دورية أكاديمية

Airborne DNA reveals predictable spatial and seasonal dynamics of fungi.

التفاصيل البيبلوغرافية
العنوان: Airborne DNA reveals predictable spatial and seasonal dynamics of fungi.
المؤلفون: Abrego N; Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland. nerea.n.abrego-antia@jyu.fi.; Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland. nerea.n.abrego-antia@jyu.fi., Furneaux B; Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland., Hardwick B; Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland., Somervuo P; Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland., Palorinne I; Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland., Aguilar-Trigueros CA; Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland., Andrew NR; Natural History Museum, University of New England, Armidale, New South Wales, Australia.; Faculty of Science and Engineering, Southern Cross University, Northern Rivers, New South Wales, Australia., Babiy UV; Wrangel Island State Nature Reserve, Pevek, Russia., Bao T; Department of Biological Sciences, MacEwan University, Edmonton, Alberta, Canada., Bazzano G; Centro de Zoología Aplicada, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina., Bondarchuk SN; Sikhote-Alin State Nature Biosphere Reserve named after K. G. Abramov, Terney, Russia., Bonebrake TC; School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China., Brennan GL; Institute of Marine Sciences, Consejo Superior de Investigaciones Científicas (CSIC), Passeig Marítim de la Barceloneta, Barcelona, Spain., Bret-Harte S; Institute of Arctic Biology, University of Alaska, Fairbanks, AK, USA., Bässler C; Department of Conservation Biology, Institute for Ecology, Evolution and Diversity, Faculty of Biological Sciences, Goethe-University Frankfurt, Frankfurt am Main, Germany.; Bavarian Forest National Park, Grafenau, Germany.; Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany., Cagnolo L; Instituto Multidisciplinario de Biología Vegetal, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina., Cameron EK; Department of Environmental Science, Saint Mary's University, Halifax, Nova Scotia, Canada., Chapurlat E; Department of Ecology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden., Creer S; Molecular Ecology and Evolution at Bangor (MEEB), School of Biological Sciences, Bangor University, Bangor, Wales., D'Acqui LP; Research Institute on Terrestrial Ecosystems - IRET, National Research Council - CNR and National Biodiversity Future Center, Palermo, Italy., de Vere N; Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark., Desprez-Loustau ML; BIOGECO, INRAE, University of Bordeaux, Cestas, France., Dongmo MAK; School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China.; International Institute of Tropical Agriculture (IITA), Yaoundé, Cameroon., Jacobsen IBD; Greenland Institute of Natural Resources, Nuuk, Greenland., Fisher BL; Department of Entomology, California Academy of Sciences, San Francisco, CA, USA.; Madagascar Biodiversity Center, Parc Botanique et Zoologique de Tsimbazaza, Antananarivo, Madagascar., Flores de Jesus M; Legado das Águas, Reserva Votorantin, Tapiraí, Brazil., Gilbert GS; Department of Environmental Studies, University of California Santa Cruz, Santa Cruz, CA, USA., Griffith GW; Department of Life Sciences, Aberystwyth University, Aberystwyth, UK., Gritsuk AA; Sikhote-Alin State Nature Biosphere Reserve named after K. G. Abramov, Terney, Russia., Gross A; Biodiversity and Conservation Biology Research Unit, SwissFungi Data Center, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland., Grudd H; Swedish Polar Research Secretariat, Abisko Scientific Research Station, Abisko, Sweden., Halme P; Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland., Hanna R; Center for Tropical Research, Congo Basin Institute, University of California Los Angeles, Los Angeles, CA, USA., Hansen J; Department of Ecoscience, Aarhus University, Roskilde, Denmark., Hansen LH; Department of Ecoscience, Aarhus University, Roskilde, Denmark., Hegbe ADMT; Research Unit in Tropical Mycology and Plant-Soil Fungi Interactions, Faculty of Agronomy, University of Parakou, Parakou, Republic of Benin., Hill S; Natural History Museum, University of New England, Armidale, New South Wales, Australia., Hogg ID; Canadian High Arctic Research Station, Polar Knowledge Canada, Cambridge Bay, Nunavut, Canada.; Department of Integrative Biology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada.; School of Science, University of Waikato, Hamilton, New Zealand., Hultman J; Department of Microbiology, University of Helsinki, Helsinki, Finland.; Natural Resources Institute Finland (Luke), Helsinki, Finland., Hyde KD; Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand., Hynson NA; Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI, USA., Ivanova N; Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada.; Nature Metrics North America Ltd., Guelph, Ontario, Canada., Karisto P; Plant Pathology Group, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland.; Plant Health, Natural Resources Institute Finland (Luke), Jokioinen, Finland., Kerdraon D; Department of Ecology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden., Knorre A; Science Department, National Park Krasnoyarsk Stolby, Krasnoyarsk, Russia.; Institute of Ecology and Geography, Siberian Federal University, Krasnoyarsk, Russia., Krisai-Greilhuber I; Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria., Kurhinen J; Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland., Kuzmina M; Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada., Lecomte N; Centre d'Études Nordiques and Canada Research Chair in Polar and Boreal Ecology, Department of Biology, Université de Moncton, Moncton, New Brunswick, Canada., Lecomte E; Centre d'Études Nordiques and Canada Research Chair in Polar and Boreal Ecology, Department of Biology, Université de Moncton, Moncton, New Brunswick, Canada., Loaiza V; Department of Evolutionary Biology and Environmental Sciences, University of Zürich, Zurich, Switzerland., Lundin E; Swedish Polar Research Secretariat, Abisko Scientific Research Station, Abisko, Sweden., Meire A; Swedish Polar Research Secretariat, Abisko Scientific Research Station, Abisko, Sweden., Mešić A; Laboratory for Biological Diversity, Rudjer Boskovic Institute, Zagreb, Croatia., Miettinen O; Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland., Monkhouse N; Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada., Mortimer P; Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China., Müller J; Bavarian Forest National Park, Grafenau, Germany.; Department of Conservation Biology and Forest Ecology, Julius Maximilians University Würzburg, Rauhenebrach, Germany., Nilsson RH; Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden., Nonti PYC; Research Unit in Tropical Mycology and Plant-Soil Fungi Interactions, Faculty of Agronomy, University of Parakou, Parakou, Republic of Benin., Nordén J; Norwegian Institute for Nature Research (NINA), Oslo, Norway., Nordén B; Norwegian Institute for Nature Research (NINA), Oslo, Norway., Norros V; Nature Solutions, Finnish Environment Institute (Syke), Helsinki, Finland., Paz C; Department of Biodiversity, Institute of Biosciences, São Paulo State University, Rio Claro, Brazil.; Department of Entomology and Acarology, Laboratory of Pathology and Microbial Control, University of São Paulo, Piracicaba, Brazil., Pellikka P; Department of Geosciences and Geography, Faculty of Science, University of Helsinki, Helsinki, Finland.; State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China.; Wangari Maathai Institute for Environmental and Peace Studies, University of Nairobi, Kangemi, Kenya., Pereira D; Plant Pathology Group, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland.; Laboratory of Biochemistry, Wageningen University, Wageningen, the Netherlands., Petch G; School of Science and the Environment, University of Worcester, Worcester, UK., Pitkänen JM; Natural Resources Institute Finland (Luke), Helsinki, Finland., Popa F; Department of Ecosystem Monitoring, Research & Conservation, Black Forest National Park, Bad Peterstal-Griesbach, Germany., Potter C; Department of Life Sciences, Aberystwyth University, Aberystwyth, UK., Purhonen J; Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.; School of Resource Wisdom, University of Jyväskylä, Jyväskylä, Finland., Pätsi S; Biodiversity Unit, University of Turku, Turku, Finland., Rafiq A; Molecular Ecology and Evolution at Bangor (MEEB), School of Biological Sciences, Bangor University, Bangor, Wales., Raharinjanahary D; Madagascar Biodiversity Center, Parc Botanique et Zoologique de Tsimbazaza, Antananarivo, Madagascar., Rakos N; Swedish Polar Research Secretariat, Abisko Scientific Research Station, Abisko, Sweden., Rathnayaka AR; Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand.; School of Science, Mae Fah Luang University, Chiang Rai, Thailand., Raundrup K; Greenland Institute of Natural Resources, Nuuk, Greenland., Rebriev YA; Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, Russia., Rikkinen J; Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.; Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland., Rogers HMK; Department of Ecology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden., Rogovsky A; Science Department, National Park Krasnoyarsk Stolby, Krasnoyarsk, Russia., Rozhkov Y; State Nature Reserve Olekminsky, Olekminsk, Russia., Runnel K; Mycology and Microbiology Center, University of Tartu, Tartu, Estonia.; Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia., Saarto A; Biodiversity Unit, University of Turku, Turku, Finland., Savchenko A; Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia., Schlegel M; Biodiversity and Conservation Biology Research Unit, SwissFungi Data Center, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland., Schmidt NM; Department of Ecoscience, Aarhus University, Roskilde, Denmark.; Arctic Research Center, Aarhus University, Roskilde, Denmark., Seibold S; Forest Zoology, TUD Dresden University of Technology, Berchtesgaden, Germany.; Terrestrial Ecology Research Group, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany., Skjøth C; School of Science and the Environment, University of Worcester, Worcester, UK.; Department of Environmental Science, Aarhus University, Roskilde, Denmark., Stengel E; Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology (Zoology III), Julius Maximilians University Würzburg, Rauhenebrach, Germany., Sutyrina SV; Sikhote-Alin State Nature Biosphere Reserve named after K. G. Abramov, Terney, Russia., Syvänperä I; Kevo Subarctic Research Institute, Biodiversity Unit, University of Turku, Utsjoki, Finland., Tedersoo L; Mycology and Microbiology Center, University of Tartu, Tartu, Estonia.; College of Science, King Saud University, Riyadh, Saudi Arabia., Timm J; Institute of Arctic Biology, University of Alaska, Fairbanks, AK, USA., Tipton L; School of Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, USA., Toju H; Laboratory of Ecosystems and Coevolution, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.; Center for Living Systems Information Science (CeLiSIS), Graduate School of Biostudies, Kyoto University, Kyoto, Japan., Uscka-Perzanowska M; Department of Ecology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden., van der Bank M; African Centre for DNA Barcoding (ACDB), University of Johannesburg, Auckland Park, South Africa., van der Bank FH; African Centre for DNA Barcoding (ACDB), University of Johannesburg, Auckland Park, South Africa., Vandenbrink B; Canadian High Arctic Research Station, Polar Knowledge Canada, Cambridge Bay, Nunavut, Canada., Ventura S; Research Institute on Terrestrial Ecosystems - IRET, National Research Council - CNR and National Biodiversity Future Center, Palermo, Italy., Vignisson SR; Sudurnes Science and Learning Center, Sandgerði, Iceland., Wang X; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China., Weisser WW; Terrestrial Ecology Research Group, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany., Wijesinghe SN; Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand.; School of Science, Mae Fah Luang University, Chiang Rai, Thailand., Wright SJ; Smithsonian Tropical Research Institute, Balboa, Panama., Yang C; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China., Yorou NS; Research Unit in Tropical Mycology and Plant-Soil Fungi Interactions, Faculty of Agronomy, University of Parakou, Parakou, Republic of Benin., Young A; Institute of Arctic Biology, University of Alaska, Fairbanks, AK, USA., Yu DW; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.; School of Biological Sciences, University of East Anglia, Norwich, UK.; Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Center of Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China., Zakharov EV; Department of Integrative Biology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada.; Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada., Hebert PDN; Department of Integrative Biology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada.; Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada., Roslin T; Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.; Department of Ecology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden., Ovaskainen O; Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.; Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.; Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.
المصدر: Nature [Nature] 2024 Jul; Vol. 631 (8022), pp. 835-842. Date of Electronic Publication: 2024 Jul 10.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Air Microbiology* , Biodiversity* , DNA, Fungal*/analysis , DNA, Fungal*/genetics , Fungi*/genetics , Fungi*/classification , Fungi*/isolation & purification , Seasons* , Spatio-Temporal Analysis*, Mycorrhizae/genetics ; Mycorrhizae/classification ; Mycorrhizae/isolation & purification ; Phylogeny ; Spores, Fungal/classification ; Spores, Fungal/isolation & purification ; Temperature ; Tropical Climate ; Geographic Mapping
مستخلص: Fungi are among the most diverse and ecologically important kingdoms in life. However, the distributional ranges of fungi remain largely unknown as do the ecological mechanisms that shape their distributions 1,2 . To provide an integrated view of the spatial and seasonal dynamics of fungi, we implemented a globally distributed standardized aerial sampling of fungal spores 3 . The vast majority of operational taxonomic units were detected within only one climatic zone, and the spatiotemporal patterns of species richness and community composition were mostly explained by annual mean air temperature. Tropical regions hosted the highest fungal diversity except for lichenized, ericoid mycorrhizal and ectomycorrhizal fungi, which reached their peak diversity in temperate regions. The sensitivity in climatic responses was associated with phylogenetic relatedness, suggesting that large-scale distributions of some fungal groups are partially constrained by their ancestral niche. There was a strong phylogenetic signal in seasonal sensitivity, suggesting that some groups of fungi have retained their ancestral trait of sporulating for only a short period. Overall, our results show that the hyperdiverse kingdom of fungi follows globally highly predictable spatial and temporal dynamics, with seasonality in both species richness and community composition increasing with latitude. Our study reports patterns resembling those described for other major groups of organisms, thus making a major contribution to the long-standing debate on whether organisms with a microbial lifestyle follow the global biodiversity paradigms known for macroorganisms 4,5 .
(© 2024. The Author(s).)
References: Peay, K. G., Kennedy, P. G. & Talbot, J. M. Dimensions of biodiversity in the Earth mycobiome. Nat. Rev. Microbiol. 14, 434–447 (2016). (PMID: 27296482)
Tedersoo, L. et al. The Global Soil Mycobiome consortium dataset for boosting fungal diversity research. Fungal Divers. 111, 573–588 (2021).
Ovaskainen, O. et al. Global Spore Sampling Project: a global, standardized dataset of airborne fungal DNA. Sci. Data 11, 561 (2024). (PMID: 3881645811139991)
Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. USA 103, 626–631 (2006). (PMID: 164071481334650)
Nemergut, D. R. et al. Patterns and processes of microbial community assembly. Microbiol. Mol. Biol. Rev. 77, 342–356 (2013). (PMID: 240064683811611)
Green, J. L. et al. Spatial scaling of microbial eukaryote diversity. Nature 432, 747–750 (2004). (PMID: 15592411)
Martiny, J. B. H. et al. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4, 102–112 (2006). (PMID: 16415926)
Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018). (PMID: 30069051)
Bush, A. et al. Connecting Earth observation to high-throughput biodiversity data. Nat. Ecol. Evol. 1, 0176 (2017).
van Klink, R. et al. Emerging technologies revolutionise insect ecology and monitoring. Trends Ecol. Evol. 37, 872–885 (2022). (PMID: 35811172)
Hartig, F. et al. Novel community data in ecology-properties and prospects. Trends Ecol. Evol. 39, 280–293 (2024). (PMID: 37949795)
Wijayawardene, N. et al. Outline of Fungi and fungus-like taxa – 2021. Mycosphere 13, 53–453 (2022).
Hawksworth, D. L. & Lücking, R. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol. Spectr. 5, 5.4.10 (2017).
Niskanen, T. et al. Pushing the frontiers of biodiversity research: unveiling the global diversity, distribution, and conservation of fungi. Annu. Rev. Environ. Resour. 48, 149–176 (2023).
Sato, H., Tsujino, R., Kurita, K., Yokoyama, K. & Agata, K. Modelling the global distribution of fungal species: new insights into microbial cosmopolitanism. Mol. Ecol. 21, 5599–5612 (2012). (PMID: 23062148)
Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014). (PMID: 25430773)
Barberán, A. et al. Continental-scale distributions of dust-associated bacteria and fungi. Proc. Natl Acad. Sci. USA 112, 5756–5761 (2015). (PMID: 259025364426398)
Davison, J. et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349, 970–973 (2015). (PMID: 26315436)
Větrovský, T. et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 10, 5142 (2019). (PMID: 317231406853883)
Baldrian, P., Větrovský, T., Lepinay, C. & Kohout, P. High-throughput sequencing view on the magnitude of global fungal diversity. Fungal Divers. 114, 539–547 (2022).
Cameron, E. K. et al. Global mismatches in aboveground and belowground biodiversity. Conserv. Biol. 33, 1187–1192 (2019). (PMID: 30868645)
Jabiol, J. et al. Diversity patterns of leaf-associated aquatic hyphomycetes along a broad latitudinal gradient. Fungal Ecol. 6, 439–448 (2013).
Arnold, A. E. & Lutzoni, F. Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88, 541–549 (2007). (PMID: 17503580)
Koide, R. T., Shumway, D. L., Xu, B. & Sharda, J. N. On temporal partitioning of a community of ectomycorrhizal fungi. New Phytol. 174, 420–429 (2007). (PMID: 17388904)
Jumpponen, A., Jones, K. L., David Mattox, J. & Yaege, C. Massively parallel 454-sequencing of fungal communities in Quercus spp. ectomycorrhizas indicates seasonal dynamics in urban and rural sites. Mol. Ecol. 19, 41–53 (2010). (PMID: 20331769)
Voříšková, J., Brabcová, V., Cajthaml, T. & Baldrian, P. Seasonal dynamics of fungal communities in a temperate oak forest soil. New Phytol. 201, 269–278 (2014). (PMID: 24010995)
Mundra, S. et al. Temporal variation of Bistorta vivipara-associated ectomycorrhizal fungal communities in the High Arctic. Mol. Ecol. 24, 6289–6302 (2015). (PMID: 26547806)
Heegaard, E. et al. Fine-scale spatiotemporal dynamics of fungal fruiting: prevalence, amplitude, range and continuity. Ecography 40, 947–959 (2017).
Tipton, L. et al. Fungal aerobiota are not affected by time nor environment over a 13-y time series at the Mauna Loa Observatory. Proc. Natl Acad. Sci. USA 116, 25728–25733 (2019). (PMID: 318018766926071)
Andrew, C. et al. Explaining European fungal fruiting phenology with climate variability. Ecology 99, 1306–1315 (2018). (PMID: 29655179)
Egidi, E. et al. UV index and climate seasonality explain fungal community turnover in global drylands. Glob. Ecol. Biogeogr. https://doi.org/10.1111/geb.13607 (2022).
Krah, F., Büntgen, U. & Bässler, C. Temperature affects the timing and duration of fungal fruiting patterns across major terrestrial biomes. Ecol. Lett. 26, 1572–1583 (2023). (PMID: 37340568)
Abrego, N. et al. Give me a sample of air and I will tell which species are found from your region: molecular identification of fungi from airborne spore samples. Mol. Ecol. Res. 18, 511–524 (2018).
Abrego, N. et al. Fungal communities decline with urbanization—more in air than in soil. ISME J. 14, 2806–2815 (2020). (PMID: 327599747784924)
Ovaskainen, O. et al. Monitoring fungal communities with the global spore sampling project. Front. Ecol. Evol. 7, 511 (2020).
Schoch, C. L. et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl Acad. Sci. USA 109, 6241–6246 (2012). (PMID: 224544943341068)
Öpik, M. et al. Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23, 411–430 (2013). (PMID: 23422950)
Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017). (PMID: 287314765702726)
Somervuo, P., Koskela, S., Pennanen, J., Henrik Nilsson, R. & Ovaskainen, O. Unbiased probabilistic taxonomic classification for DNA barcoding. Bioinformatics 32, 2920–2927 (2016). (PMID: 27296980)
Abarenkov, K. et al. PROTAX-fungi: a web-based tool for probabilistic taxonomic placement of fungal internal transcribed spacer sequences. New Phytol. 220, 517–525 (2018). (PMID: 30035303)
Blaxter, M. et al. Defining operational taxonomic units using DNA barcode data. Phil. Trans. R. Soc. B 360, 1935–1943 (2005). (PMID: 162147511609233)
Hersbach, H. et al. The ERA5 global reanalysis. Quart. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Zanne, A. E. et al. Fungal functional ecology: bringing a trait‐based approach to plant‐associated fungi. Biol. Rev. 95, 409–433 (2020). (PMID: 31763752)
Norros, V. et al. Do small spores disperse further than large spores? Ecology 95, 1612–1621 (2014). (PMID: 25039225)
Norros, V., Halme, P., Norberg, A. & Ovaskainen, O. Spore production monitoring reveals contrasting seasonal strategies and a trade-off between spore size and number in wood-inhabiting fungi. Funct. Ecol. 37, 551–563 (2023).
Treseder, K. K. et al. Evolutionary histories of soil fungi are reflected in their large‐scale biogeography. Ecol. Lett. 17, 1086–1093 (2014). (PMID: 24912000)
Ovaskainen, O. & Abrego, N. Joint Species Distribution Modelling: with Applications in R (Cambridge Univ. Press, 2020).
Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004). (PMID: 14970922)
Egidi, E. et al. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 10, 2369 (2019). (PMID: 311475546542806)
Andersen, G. L. et al. in Encyclopedia of Microbiology (ed. Schaechter, M.) 11–26 (Elsevier, 2009).
Tedersoo, L. & Nara, K. General latitudinal gradient of biodiversity is reversed in ectomycorrhizal fungi. New Phytol. 185, 351–354 (2010). (PMID: 20088976)
Anees-Hill, S., Douglas, P., Pashley, C. H., Hansell, A. & Marczylo, E. L. A systematic review of outdoor airborne fungal spore seasonality across Europe and the implications for health. Sci. Total Environ. 818, 151716 (2022). (PMID: 348004458919338)
Kauserud, H. et al. Mushroom’s spore size and time of fruiting are strongly related: is moisture important? Biol. Lett. 7, 273–276 (2011). (PMID: 20961882)
Aguilar‐Trigueros, C. A. et al. Symbiotic status alters fungal eco‐evolutionary offspring trajectories. Ecol. Lett. 26, 1523–1534 (2023). (PMID: 37330626)
Schoustra, S., Rundle, H. D., Dali, R. & Kassen, R. Fitness-associated sexual reproduction in a filamentous fungus. Curr. Biol. 20, 1350–1355 (2010). (PMID: 20598542)
Aanen, D. K. & Hoekstra, R. F. in Sex in Fungi (eds Heitman, J. et al.) 527–534 (ASM, 2014).
Vellend, M. The Theory of Ecological Communities (Princeton Univ. Press, 2016).
Keddy, P. A. & Laughlin, D. C. A Framework for Community Ecology: Species Pools, Filters and Traits (Cambridge Univ. Press, 2021).
Abrego, N. et al. Data and scripts for: airborne DNA reveals predictable spatial and seasonal dynamics of fungi. Zenodo https://doi.org/10.5281/zenodo.10444737 (2024).
Chen, S. et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE 5, e8613 (2010). (PMID: 200628052799520)
White, T. J., Bruns, T., Lee, S. & Taylor, A. in PCR Protocols (eds Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J.) 315–322 (Elsevier, 1990).
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. https://doi.org/10.14806/ej.17.1.200 (2011). (PMID: 10.14806/ej.17.1.200)
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016). (PMID: 272140474927377)
Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 4, e2584 (2016). (PMID: 277811705075697)
Abarenkov, K. et al. The UNITE database for molecular identification and taxonomic communication of fungi and other eukaryotes: sequences, taxa and classifications reconsidered. Nucleic Acids Res. 52, D791–D797 (2024). (PMID: 37953409)
Kauserud, H. ITS alchemy: on the use of ITS as a DNA marker in fungal ecology. Fungal Ecol. 65, 101274 (2023).
McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014). (PMID: 246992583974642)
Hufkens, K., Stauffer, R. & Campitelli, E. ecmwfr: Interface to ‘ECMWF’ and ‘CDS’ Data Web Services. https://bluegreen-labs.github.io/ecmwfr/ (2020).
Robert, V. et al. MycoBank gearing up for new horizons. IMA Fungus 4, 371–379 (2013). (PMID: 245638433905949)
Oksanen, J. et al. Community Ecology Package vegan. https://cran.r-project.org/web/packages/vegan/ (2022).
McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013). (PMID: 236305813632530)
Whittaker, J. Model Interpretation from the additive elements of the likelihood function. Appl. Stat. 33, 52 (1984).
Pinheiro, J. & Bates, D. nlme: Linear and nonlinear mixed effects models. https://cran.r-project.org/web/packages/nlme/nlme.pdf (2023).
Ovaskainen, O. et al. How to make more out of community data? A conceptual framework and its implementation as models and software. Ecol. Lett. 20, 561–576 (2017). (PMID: 28317296)
Warton, D. I. et al. So many variables: joint modeling in community ecology. Trends Ecol. Evol. 30, 766–779 (2015). (PMID: 26519235)
Abrego, N., Norberg, A. & Ovaskainen, O. Measuring and predicting the influence of traits on the assembly processes of wood‐inhabiting fungi. J. Ecol. 105, 1070–1081 (2017).
Tikhonov, G. et al. Joint species distribution modelling with the R-package Hmsc. Methods Ecol. Evol. 11, 442–447 (2020). (PMID: 321949287074067)
Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).
Pearce, J. & Ferrier, S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Modell. 133, 225–245 (2000).
Tjur, T. Coefficients of determination in logistic regression models—a new proposal: the coefficient of discrimination. Am. Stat. 63, 366–372 (2009).
Abrego, N. & Ovaskainen, O. Evaluating the predictive performance of presence-absence models: why can the same model appear excellent or poor? Ecol. Evol. 13, e10784 (2023). (PMID: 3811191910726276)
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2023).
المشرفين على المادة: 0 (DNA, Fungal)
تواريخ الأحداث: Date Created: 20240710 Date Completed: 20240725 Latest Revision: 20240730
رمز التحديث: 20240731
مُعرف محوري في PubMed: PMC11269176
DOI: 10.1038/s41586-024-07658-9
PMID: 38987593
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-024-07658-9