دورية أكاديمية

Quantitative Characterization of RCA-Based DNA Hydrogels - Towards Rational Materials Design.

التفاصيل البيبلوغرافية
العنوان: Quantitative Characterization of RCA-Based DNA Hydrogels - Towards Rational Materials Design.
المؤلفون: Moench SA; Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344, Germany., Lemke P; Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344, Germany., Weisser J; Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344, Germany., Stoev ID; Institute of Biological and Chemical Systems - Biophysical Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344, Germany., Rabe KS; Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344, Germany., Domínguez CM; Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344, Germany., Niemeyer CM; Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344, Germany.
المصدر: Chemistry (Weinheim an der Bergstrasse, Germany) [Chemistry] 2024 Sep 19; Vol. 30 (53), pp. e202401788. Date of Electronic Publication: 2024 Sep 03.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 9513783 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-3765 (Electronic) Linking ISSN: 09476539 NLM ISO Abbreviation: Chemistry Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Weinheim, Germany : Wiley-VCH
مواضيع طبية MeSH: Hydrogels*/chemistry , DNA*/chemistry , Nucleic Acid Amplification Techniques*/methods, Nucleic Acid Conformation ; Viscosity
مستخلص: DNA hydrogels hold significant promise for biomedical applications and can be synthesized through enzymatic Rolling Circle Amplification (RCA). Due to the exploratory nature of this emerging field, standardized RCA protocols specifying the impact of reaction parameters are currently lacking. This study varied template sequences and reagent concentrations, evaluating RCA synthesis efficiency and hydrogel mechanical properties through quantitative PCR (qPCR) and indentation measurements, respectively. Primer concentration and stabilizing additives showed minimal impact on RCA efficiency, while changes in polymerase and nucleotide concentrations had a stronger effect. Concentration of the circular template exerted the greatest influence on RCA productivity. An exponential correlation between hydrogel viscosity and DNA amplicon concentration was observed, with nucleobase sequence significantly affecting both amplification efficiency and material properties, particularly through secondary structures. This study suggests that combining high-throughput experimental methods with structural folding prediction offers a viable approach for systematically establishing structure-property relationships, aiding the rational design of DNA hydrogel material systems.
(© 2024 The Author(s). Chemistry - A European Journal published by Wiley-VCH GmbH.)
References: .
Y. Dong, C. Yao, Y. Zhu, L. Yang, D. Luo, D. Yang, Chem. Rev. 2020, 120, 9420–9481;.
D. Wang, Y. Hu, P. Liu, D. Luo, Acc. Chem. Res. 2017, 50, 733–739;.
M. Vázquez-González, I. Willner, Angew. Chem. Int. Ed. Engl. 2020, 59, 15342–15377;.
V. Morya, S. Walia, B. B. Mandal, C. Ghoroi, D. Bhatia, ACS Biomater. Sci. Eng. 2020, 6, 6021–6035.
 .
R. Hu, X. Zhang, Z. Zhao, G. Zhu, T. Chen, T. Fu, W. Tan, Angew. Chem., Int. Ed. 2014, 126, 5931–5936;.
J. Li, L. Mo, C.-H. Lu, T. Fu, H.-H. Yang, W. Tan, Chem. Soc. Rev. 2016, 45, 1410–1431;.
E. Kim, L. Zwi-Dantsis, N. Reznikov, C. S. Hansel, S. Agarwal, M. M. Stevens, Adv. Mater. 2017, 29, 1701086;.
Y. Wang, E. Kim, Y. Lin, N. Kim, W. Kit-Anan, S. Gopal, S. Agarwal, P. D. Howes, M. M. Stevens, ACS Appl. Mater. Interfaces 2019, 11, 22932–22940.
L. Blanco, A. Bernad, J. M. Lázaro, G. Martín, C. Garmendia, M. Salas, J. Biol. Chem. 1989, 264, 8935–8940.
Y.-p. Gao, K.-J. Huang, F.-T. Wang, Y.-Y. Hou, J. Xu, G. Li, Analyst 2022, 147, 3396–3414.
 .
B. Joffroy, Y. O. Uca, D. Prešern, J. P. K. Doye, T. L. Schmidt, Nucleic Acids Res. 2018, 46, 538–545;.
L. Schneider, M. Richter, C. Oelschlaeger, K. S. Rabe, C. M. Domínguez, C. M. Niemeyer, Chem. Commun. 2023, 59, 12184–12187.
R. Merindol, G. Delechiave, L. Heinen, L. H. Catalani, A. Walther, Nat. Commun. 2019, 10, 528.
G. Zhu, R. Hu, Z. Zhao, Z. Chen, X. Zhang, W. Tan, J. Am. Chem. Soc. 2013, 135, 16438–16445.
 .
Y. Hu, C. M. Domínguez, J. Bauer, S. Weigel, A. Schipperges, C. Oelschlaeger, N. Willenbacher, S. Keppler, M. Bastmeyer, S. Heißler, C. Wöll, T. Scharnweber, K. S. Rabe, C. M. Niemeyer, Nat. Commun. 2019, 10, 5522;.
Y. Hu, C. M. Niemeyer, J. Mater. Chem. B 2020, 8, 2250–2255;.
Y. Hu, D. Rehnlund, E. Klein, J. Gescher, C. M. Niemeyer, ACS Appl. Mater. Interfaces 2020, 12, 14806–14813.
C. Liu, J. He, E. v. Ruymbeke, R. Keunings, C. Bailly, Polymer 2006, 47, 4461–4479.
P. Lemke, S. Moench, P. S. Jäger, C. Oelschlaeger, K. S. Rabe, C. M. Domínguez, C. M. Niemeyer, Small Methods 2024, 2400251.
M. Zuker, Nucleic Acids Res. 2003, 31, 3406–3415.
O. Doluca, J. M. Withers, V. V. Filichev, Chem. Rev. 2013, 113, 3044–3083.
J. Kypr, I. Kejnovská, D. Renčiuk, M. Vorlíčková, Nucleic Acids Res. 2009, 37, 1713–1725.
 .
T. C. Davenport, Phys. Educ. 1968, 3, 139;.
S. Thammakiti, M. Suphantharika, T. Phaesuwan, C. Verduyn, Int. J. Food Sci. Technol. 2004, 39, 21–29;.
F. J. Galindo-Rosales, F. J. Rubio-Hernández, A. Sevilla, J. Non-Newton. Fluid Mech. 2011, 166, 321–325.
 .
M. a. S. Soengas, C. Gutiérrez, M. Salas, J. Mol. Biol. 1995, 253, 517–529;.
J. L. Montgomery, N. Rejali, C. T. Wittwer, J. Mol. Diagnostics 2014, 16, 305–313.
M. L. Bochman, K. Paeschke, V. A. Zakian, Nat. Rev. Genet. 2012, 13, 770–780.
H. Abou Assi, M. Garavís, C. González, M. J. Damha, Nucleic Acids Res. 2018, 46, 8038–8056.
R. Johne, H. Müller, A. Rector, M. van Ranst, H. Stevens, Trends Microbiol. 2009, 17, 205–211.
I. D. Stoev, T. Cao, A. Caciagli, J. Yu, C. Ness, R. Liu, R. Ghosh, T. O'Neill, D. Liu, E. Eiser, Soft Matter 2020, 16, 990–1001.
 .
R. An, Q. Li, Y. Fan, J. Li, X. Pan, M. Komiyama, X. Liang, Nucleic Acids Res. 2017, 45, e139–e139;.
J. Chen, Y. R. Baker, A. Brown, A. H. El-Sagheer, T. Brown, Chem. Sci. 2018, 9, 8110–8120;.
Y. Cui, X. Han, R. An, G. Zhou, M. Komiyama, X. Liang, RSC Adv. 2018, 8, 18972–18979.
معلومات مُعتمدة: Adaptive and Bioinstructive Materials Systems Helmholtz-Gemeinschaft
فهرسة مساهمة: Keywords: DNA; DNA hydrogels; Gels; Rolling circle amplification; Viscosity
المشرفين على المادة: 0 (Hydrogels)
9007-49-2 (DNA)
تواريخ الأحداث: Date Created: 20240712 Date Completed: 20240927 Latest Revision: 20240927
رمز التحديث: 20240927
DOI: 10.1002/chem.202401788
PMID: 38995737
قاعدة البيانات: MEDLINE
الوصف
تدمد:1521-3765
DOI:10.1002/chem.202401788