دورية أكاديمية

Inhibition of dynamin-related protein 1-filamin interaction improves systemic glucose metabolism.

التفاصيل البيبلوغرافية
العنوان: Inhibition of dynamin-related protein 1-filamin interaction improves systemic glucose metabolism.
المؤلفون: Kato Y; Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan., Ariyoshi K; Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan., Nohara Y; Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan., Matsunaga N; Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan., Shimauchi T; Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.; Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.; National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan.; Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan., Shindo N; Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan., Nishimura A; National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan.; Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan.; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan., Mi X; Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan., Kim SG; College of Pharmacy, Dongguk University-Seoul, Goyang-si, South Korea., Ide T; Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan., Kawanishi E; Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan., Ojida A; Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan., Nakashima N; Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan., Mori Y; Graduate School of Engineering, Kyoto University, Kyoto, Japan., Nishida M; Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.; National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan.; Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan.; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan.
المصدر: British journal of pharmacology [Br J Pharmacol] 2024 Jul 10. Date of Electronic Publication: 2024 Jul 10.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 7502536 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-5381 (Electronic) Linking ISSN: 00071188 NLM ISO Abbreviation: Br J Pharmacol Subsets: MEDLINE
أسماء مطبوعة: Publication: London : Wiley
Original Publication: London, Macmillian Journals Ltd.
مستخلص: Background and Purpose: Maintaining mitochondrial quality is attracting attention as a new strategy to treat diabetes and diabetic complications. We previously reported that mitochondrial hyperfission by forming a protein complex between dynamin-related protein (Drp) 1 and filamin, mediates chronic heart failure and cilnidipine, initially developed as an L/N-type Ca 2+ channel blocker, improves heart failure by inhibiting Drp1-filamin protein complex. We investigated whether cilnidipine improves hyperglycaemia of various diabetic mice models.
Experimental Approach: Retrospective analysis focusing on haemoglobin A1c (HbA1c) was performed in hypertensive and hyperglycaemic patients taking cilnidipine and amlodipine. After developing diabetic mice by streptozotocin (STZ) treatment, an osmotic pump including drug was implanted intraperitoneally, followed by weekly measurements of blood glucose levels. Mitochondrial morphology was analysed by electron microscopy. A Ca 2+ channel-insensitive cilnidipine derivative (1,4-dihydropyridine [DHP]) was synthesized and its pharmacological effect was evaluated using obese (ob/ob) mice fed with high-fat diet (HFD).
Key Results: In patients, cilnidipine was superior to amlodipine in HbA1c lowering effect. Cilnidipine treatment improved systemic hyperglycaemia and mitochondrial morphological abnormalities in STZ-exposed mice, without lowering blood pressure. Cilnidipine failed to improve hyperglycaemia of ob/ob mice, with suppressing insulin secretion. 1,4-DHP improved hyperglycaemia and mitochondria abnormality in ob/ob mice fed HFD. 1,4-DHP and cilnidipine improved basal oxygen consumption rate of HepG2 cells cultured under 25 mM glucose.
Conclusion and Implications: Inhibition of Drp1-filamin protein complex formation becomes a new strategy for type 2 diabetes treatment.
(© 2024 The Author(s). British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.)
References: Alexander, S. P. H., Fabbro, D., Kelly, E., Mathie, A. A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Amarosi, L., Anderson, C. M. H., Beart, P. M., Broer, S., Dawson, P. A., Gyimesi, G., Hagenbuch, B., Hammond, J. R., Hancox, J. C., … Verri, T. (2023). The Concise guide to PHARMACOLOGY 2023/24: Transporters. British Journal of Pharmacology, 180(Suppl 2), S374–s469. https://doi.org/10.1111/bph.16182.
Alexander, S. P. H., Kelly, E., Mathie, A. A., Peters, J. A., Veale, E. L., Armstrong, J. F., Buneman, O. P., Faccenda, E., Harding, S. D., Spedding, M., Cidlowski, J. A., Fabbro, D., Davenport, A. P., Striessnig, J., Davies, J. A., Ahlers‐Dannen, K. E., Alqinyah, M., Arumugam, T. V., Bodle, C., & Zolghadri, Y. (2023). The Concise guide to PHARMACOLOGY 2023/24: Introduction and other protein targets. British Journal of Pharmacology, 180(Suppl 2), S1–s22. https://doi.org/10.1111/bph.16176.
Alexander, S. P. H., Mathie, A. A., Peters, J. A., Veale, E. L., Striessnig, J., Kelly, E., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Aldrich, R. W., Attali, B., Baggetta, A. M., Becirovic, E., Biel, M., Bill, R. M., Caceres, A. I., Catterall, W. A., Conner, A. C., & Zhu, M. (2023). The Concise guide to PHARMACOLOGY 2023/24: Ion channels. British Journal of Pharmacology, 180(Suppl 2), S145–s222. https://doi.org/10.1111/bph.16178.
Alexander, S. P. H., Roberts, R. E., Broughton, B. R. S., Sobey, C. G., George, C. H., Stanford, S. C., Cirino, G., Docherty, J. R., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Mangum, J., Wonnacott, S., & Ahluwalia, A. (2018). Goals and practicalities of immunoblotting and immunohistochemistry: A guide for submission to the British Journal of pharmacology. British Journal of Pharmacology, 175(3), 407–411. https://doi.org/10.1111/bph.14112.
Archer, S. L. (2014). Mitochondrial fission and fusion in human diseases. The New England Journal of Medicine, 370(11), 1074. https://doi.org/10.1056/NEJMc1316254.
Ariyoshi, K., Nishiyama, K., Kato, Y., Mi, X., Ito, T., Azuma, Y.‐T., Nishimura, A., & Nishida, M. (2024). Inhibition of Drp1‐Filamin protein complex prevents hepatic lipid droplet accumulation by increasing mitochondria‐lipid droplet contacts. International Journal of Molecular Sciences, 25, 5446. https://doi.org/10.3390/ijms25105446.
Ayanga, B. A., Badal, S. S., Wang, Y., Galvan, D. L., Chang, B. H., Schumacker, P. T., & Danesh, F. R. (2016). Dynamin‐related protein 1 deficiency improves mitochondrial fitness and protects against progression of diabetic nephropathy. Journal of the American Society of Nephrology, 27(9), 2733–2747. https://doi.org/10.1681/asn.2015101096.
Braun, M., Ramracheya, R., Bengtsson, M., Zhang, Q., Karanauskaite, J., Partridge, C., Johnson, P. R., & Rorsman, P. (2008). Voltage‐gated ion channels in human pancreatic beta‐cells: Electrophysiological characterization and role in insulin secretion. Diabetes, 57(6), 1618–1628. https://doi.org/10.2337/db07-0991.
Chadt, A., & Al‐Hasani, H. (2020). Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease. Pflügers Archiv, 472(9), 1273–1298. https://doi.org/10.1007/s00424-020-02417-x.
Chao, T. T., Ianuzzo, C. D., Armstrong, R. B., Albright, J. T., & Anapolle, S. E. (1976). Ultrastructural alterations in skeletal muscle fibers of streptozotocin‐diabetic rats. Cell and Tissue Research, 168(2), 239–246. https://doi.org/10.1007/bf00215880.
Chen, W., Zhao, H., & Li, Y. (2023). Mitochondrial dynamics in health and disease: Mechanisms and potential targets. Signal Transduction and Targeted Therapy, 8(1), 333. https://doi.org/10.1038/s41392-023-01547-9.
Curtis, M. J., Alexander, S. P. H., Cirino, G., George, C. H., Kendall, D. A., Insel, P. A., Izzo, A. A., Ji, Y., Panettieri, R. A., Patel, H. H., Sobey, C. G., Stanford, S. C., Stanley, P., Stefanska, B., Stephens, G. J., Teixeira, M. M., Vergnolle, N., & Ahluwalia, A. (2022). Planning experiments: Updated guidance on experimental design and analysis and their reporting III. British Journal of Pharmacology, 179(15), 3907–3913. https://doi.org/10.1111/bph.15868.
Eleazu, C. O., Eleazu, K. C., Chukwuma, S., & Essien, U. N. (2013). Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. Journal of Diabetes and Metabolic Disorders, 12(1), 60. https://doi.org/10.1186/2251-6581-12-60.
Fletcher, B., Gulanick, M., & Lamendola, C. (2002). Risk factors for type 2 diabetes mellitus. The Journal of Cardiovascular Nursing, 16(2), 17–23. https://doi.org/10.1097/00005082-200201000-00003.
Fung, T. S., Chakrabarti, R., & Higgs, H. N. (2023). The multiple links between actin and mitochondria. Nature Reviews Molecular Cell Biology, 24(9), 651–667. https://doi.org/10.1038/s41580-023-00613-y.
Furukawa, S., Fujita, T., Shimabukuro, M., Iwaki, M., Yamada, Y., Nakajima, Y., Nakayama, O., Makishima, M., Matsuda, M., & Shimomura, I. (2004). Increased oxidative stress in obesity and its impact on metabolic syndrome. The Journal of Clinical Investigation, 114(12), 1752–1761. https://doi.org/10.1172/jci21625.
Galloway, C. A., & Yoon, Y. (2013). Mitochondrial morphology in metabolic diseases. Antioxidants & Redox Signaling, 19(4), 415–430. https://doi.org/10.1089/ars.2012.4779.
Godfraind, T. (2017). Discovery and development of Calcium Channel blockers. Frontiers in Pharmacology, 8, 286. https://doi.org/10.3389/fphar.2017.00286.
Hahn, M., van Krieken, P. P., Nord, C., Alanentalo, T., Morini, F., Xiong, Y., Eriksson, M., Mayer, J., Kostromina, E., Ruas, J. L., Sharpe, J., Pereira, T., Berggren, P. O., Ilegems, E., & Ahlgren, U. (2020). Topologically selective islet vulnerability and self‐sustained downregulation of markers for β‐cell maturity in streptozotocin‐induced diabetes. Communications Biology, 3(1), 541. https://doi.org/10.1038/s42003-020-01243-2.
Harding, J. L., Pavkov, M. E., Magliano, D. J., Shaw, J. E., & Gregg, E. W. (2019). Global trends in diabetes complications: A review of current evidence. Diabetologia, 62(1), 3–16. https://doi.org/10.1007/s00125-018-4711-2.
Haythorne, E., Lloyd, M., Walsby‐Tickle, J., Tarasov, A. I., Sandbrink, J., Portillo, I., Exposito, R. T., Sachse, G., Cyranka, M., Rohm, M., Rorsman, P., McCullagh, J., & Ashcroft, F. M. (2022). Altered glycolysis triggers impaired mitochondrial metabolism and mTORC1 activation in diabetic β‐cells. Nature Communications, 13(1), 6754. https://doi.org/10.1038/s41467-022-34095-x.
Haythorne, E., Rohm, M., van de Bunt, M., Brereton, M. F., Tarasov, A. I., Blacker, T. S., Sachse, G., Silva Dos Santos, M., Terron Exposito, R., Davis, S., Baba, O., Fischer, R., Duchen, M. R., Rorsman, P., MacRae, J. I., & Ashcroft, F. M. (2019). Diabetes causes marked inhibition of mitochondrial metabolism in pancreatic β‐cells. Nature Communications, 10(1), 2474. https://doi.org/10.1038/s41467-019-10189-x.
He, H. J., Kole, S., Kwon, Y. K., Crow, M. T., & Bernier, M. (2003). Interaction of filamin a with the insulin receptor alters insulin‐dependent activation of the mitogen‐activated protein kinase pathway. The Journal of Biological Chemistry, 278(29), 27096–27104. https://doi.org/10.1074/jbc.M301003200.
Henquin, J. C. (2000). Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes, 49(11), 1751–1760. https://doi.org/10.2337/diabetes.49.11.1751.
Hesselink, M. K., Schrauwen‐Hinderling, V., & Schrauwen, P. (2016). Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nature Reviews Endocrinology, 12(11), 633–645. https://doi.org/10.1038/nrendo.2016.104.
Hu, Q., Zhang, H., Gutiérrez Cortés, N., Wu, D., Wang, P., Zhang, J., Mattison, J. A., Smith, E., Bettcher, L. F., Wang, M., Lakatta, E. G., Sheu, S. S., & Wang, W. (2020). Increased Drp1 acetylation by lipid overload induces cardiomyocyte death and heart dysfunction. Circulation Research, 126(4), 456–470. https://doi.org/10.1161/circresaha.119.315252.
Ino, M., Yoshinaga, T., Wakamori, M., Miyamoto, N., Takahashi, E., Sonoda, J., Kagaya, T., Oki, T., Nagasu, T., Nishizawa, Y., Tanaka, I., Imoto, K., Aizawa, S., Koch, S., Schwartz, A., Niidome, T., Sawada, K., & Mori, Y. (2001). Functional disorders of the sympathetic nervous system in mice lacking the alpha 1B subunit (Cav 2.2) of N‐type calcium channels. Proceedings of the National Academy of Sciences of the United States of America, 98(9), 5323–5328. https://doi.org/10.1073/pnas.081089398.
Ito, M., Kondo, Y., Nakatani, A., Hayashi, K., & Naruse, A. (2001). Characterization of low dose streptozotocin‐induced progressive diabetes in mice. Environmental Toxicology and Pharmacology, 9(3), 71–78. https://doi.org/10.1016/s1382-6689(00)00064-8.
Jheng, H. F., Tsai, P. J., Guo, S. M., Kuo, L. H., Chang, C. S., Su, I. J., Chang, C. R., & Tsai, Y. S. (2012). Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle. Molecular and Cellular Biology, 32(2), 309–319. https://doi.org/10.1128/mcb.05603-11.
Kato, Y., Nishiyama, K., Man Lee, J., Ibuki, Y., Imai, Y., Noda, T., Kamiya, N., Kusakabe, T., Kanda, Y., & Nishida, M. (2022). TRPC3‐Nox2 protein complex formation increases the risk of SARS‐CoV‐2spike protein‐induced cardiomyocyte dysfunction through ACE2 upregulation. International Journal of Molecular Sciences, 24(1), 102. https://doi.org/10.3390/ijms24010102.
Katsarou, A., Gudbjörnsdottir, S., Rawshani, A., Dabelea, D., Bonifacio, E., Anderson, B. J., Jacobsen, L. M., Schatz, D. A., & Lernmark, Å. (2017). Type 1 diabetes mellitus. Nature Reviews. Disease Primers, 3, 17016. https://doi.org/10.1038/nrdp.2017.16.
Kelley, D. E., He, J., Menshikova, E. V., & Ritov, V. B. (2002). Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes, 51(10), 2944–2950. https://doi.org/10.2337/diabetes.51.10.2944.
Kim, J. A., Wei, Y., & Sowers, J. R. (2008). Role of mitochondrial dysfunction in insulin resistance. Circulation Research, 102(4), 401–414. https://doi.org/10.1161/circresaha.107.165472.
Kim, J. Y., Lee, S. H., Song, E. H., Park, Y. M., Lim, J.‐Y., Kim, D. J., Choi, K.‐H., Park, S. I., Gao, B., & Kim, W.‐H. (2009). A critical role of STAT1 in streptozotocin‐induced diabetic liver injury in mice: Controlled by ATF3. Cell Signal, 21(12), 1758–1767. https://doi.org/10.1016/j.cellsig.2009.07.011.
Kitajima, N., Numaga‐Tomita, T., Watanabe, M., Kuroda, T., Nishimura, A., Miyano, K., Yasuda, S., Kuwahara, K., Sato, Y., Ide, T., Birnbaumer, L., Sumimoto, H., Mori, Y., & Nishida, M. (2016). TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling. Scientific Reports, 6, 37001. https://doi.org/10.1038/srep37001.
Komatsu, M., Takei, M., Ishii, H., & Sato, Y. (2013). Glucose‐stimulated insulin secretion: A newer perspective. Journal of Diabetes Investigation, 4(6), 511–516. https://doi.org/10.1111/jdi.12094.
Kowluru, R. A., Mishra, M., Kowluru, A., & Kumar, B. (2016). Hyperlipidemia and the development of diabetic retinopathy: Comparison between type 1 and type 2 animal models. Metabolism, 65(10), 1570–1581. https://doi.org/10.1016/j.metabol.2016.07.012.
Leto, D., & Saltiel, A. R. (2012). Regulation of glucose transport by insulin: Traffic control of GLUT4. Nature Reviews Molecular Cell Biology, 13(6), 383–396. https://doi.org/10.1038/nrm3351.
Lilley, E., Stanford, S. C., Kendall, D. E., Alexander, S. P. H., Cirino, G., Docherty, J. R., George, C. H., Insel, P. A., Izzo, A. A., Ji, Y., Panettieri, R. A., Sobey, C. G., Stefanska, B., Stephens, G., Teixeira, M., & Ahluwalia, A. (2020). ARRIVE 2.0 and the British Journal of pharmacology: Updated guidance for 2020. British Journal of Pharmacology, 177(16), 3611–3616. https://doi.org/10.1111/bph.15178.
Marinari, U. M., Monacelli, R., Cottalasso, D., & Novelli, A. (1974). Effects of alloxan diabetes and insulin on morphology and certain functional activities of mitochondria of the rat liver and heart. Acta Diabetologica Latina, 11(4), 296–314. https://doi.org/10.1007/bf02581234.
Masuda, T., Ogura, M. N., Moriya, T., Takahira, N., Matsumoto, T., Kutsuna, T., Hara, M., Aiba, N., & Izumi, T. (2011). Beneficial effects of L‐ and N‐type calcium channel blocker on glucose and lipid metabolism and renal function in patients with hypertension and type II diabetes mellitus. Cardiovascular Therapeutics, 29(1), 46–53. https://doi.org/10.1111/j.1755-5922.2009.00126.x.
Mogensen, M., Sahlin, K., Fernström, M., Glintborg, D., Vind, B. F., Beck‐Nielsen, H., & Højlund, K. (2007). Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes, 56(6), 1592–1599. https://doi.org/10.2337/db06-0981.
Montessuit, C., Rosenblatt‐Velin, N., Papageorgiou, I., Campos, L., Pellieux, C., Palma, T., & Lerch, R. (2004). Regulation of glucose transporter expression in cardiac myocytes: P38 MAPK is a strong inducer of GLUT4. Cardiovascular Research, 64(1), 94–104. https://doi.org/10.1016/j.cardiores.2004.06.005.
Mooradian, A. D. (2009). Dyslipidemia in type 2 diabetes mellitus. Nature Clinical Practice. Endocrinology & Metabolism, 5(3), 150–159. https://doi.org/10.1038/ncpendmet1066.
Morimoto, S., Yano, Y., Maki, K., & Iwasaka, T. (2007). Renal and vascular protective effects of cilnidipine in patients with essential hypertension. Journal of Hypertension, 25(10), 2178–2183. https://doi.org/10.1097/HJH.0b013e3282c2fa62.
Nakatsu, T., Toyonaga, S., Mashima, K., Yuki, Y., Nishitani, A., Ogawa, H., Miyoshi, T., Hirohata, S., Izumi, R., & Kusachi, S. (2010). Effect of cilnidipine on normal to marginally elevated urine albumin‐creatinine ratio in asymptomatic non‐diabetic hypertensive patients: An exponential decay curve analysis. Clinical Drug Investigation, 30(10), 699–706. https://doi.org/10.2165/11538510-000000000-00000.
Nishida, M., Ishikawa, T., Saiki, S., Sunggip, C., Aritomi, S., Harada, E., Kuwahara, K., Hirano, K., Mori, Y., & Kim‐Mitsuyama, S. (2013). Voltage‐dependent N‐type Ca2+ channels in endothelial cells contribute to oxidative stress‐related endothelial dysfunction induced by angiotensin II in mice. Biochemical and Biophysical Research Communications, 434(2), 210–216. https://doi.org/10.1016/j.bbrc.2013.03.040.
Nishimura, A., Shimauchi, T., Tanaka, T., Shimoda, K., Toyama, T., Kitajima, N., Ishikawa, T., Shindo, N., Numaga‐Tomita, T., Yasuda, S., Sato, Y., Kuwahara, K., Kumagai, Y., Akaike, T., Ide, T., Ojida, A., Mori, Y., & Nishida, M. (2018). Hypoxia‐induced interaction of filamin with Drp1 causes mitochondrial hyperfission‐associated myocardial senescence. Science Signaling, 11(556), eaat5185. https://doi.org/10.1126/scisignal.aat5185.
Nishiyama, K., Numaga‐Tomita, T., Fujimoto, Y., Tanaka, T., Toyama, C., Nishimura, A., Yamashita, T., Matsunaga, N., Koyanagi, S., Azuma, Y.‐T., Ibuki, Y., Uchida, K., Ohdo, S., & Nishida, M. (2019). Ibudilast attenuates doxorubicin‐induced cytotoxicity by suppressing formation of TRPC3 channel and NADPH oxidase 2 protein complexes.British Journal of Pharmacology, 176(18), 3723–3738. https://doi.org/10.1111/bph.14777.
Norat, P., Soldozy, S., Sokolowski, J. D., Gorick, C. M., Kumar, J. S., Chae, Y., Yağmurlu, K., Prada, F., Walker, M., Levitt, M. R., Price, R. J., Tvrdik, P., & Kalani, M. Y. S. (2020). Mitochondrial dysfunction in neurological disorders: Exploring mitochondrial transplantation. NPJ Regenerative Medicine, 5(1), 22. https://doi.org/10.1038/s41536-020-00107-x.
Ovalle, F., Grimes, T., Xu, G., Patel, A. J., Grayson, T. B., Thielen, L. A., Li, P., & Shalev, A. (2018). Verapamil and beta cell function in adults with recent‐onset type 1 diabetes. Nature Medicine, 24(8), 1108–1112. https://doi.org/10.1038/s41591-018-0089-4.
Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J., Clark, A., Cuthill, I. C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S. T., Howells, D. W., Karp, N. A., Lazic, S. E., Lidster, K., MacCallum, C. J., Macleod, M., … Wurbel, H. (2020). The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. BMJ Open Science, 4(1), e100115. https://doi.org/10.1136/bmjos-2020-100115.
Pinti, M. V., Fink, G. K., Hathaway, Q. A., Durr, A. J., Kunovac, A., & Hollander, J. M. (2019). Mitochondrial dysfunction in type 2 diabetes mellitus: An organ‐based analysis. American Journal of Physiology. Endocrinology and Metabolism, 316(2), E268–e285. https://doi.org/10.1152/ajpendo.00314.2018.
Rolo, A. P., & Palmeira, C. M. (2006). Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress. Toxicology and Applied Pharmacology, 212(2), 167–178. https://doi.org/10.1016/j.taap.2006.01.003.
Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A. A., Ogurtsova, K., Shaw, J. E., Bright, D., & Williams, R. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes atlas, 9(th) edition. Diabetes Research and Clinical Practice, 157, 107843. https://doi.org/10.1016/j.diabres.2019.107843.
Saltiel, A. R., & Kahn, C. R. (2001). Insulin signalling and the regulation of glucose and lipid metabolism. Nature, 414(6865), 799–806. https://doi.org/10.1038/414799a.
Schmid, A. I., Szendroedi, J., Chmelik, M., Krssák, M., Moser, E., & Roden, M. (2011). Liver ATP synthesis is lower and relates to insulin sensitivity in patients with type 2 diabetes. Diabetes Care, 34(2), 448–453. https://doi.org/10.2337/dc10-1076.
Shang, Y., Li, Z., Cai, P., Li, W., Xu, Y., Zhao, Y., Xia, S., Shao, Q., & Wang, H. (2023). Megamitochondria plasticity: Function transition from adaption to disease. Mitochondrion, 71, 64–75. https://doi.org/10.1016/j.mito.2023.06.001.
Sivitz, W. I., & Yorek, M. A. (2010). Mitochondrial dysfunction in diabetes: From molecular mechanisms to functional significance and therapeutic opportunities. Antioxidants & Redox Signaling, 12(4), 537–577. https://doi.org/10.1089/ars.2009.2531.
Takada, M., Ura, N., Higashiura, K., Murakami, H., Togashi, N., & Shimamoto, K. (2001). Effects of cilnidipine on muscle fiber composition, capillary density and muscle blood flow in fructose‐fed rats. Hypertension Research, 24(5), 565–572. https://doi.org/10.1291/hypres.24.565.
Tilokani, L., Nagashima, S., Paupe, V., & Prudent, J. (2018). Mitochondrial dynamics: Overview of molecular mechanisms. Essays in Biochemistry, 62(3), 341–360. https://doi.org/10.1042/ebc20170104.
Trudeau, K., Molina, A. J., Guo, W., & Roy, S. (2010). High glucose disrupts mitochondrial morphology in retinal endothelial cells: Implications for diabetic retinopathy. The American Journal of Pathology, 177(1), 447–455. https://doi.org/10.2353/ajpath.2010.091029.
Ueno, D., Masaki, T., Gotoh, K., Chiba, S., Kakuma, T., & Yoshimatsu, H. (2013). Cilnidipine regulates glucose metabolism and levels of high‐molecular adiponectin in diet‐induced obese mice. Hypertension Research, 36(3), 196–201. https://doi.org/10.1038/hr.2012.141.
Uneyama, H., Takahara, A., Dohmoto, H., Yoshimoto, R., Inoue, K., & Akaike, N. (1997). Blockade of N‐type Ca2+ current by cilnidipine (FRC‐8653) in acutely dissociated rat sympathetic neurones. British Journal of Pharmacology, 122(1), 37–42. https://doi.org/10.1038/sj.bjp.0701342.
Wang, T., Wang, J., Hu, X., Huang, X. J., & Chen, G. X. (2020). Current understanding of glucose transporter 4 expression and functional mechanisms. World Journal of Biological Chemistry, 11(3), 76–98. https://doi.org/10.4331/wjbc.v11.i3.76.
Xu, G., Chen, J., Jing, G., & Shalev, A. (2012). Preventing β‐cell loss and diabetes with calcium channel blockers. Diabetes, 61(4), 848–856. https://doi.org/10.2337/db11-0955.
Xu, G., Grimes, T. D., Grayson, T. B., Chen, J., Thielen, L. A., Tse, H. M., Li, P., Kanke, M., Lin, T. T., Schepmoes, A. A., Swensen, A. C., Petyuk, V. A., Ovalle, F., Sethupathy, P., Qian, W. J., & Shalev, A. (2022). Exploratory study reveals far reaching systemic and cellular effects of verapamil treatment in subjects with type 1 diabetes. Nature Communications, 13(1), 1159. https://doi.org/10.1038/s41467-022-28826-3.
Yagi, S., Goto, S., Yamamoto, T., Kurihara, S., & Katayama, S. (2003). Effect of cilnidipine on insulin sensitivity in patients with essential hypertension. Hypertension Research, 26(5), 383–387. https://doi.org/10.1291/hypres.26.383.
Zhu, Y. X., Zhou, Y. C., Zhang, Y., Sun, P., Chang, X. A., & Han, X. (2021). Protocol for in vivo and ex vivo assessments of glucose‐stimulated insulin secretion in mouse islet β cells. STAR Protocols, 2(3), 100728. https://doi.org/10.1016/j.xpro.2021.100728.
معلومات مُعتمدة: 22H02772 Japan Society for the Promotion of Science; 22K19395 Japan Society for the Promotion of Science; 23K06164 Japan Society for the Promotion of Science; JPMJCR2024 Japan Science and Technology Corporation; 21H05269 Grant-in-Aid for Scientific Research on Innovative Areas (A); 21H05258 Grant-in-Aid for Scientific Research on Innovative Areas (A); JP23ama121031 Japan Agency for Medical Research and Development; 23-318 Joint Research of the Exploratory Research Center on Life and Living Systems (ExCELLS); 2017K1A1A2004511 National Research Foundation of Korea (NRF) funded by the Korean government (MSIP); Naito Foundation
فهرسة مساهمة: Keywords: Drp1; filamin; insulin; mitochondria quality control; type2 diabetes
تواريخ الأحداث: Date Created: 20240710 Latest Revision: 20240710
رمز التحديث: 20240711
DOI: 10.1111/bph.16487
PMID: 38986570
قاعدة البيانات: MEDLINE