دورية أكاديمية

Exploring the role of E. faecalis enterococcal polysaccharide antigen (EPA) and lipoproteins in evasion of phagocytosis.

التفاصيل البيبلوغرافية
العنوان: Exploring the role of E. faecalis enterococcal polysaccharide antigen (EPA) and lipoproteins in evasion of phagocytosis.
المؤلفون: Norwood JS; School of Biosciences, University of Sheffield, Sheffield, UK., Davis JL; School of Biosciences, University of Sheffield, Sheffield, UK., Salamaga B; School of Biosciences, University of Sheffield, Sheffield, UK., Moss CE; School of Medicine and Population Health, University of Sheffield, Sheffield, UK., Johnston SA; School of Medicine and Population Health, University of Sheffield, Sheffield, UK., Elks PM; School of Medicine and Population Health, University of Sheffield, Sheffield, UK., Kiss-Toth E; School of Medicine and Population Health, University of Sheffield, Sheffield, UK., Mesnage S; School of Biosciences, University of Sheffield, Sheffield, UK.
المصدر: Molecular microbiology [Mol Microbiol] 2024 Aug; Vol. 122 (2), pp. 230-242. Date of Electronic Publication: 2024 Jul 12.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Blackwell Scientific Publications Country of Publication: England NLM ID: 8712028 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2958 (Electronic) Linking ISSN: 0950382X NLM ISO Abbreviation: Mol Microbiol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford, OX ; Boston, MA : Blackwell Scientific Publications, c1987-
مواضيع طبية MeSH: Phagocytosis* , Enterococcus faecalis*/immunology , Enterococcus faecalis*/metabolism , Enterococcus faecalis*/genetics , Immune Evasion* , Lipoproteins*/metabolism , Lipoproteins*/genetics , Macrophages*/microbiology , Macrophages*/immunology , Macrophages*/metabolism, Polysaccharides, Bacterial/metabolism ; Polysaccharides, Bacterial/immunology ; Humans ; Antigens, Bacterial/metabolism ; Antigens, Bacterial/immunology ; Antigens, Bacterial/genetics ; Immunity, Innate ; Virulence ; Animals ; Mice
مستخلص: Enterococcus faecalis is an opportunistic pathogen frequently causing nosocomial infections. The virulence of this organism is underpinned by its capacity to evade phagocytosis, allowing dissemination in the host. Immune evasion requires a surface polysaccharide produced by all enterococci, known as the enterococcal polysaccharide antigen (EPA). EPA consists of a cell wall-anchored rhamnose backbone substituted by strain-specific polysaccharides called 'decorations', essential for the biological activity of this polymer. However, the structural determinants required for innate immune evasion remain unknown, partly due to a lack of suitable validated assays. Here, we describe a quantitative, in vitro assay to investigate how EPA decorations alter phagocytosis. Using the E. faecalis model strain OG1RF, we demonstrate that a mutant with a deletion of the locus encoding EPA decorations can be used as a platform strain to express heterologous decorations, thereby providing an experimental system to investigate the inhibition of phagocytosis by strain-specific decorations. We show that the aggregation of cells lacking decorations is increasing phagocytosis and that this process does not involve the recognition of lipoproteins by macrophages. Collectively, our work provides novel insights into innate immune evasion by enterococci and paves the way for further studies to explore the structure/function relationship of EPA decorations.
(© 2024 The Author(s). Molecular Microbiology published by John Wiley & Sons Ltd.)
References: Areschoug, T., Waldemarsson, J. & Gordon, S. (2008) Evasion of macrophage scavenger receptor A‐mediated recognition by pathogenic streptococci. European Journal of Immunology, 38(11), 3068–3079. Available from: https://doi.org/10.1002/eji.200838457.
Arias, C.A. & Murray, B.E. (2012) The rise of the enterococcus: beyond vancomycin resistance. Nature Reviews Microbiology, 10(4), 266–278. Available from: https://doi.org/10.1038/nrmicro2761.
Boero, E., Brinkman, I., Juliet, T., van Yperen, E., van Strijp, J.A.G., Rooijakkers, S.H.M. et al. (2021) Use of flow cytometry to evaluate phagocytosis of Staphylococcus aureus by human neutrophils. Frontiers in Immunology, 12, 635825. Available from: https://doi.org/10.3389/fimmu.2021.635825.
Buddelmeijer, N. (2015) The molecular mechanism of bacterial lipoprotein modification—how, when and why? FEMS Microbiology Reviews, 39(2), 246–261. Available from: https://doi.org/10.1093/femsre/fuu006.
Cong, Y., Yang, S. & Rao, X. (2020) Vancomycin resistant Staphylococcus aureus infections: a review of case updating and clinical features. Journal of Advanced Research, 21, 169–176. Available from: https://doi.org/10.1016/j.jare.2019.10.005.
Covarrubias, S., Robinson, E.K., Shapleigh, B., Vollmers, A., Katzman, S., Hanley, N. et al. (2017) CRISPR/Cas‐based screening of long non‐coding RNAs (lncRNAs) in macrophages with an NF‐κB reporter. Journal of Biological Chemistry, 292(51), 20911–20920. Available from: https://doi.org/10.1074/jbc.M117.799155.
Da Silva, R.A.G., da Silva, R.A.G., Tay, W.H., Ho, F.K., Tanoto, F.R., Chong, K.K.L. et al. (2022) Enterococcus faecalis alters endo‐lysosomal trafficking to replicate and persist within mammalian cells. PLoS Pathogens, 18(4), e1010434. Available from: https://doi.org/10.1371/journal.ppat.1010434.
Dalia, A.B. & Weiser, J.N. (2011) Minimization of bacterial size allows for complement evasion and is overcome by the agglutinating effect of antibody. Cell Host & Microbe, 10(5), 486–496. Available from: https://doi.org/10.1016/j.chom.2011.09.009.
Diederich, A.‐K., Wobser, D., Spiess, M., Sava, I.G., Huebner, J. & Sakιnç, T. (2014) Role of glycolipids in the pathogenesis of Enterococcus faecalis urinary tract infection. PLoS One, 9(5), e96295. Available from: https://doi.org/10.1371/journal.pone.0096295.
Djorić, D., Little, J.L. & Kristich, C.J. (2020) Multiple low‐reactivity class B penicillin‐binding proteins are required for cephalosporin resistance in enterococci. Antimicrobial Agents and Chemotherapy, 64(4), e02273–19. Available from: https://doi.org/10.1128/AAC.02273‐19.
Furlan, S., Matos, R.C., Kennedy, S.P., Doublet, B., Serror, P. & Rigottier‐Gois, L. (2019) Fitness restoration of a genetically tractable Enterococcus faecalis V583 derivative to study decoration‐related phenotypes of the enterococcal polysaccharide antigen. mSphere, 4(4), e00310‐19. Available from: https://doi.org/10.1128/mSphere.00310‐19.
Geiss‐Liebisch, S., Rooijakkers, S.H.M., Beczala, A., Sanchez‐Carballo, P., Kruszynska, K., Repp, C. et al. (2012) Secondary cell wall polymers of Enterococcus faecalis are critical for resistance to complement activation via mannose‐binding lectin. Journal of Biological Chemistry, 287(45), 37769–37777. Available from: https://doi.org/10.1074/jbc.M112.358283.
Guerardel, Y., Sadovskaya, I., Maes, E., Furlan, S., Chapot‐Chartier, M.P., Mesnage, S. et al. (2020) Complete structure of the enterococcal polysaccharide antigen (EPA) of vancomycin‐resistant Enterococcus faecalis V583 reveals that EPA decorations are teichoic acids covalently linked to a rhamnopolysaccharide backbone. MBio, 11(2), e00277‐20. Available from: https://doi.org/10.1128/mBio.00277‐20.
Guzman Prieto, A.M., van Schaik, W., Rogers, M.R., Coque, T.M., Baquero, F., Corander, J. et al. (2016) Global emergence and dissemination of enterococci as nosocomial pathogens: attack of the clones? Frontiers in Microbiology, 7(788):1–15. Available from: https://doi.org/10.3389/fmicb.2016.00788.
Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K. & Pease, L.R. (1989) Site‐directed mutagenesis by overlap extension using the polymerase chain reaction. Gene., 77(1), 51–9. https://doi.org/10.1016/0378‐1119(89)90358‐2.
Holmberg, A. & Rasmussen, M. (2016) Mature biofilms of Enterococcus faecalis and enterococcus faecium are highly resistant to antibiotics. Diagnostic Microbiology and Infectious Disease, 84(1), 19–21. Available from: https://doi.org/10.1016/j.diagmicrobio.2015.09.012.
Hornung, V., Bauernfeind, F., Halle, A., Samstad, E.O., Kono, H., Rock, K.L. et al. (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nature Immunology, 9(8), 847–856. Available from: https://doi.org/10.1038/ni.1631.
Justice, S.S., Hung, C., Theriot, J.A., Fletcher, D.A., Anderson, G.G., Footer, M.J. et al. (2004) Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proceedings of the National Academy of Sciences, 101(5), 1333–1338. Available from: https://doi.org/10.1073/pnas.0308125100.
Korir, M.L., Dale, J.L. & Dunny, G.M. (2019) Role of epaQ, a previously uncharacterized Enterococcus faecalis gene, in biofilm development and antimicrobial resistance. Journal of Bacteriology, 201(18), e00078‐19. Available from: https://doi.org/10.1128/JB.00078‐19.
Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685. Available from: https://doi.org/10.1038/227680a0.
Maguin, E., Duwat, P., Hege, T., Ehrlich, D. & Gruss, A. (1992) New thermosensitive plasmid for gram‐positive bacteria. Journal of Bacteriology, 174(17), 5633–5638. Available from: https://doi.org/10.1128/jb.174.17.5633‐5638.1992.
Mesnage, S., Chau, F., Dubost, L. & Arthur, M. (2008) Role of N‐acetylglucosaminidase and N‐acetylmuramidase activities in Enterococcus faecalis peptidoglycan metabolism. Journal of Biological Chemistry, 283(28), 19845–19853. Available from: https://doi.org/10.1074/jbc.M802323200.
Mistou, M.‐Y., Sutcliffe, I.C. & Van Sorge, N.M. (2016) Bacterial glycobiology: rhamnose‐containing cell wall polysaccharides in gram‐positive bacteria. FEMS Microbiology Reviews, 40(4), 464–479. Available from: https://doi.org/10.1093/femsre/fuw006.
Möller, J., Luehmann, T., Hall, H. & Vogel, V. (2012) The race to the pole: how high‐aspect ratio shape and heterogeneous environments limit phagocytosis of filamentous Escherichia coli bacteria by macrophages. Nano Letters, 12(6), 2901–2905. Available from: https://doi.org/10.1021/nl3004896.
Montravers, P., Mohler, J., Saint Julien, L. & Carbon, C. (1997) Evidence of the proinflammatory role of Enterococcus faecalis in polymicrobial peritonitis in rats. Infection and Immunity, 65(1), 144–149. Available from: https://doi.org/10.1128/iai.65.1.144‐149.1997.
Ocvirk, S., Sava, I.G., Lengfelder, I., Lagkouvardos, I., Steck, N., Roh, J.H. et al. (2015) Surface‐associated lipoproteins link Enterococcus faecalis virulence to colitogenic activity in IL‐10‐deficient mice independent of their expression levels. PLoS Pathogens, 11(6), e1004911. Available from: https://doi.org/10.1371/journal.ppat.1004911.
Paganelli, F.L., van de Kamer, T., Brouwer, E.C., Leavis, H.L., Woodford, N., Bonten, M.J.M. et al. (2017) Lipoteichoic acid synthesis inhibition in combination with antibiotics abrogates growth of multidrug‐resistant enterococcus faecium. International Journal of Antimicrobial Agents, 49(3), 355–363. Available from: https://doi.org/10.1016/j.ijantimicag.2016.12.002.
Palmer, K.L. et al. (2012) Comparative genomics of enterococci: variation in Enterococcus faecalis, clade structure in E. faecium, and defining characteristics of E. gallinarum and E. casseliflavus. MBio, 3(1), e00318‐11. Available from: https://doi.org/10.1128/mBio.00318‐11.
Prajsnar, T.K., Renshaw, S.A., Ogryzko, N.V., Foster, S.J., Serror, P. & Mesnage, S. (2013) Zebrafish as a novel vertebrate model to dissect enterococcal pathogenesis. Infection and Immunity, 81(11), 4271–4279. Available from: https://doi.org/10.1128/IAI.00976‐13.
Rakita, R.M., Vanek, N.N., Jacques‐Palaz, K., Mee, M., Mariscalco, M.M., Dunny, G.M. et al. (1999) Enterococcus faecalis bearing aggregation substance is resistant to killing by human neutrophils despite phagocytosis and neutrophil activation. Infection and Immunity, 67(11), 6067–6075. Available from: https://doi.org/10.1128/IAI.67.11.6067‐6075.1999.
Reffuveille, F., Serror, P., Chevalier, S., Budin‐Verneuil, A., Ladjouzi, R., Bernay, B. et al. (2012) The prolipoprotein diacylglyceryl transferase (Lgt) of Enterococcus faecalis contributes to virulence. Microbiology, 158(3), 816–825. Available from: https://doi.org/10.1099/mic.0.055319‐0.
Rince, A., Flahaut, S. & Auffray, Y. (2000) Identification of general stress genes in Enterococcus faecalis. International Journal of Food Microbiology, 55(1–3), 87–91. Available from: https://doi.org/10.1016/S0168‐1605(00)00180‐X.
Rouchon, C.N., Weinstein, A.J., Hutchison, C.A., Zubair‐Nizami, Z.B., Kohler, P.L. & Frank, K.L. (2022) Disruption of the tagF orthologue in the epa locus variable region of Enterococcus faecalis causes cell surface changes and suppresses an eep ‐dependent lysozyme resistance phenotype. Journal of Bacteriology, 204(10), e0024722. Available from: https://doi.org/10.1128/jb.00247‐22.
Saffari, F., Sobhanipoor, M.H., Shahravan, A. & Ahmadrajabi, R. (2018) Virulence genes, antibiotic resistance and capsule locus polymorphisms in enterococcus faecalis isolated from canals of root‐filled teeth with periapical lesions. Infection & Chemotherapy, 50(4), 340–345. Available from: https://doi.org/10.3947/ic.2018.50.4.340.
Salamaga, B., Prajsnar, T.K., Jareño‐Martinez, A., Willemse, J., Bewley, M.A., Chau, F. et al. (2017) Bacterial size matters: multiple mechanisms controlling septum cleavage and diplococcus formation are critical for the virulence of the opportunistic pathogen Enterococcus faecalis. PLoS Pathogens, 13(7), e1006526. Available from: https://doi.org/10.1371/journal.ppat.1006526.
Salman, H., Bergman, M., Bessler, H., Alexandrova, S. & Djaldetti, M. (2000) Ultrastructure and phagocytic activity of rat peritoneal macrophages exposed to low temperatures in vitro. Cryobiology, 41(1), 66–71. Available from: https://doi.org/10.1006/cryo.2000.2267.
Smith, R.E., Salamaga, B., Szkuta, P., Hajdamowicz, N., Prajsnar, T.K., Bulmer, G.S. et al. (2019) Decoration of the enterococcal polysaccharide antigen EPA is essential for virulence, cell surface charge and interaction with effectors of the innate immune system. PLoS Pathogens, 15(5), e1007730. Available from: https://doi.org/10.1371/journal.ppat.1007730.
Theilacker, C., Sava, I., Sanchez‐Carballo, P., Bao, Y., Kropec, A., Grohmann, E. et al. (2011) Deletion of the glycosyltransferase bgsB of Enterococcus faecalis leads to a complete loss of glycolipids from the cell membrane and to impaired biofilm formation. BMC Microbiology, 11(1), 67. Available from: https://doi.org/10.1186/1471‐2180‐11‐67.
Thurlow, L.R., Thomas, V.C., Fleming, S.D. & Hancock, L.E. (2009) Enterococcus faecalis capsular polysaccharide serotypes C and D and their Contributions to host innate immune evasion. Infection and Immunity, 77(12), 5551–5557. Available from: https://doi.org/10.1128/IAI.00576‐09.
Vanek, N.N., Simon, S.I., Jacques‐Palaz, K., Mariscalco, M.M., Dunny, G.M. & Rakita, R.M. (1999) Enterococcus faecalis aggregation substance promotes opsonin‐independent binding to human neutrophils via a complement receptor type 3‐mediated mechanism. FEMS Immunology and Medical Microbiology, 26(1), 49–60. Available from: https://doi.org/10.1111/j.1574‐695X.1999.tb01371.x.
Zou, J. & Shankar, N. (2016) Surface protein Esp enhances pro‐inflammatory cytokine expression through NF‐κB activation during enterococcal infection. Innate Immunity, 22(1), 31–39. Available from: https://doi.org/10.1177/1753425915611237.
معلومات مُعتمدة: MR/N013840/1 United Kingdom MRC_ Medical Research Council; BB/ M011151/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council
فهرسة مساهمة: Keywords: Enterococcus faecalis; EPA; innate immune evasion; lipoproteins; phagocytosis
المشرفين على المادة: 0 (Lipoproteins)
0 (Polysaccharides, Bacterial)
0 (Antigens, Bacterial)
تواريخ الأحداث: Date Created: 20240712 Date Completed: 20240808 Latest Revision: 20240917
رمز التحديث: 20240917
DOI: 10.1111/mmi.15294
PMID: 38994873
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-2958
DOI:10.1111/mmi.15294