcriptome and genome skim data: the pipeline and its application in southern African oxalis (Oxalidaceae). Molecular Ecology Resources, 16, 1124–1135.
Schoener, T.W. (1968) The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology, 49, 704–726.
Schranz, E.M., Mohammadin, S. & Edger, P.P. (2012) Ancient whole genome duplications, novelty and diversification: the WGD radiation lag‐time model. Current Opinion in Plant Biology, 15, 147–153.
Slater, G.S.C. & Birney, E. (2005) Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics, 6, 31.
Sliwinska, E., Loureiro, J., Leitch, I.J., Šmarda, P., Bainard, J., Bureš, P. et al. (2022) Application‐based guidelines for best practices in plant flow cytometry. Cytometry. Part A, 101, 749–781.
Šmarda, P., Bureš, P., Horová, L., Leitch, I.J., Mucina, L., Pacini, E. et al. (2014) Ecological and evolutionary significance of genomic GC content diversity in monocots. Proceedings of the National Academy of Sciences of the United States of America, 111, E4096–E4102.
Snijman, D. (Ed.). (2013) The Extra Cape flora. Pretoria: SANBI.
Soltis, D.E., Albert, V.A., Leebens‐Mack, J., Bell, C.D., Paterson, A.H., Zheng, C. et al. (2009) Polyploidy and angiosperm diversification. American Journal of Botany, 96, 336–348.
Soltis, P.S. & Soltis, D.E. (2016) Ancient WGD events as drivers of key innovations in angiosperms. Current Opinion in Plant Biology, 30, 159–165.
Štorchová, H., Hrdličková, R., Chrtek, J., Tetera, M., Fitze, D. & Fehrer, J. (2000) An improved method of DNA isolation from plants collected in the field and conserved in saturated NaCl/CTAB solution. Taxon, 49, 79–84.
Suda, J., Krahulcová, A., Trávníček, P. & Krahulec, F. (2006) Ploidy level versus DNA ploidy level: an appeal for consistent terminology. Taxon, 55, 447–450.
Tange, O. (2018) GNU parallel 2018. first edition. Lulu.com. Available from: https://isbnsearch.org/isbn/9781387509881 [Accessed 28th June 2022].
Temsch, E.M., Greilhuber, J. & Krisai, R. (2010) Genome size in liveworts. Preslia, 82, 63–80.
Thioulouse, J., Dray, S., Dufour, A.‐B., Siberchicot, A., Jombart, T. & Pavoine, S. (2018) Multivariate analysis of ecological data with ade4. New York, NY: Springer. [Accessed 12th November, 2023] Available form: http://link.springer.com/10.1007/978‐1‐4939‐8850‐1.
Turek, M.E., Poggio, L., Batjes, N.H., Armindo, R.A., de Jong van Lier, Q., De Sousa, L. et al. (2023) Global mapping of volumetric water retention at 100, 330 and 15 000 cm suction using the WoSIS database. International Soil and Water Conservation Research, 11, 225–239.
Verboom, G.A., Linder, H.P., Forest, F., Hoffmann, V., Bergh, N.G. & Cowling, R.M. (2014) Cenozoic assembly of the Greater Cape flora. In: Allsopp, N., Colville, J.F. & Verboom, G.A. (Eds.) Fynbos: Ecology, Evolution, and Conservation of a Megadiverse Region. Oxford; New York: Oxford University Press, pp. 93–118.
Vitales, D., Fernández, P., Garnatje, T. & Garcia, S. (2019) Progress in the study of genome size evolution in Asteraceae: analysis of the last update. Database, 2019, baz098.
Wang, X., Morton, J.A., Pellicer, J., Leitch, I.J. & Leitch, A.R. (2021) Genome downsizing after polyploidy: mechanisms, rates and selection pressures. The Plant Journal, 107, 1003–1015.
Warren, D.L., Glor, R.E. & Turelli, M. (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution, 62, 2868–2883.
Weigelt, P., König, C. & Kreft, H. (2020) GIFT—a global inventory of floras and traits for macroecology and biogeography. Journal of Biogeography, 47, 16–43.
Weitemier, K., Straub, S.C.K., Cronn, R.C., Fishbein, M., Schmickl, R., McDonnell, A. et al. (2014) Hyb‐seq: combining target enrichment and genome skimming for plant phylogenomics. Applications in Plant Sciences, 2, 1400042.
Weyenberg, G., Huggins, P.M., Schardl, C.L., Howe, D.K. & Yoshida, R. (2014) Kdetrees: non‐parametric estimation of phylogenetic tree distributions. Bioinformatics, 30, 2280–2287.
Wood, T.E., Takebayashi, N., Barker, M.S., Mayrose, I., Greenspoon, P.B. & Rieseberg, L.H. (2009) The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences of the United States of America, 106, 13875–13879.
Xiaoping, Z. & Bremer, K. (1993) A cladistic analysis of the tribe Astereae (Asteraceae) with notes on their evolution and subtribal classification. Plant Systematics and Evolution, 184, 259–283.
Yamada, K.D., Tomii, K. & Katoh, K. (2016) Application of the MAFFT sequence alignment program to large data—reexamination of the usefulness of chained guide trees. Bioinformatics, 32, 3246–3251.
Zenil‐Ferguson, R., Ponciano, J.M. & Burleigh, J.G. (2016) Evaluating the role of genome downsizing and size thresholds from genome size distributions in angiosperms. American Journal of Botany, 103, 1175–1186.
Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. (2018) ASTRAL‐III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics, 19, 153.
معلومات مُعتمدة: 202123 Grantová agentura, Univerzita Karlova; ID90254 Ministerstvo školství, mládeže a tělovýchovy, e-INFRA CZ project; 19-20049S Grantová agentura České republiky; RVO 67985939 Institute of Botany of the Czech Academy of Sciences
فهرسة مساهمة: Keywords: Pteronia; Asteraceae; Greater Cape Floristic Region (GCFR); HybSeq; RADSeq; genome size; niche modeling; polyploidy
تواريخ الأحداث: Date Created: 20240709 Date Completed: 20240827 Latest Revision: 20240827
رمز التحديث: 20240828
DOI: 10.1111/tpj.16914
PMID: 38981008
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-313X
DOI:10.1111/tpj.16914