دورية أكاديمية

Involvement of serotonergic receptors in depressive processes and their modulation by β-arrestins: A review.

التفاصيل البيبلوغرافية
العنوان: Involvement of serotonergic receptors in depressive processes and their modulation by β-arrestins: A review.
المؤلفون: Tejeda-Martínez AR; Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Guadalajara, México., Ramos-Molina AR; Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Guadalajara, México., Brand-Rubalcava PA; Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Guadalajara, México.; Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, México., Flores-Soto ME; Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Guadalajara, México.
المصدر: Medicine [Medicine (Baltimore)] 2024 Jul 12; Vol. 103 (28), pp. e38943.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Lippincott Williams & Wilkins Country of Publication: United States NLM ID: 2985248R Publication Model: Print Cited Medium: Internet ISSN: 1536-5964 (Electronic) Linking ISSN: 00257974 NLM ISO Abbreviation: Medicine (Baltimore) Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Hagerstown, Md : Lippincott Williams & Wilkins
مواضيع طبية MeSH: beta-Arrestins*/metabolism , Receptors, Serotonin*/metabolism, Humans ; Serotonin/metabolism ; Signal Transduction/physiology ; Depressive Disorder/metabolism ; Depressive Disorder/physiopathology ; Brain/metabolism ; Depression/metabolism
مستخلص: Over time, several studies have been conducted to demonstrate the functions of the neurotransmitter 5-hydroxytryptamine (5-HT), better known as serotonin. This neurotransmitter is associated with the modulation of various social and physiological behaviors, and its dysregulation has consequences at the behavioral level, leading to various neurophysiological disorders. Disorders such as anxiety, depression, schizophrenia, epilepsy, sexual disorders, and eating disorders, have been closely linked to variations in 5-HT concentrations and modifications in brain structures, including the raphe nuclei (RN), prefrontal cortex, basal ganglia, hippocampus, and hypothalamus, among others. The involvement of β-arrestin proteins has been implicated in the modulation of the serotonergic receptor response, as well as the activation of different signaling pathways related to the serotonergic system, this is particularly relevant in depressive disorders. This review will cover the implications of alterations in 5-HT receptor expression in depressive disorders in one hand and how β-arrestin proteins modulate the response mediated by these receptors in the other hand.
Competing Interests: The authors have no funding and conflicts of interest to disclose.
(Copyright © 2024 the Author(s). Published by Wolters Kluwer Health, Inc.)
References: Oliveira-Silva P, Faria-Melibeu ADC, Campello-Costa P, Serfaty CA; Rodrigues Junior WDS. Serotonin transporter immunoreactivity is modulated during development and after fluoxetine treatment in the rodent visual system. Neurosci Lett. 2017;657:38–44.
Sarkar P, Mozumder S, Bej A, Mukherjee S, Sengupta J, Chattopadhyay A. Structure, dynamics and lipid interactions of serotonin receptors: excitements and challenges. Biophys Rev. 2020;13:101–22.
Ortega MA, Fraile-Martinez O, Garcia-Montero C, et al. Nutrition, epigenetics, and major depressive disorder: understanding the connection. Front Nutr. 2022;9:867150.
Dean J, Keshavan M. The neurobiology of depression: an integrated view. Asian J Psychiatr. 2017;27:101–11.
Lorenzetti V, Allen NB, Fornito A, Yucel M. Structural brain abnormalities in major depressive disorder: a selective review of recent MRI studies. J Affect Disord. 2009;117:1–17.
DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK. Beta-arrestins and cell signaling. Annu Rev Physiol. 2007;69:483–510.
Ma L, Pei G. Beta-arrestin signaling and regulation of transcription. J Cell Sci. 2007;120(Pt 2):213–8.
David DJ, Samuels BA, Rainer Q, et al. Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron. 2009;62:479–93.
Li J, Chen L, Li G, et al. Sub-Acute Treatment of Curcumin Derivative J147 Ameliorates Depression-Like Behavior Through 5-HT(1A)-Mediated cAMP Signaling. Front Neurosci. 2020;14:701.
Bader M. Inhibition of serotonin synthesis: a novel therapeutic paradigm. Pharmacol Ther. 2020;205:107423.
Kanova M, Kohout P. Serotonin-Its synthesis and roles in the healthy and the critically Ill. Int J Mol Sci. 2021;22:4837.
Stein K, Maruf AA, Muller DJ, Bishop JR, Bousman CA. Serotonin transporter genetic variation and antidepressant response and tolerability: a systematic review and meta-analysis. J Pers Med. 2021;11:1334.
Grzelczyk J, Budryn G, Pena-Garcia J, et al. Evaluation of the inhibition of monoamine oxidase A by bioactive coffee compounds protecting serotonin degradation. Food Chem. 2021;348:129108.
David DJ, Gardier AM. The pharmacological basis of the serotonin system: application to antidepressant response [Les bases de pharmacologie fondamentale du systeme serotoninergique: application a la reponse antidepressive]. Encephale. 2016;42:255–63.
Baruni J, Luo L. Illuminating complexity in serotonin neurons of the dorsal raphe nucleus. Neuron. 2022;110:2519–21.
Huang KW, Ochandarena NE, Philson AC, et al. Molecular and anatomical organization of the dorsal raphe nucleus. Elife. 2019;8:e46464.
Ikuta T, Matsuo K, Harada K, et al. Disconnectivity between dorsal raphe nucleus and posterior cingulate cortex in later life depression. Front Aging Neurosci. 2017;9:236.
Pawluski JL, Li M, Lonstein JS. Serotonin and motherhood: from molecules to mood. Front Neuroendocrinol. 2019;53:100742.
Bockaert J, Claeysen S, Becamel C, Dumuis A, Marin P. Neuronal 5-HT metabotropic receptors: fine-tuning of their structure, signaling, and roles in synaptic modulation. Cell Tissue Res. 2006;326:553–72.
Costa L, Trovato C, Musumeci SA, Catania MV, Ciranna L. 5-HT(1A) and 5-HT(7) receptors differently modulate AMPA receptor-mediated hippocampal synaptic transmission. Hippocampus. 2012;22:790–801.
Millan MJ, Marin P, Bockaert J, Mannoury la Cour C. Signaling at G-protein-coupled serotonin receptors: recent advances and future research directions. Trends Pharmacol Sci. 2008;29:454–64.
Andrade R. Serotonergic regulation of neuronal excitability in the prefrontal cortex. Neuropharmacology. 2011;61:382–6.
Beique JC, Campbell B, Perring P, et al. Serotonergic regulation of membrane potential in developing rat prefrontal cortex: coordinated expression of 5-hydroxytryptamine (5-HT)1A, 5-HT2A, and 5-HT7 receptors. J Neurosci. 2004;24:4807–17.
Altieri SC, Garcia-Garcia AL, Leonardo ED, Andrews AM. Rethinking 5-HT1A receptors: emerging modes of inhibitory feedback of relevance to emotion-related behavior. ACS Chem Neurosci. 2013;4:72–83.
Cools R, Roberts AC, Robbins TW. Serotoninergic regulation of emotional and behavioural control processes. Trends Cogn Sci. 2008;12:31–40.
McCorvy JD, Roth BL. Structure and function of serotonin G protein-coupled receptors. Pharmacol Ther. 2015;150:129–42.
Albert PR, Vahid-Ansari F. The 5-HT1A receptor: signaling to behavior. Biochimie. 2019;161:34–45.
Kaufman J, DeLorenzo C, Choudhury S, Parsey RV. The 5-HT1A receptor in major depressive disorder. Eur Neuropsychopharmacol. 2016;26:397–410.
Riad M, Watkins KC, Doucet E, Hamon M, Descarries L. Agonist-induced internalization of serotonin-1a receptors in the dorsal raphe nucleus (autoreceptors) but not hippocampus (heteroreceptors). J Neurosci. 2001;21:8378–86.
Courtney NA, Ford CP. Mechanisms of 5-HT1A receptor-mediated transmission in dorsal raphe serotonin neurons. J Physiol. 2016;594:953–65.
Quentin E, Belmer A, Maroteaux L. Somato-dendritic regulation of raphe serotonin neurons; a key to antidepressant action. Front Neurosci. 2018;12:982.
Lopez-Gil X, Artigas F, Adell A. Unraveling monoamine receptors involved in the action of typical and atypical antipsychotics on glutamatergic and serotonergic transmission in prefrontal cortex. Curr Pharm Des. 2010;16:502–15.
Cassel JC, Jeltsch H. Serotonergic modulation of cholinergic function in the central nervous system: cognitive implications. Neuroscience. 1995;69:1–41.
Halasy K, Miettinen R, Szabat E, Freund TF. GABAergic interneurons are the major postsynaptic targets of median raphe afferents in the rat dentate gyrus. Eur J Neurosci. 1992;4:144–53.
Zmudzka E, Salaciak K, Sapa J, Pytka K. Serotonin receptors in depression and anxiety: Insights from animal studies. Life Sci. 2018;210:106–24.
Di Matteo V, Di Giovanni G, Pierucci M, Esposito E. Serotonin control of central dopaminergic function: focus on in vivo microdialysis studies. Prog Brain Res. 2008;172:7–44.
Vahid-Ansari F, Daigle M, Manzini MC, et al. Abrogated Freud-1/Cc2d1a Repression of 5-HT1A autoreceptors induces fluoxetine-resistant anxiety/depression-like behavior. J Neurosci. 2017;37:11967–78.
Sharma VK, Loh YP. The discovery, structure, and function of 5-HTR1E serotonin receptor. Cell Commun Signal. 2023;21:235.
Leysen JE. 5-HT2 receptors. Curr Drug Targets CNS Neurol Disord. 2004;3:11–26.
Abi-Saab WM, Bubser M, Roth RH, Deutch AY. 5-HT2 receptor regulation of extracellular GABA levels in the prefrontal cortex. Neuropsychopharmacology. 1999;20:92–6.
Santana N, Bortolozzi A, Serrats J, Mengod G, Artigas F. Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex. 2004;14:1100–9.
Gray JA, Roth BL. Paradoxical trafficking and regulation of 5-HT(2A) receptors by agonists and antagonists. Brain Res Bull. 2001;56:441–51.
Marek GJ, Carpenter LL, McDougle CJ, Price LH. Synergistic action of 5-HT2A antagonists and selective serotonin reuptake inhibitors in neuropsychiatric disorders. Neuropsychopharmacology. 2003;28:402–12.
Gocho Y, Sakai A, Yanagawa Y, Suzuki H, Saitow F. Electrophysiological and pharmacological properties of GABAergic cells in the dorsal raphe nucleus. J Physiol Sci. 2013;63:147–54.
Hernandez-Vazquez F, Garduno J, Hernandez-Lopez S. GABAergic modulation of serotonergic neurons in the dorsal raphe nucleus. Rev Neurosci. 2019;30:289–303.
Garcia-Garcia AL, Newman-Tancredi A, Leonardo ED. 5-HT(1A) [corrected] receptors in mood and anxiety: recent insights into autoreceptor versus heteroreceptor function. Psychopharmacology (Berl). 2014;231:623–36.
D’Souza DN, Zhang Y, Garcia F, Battaglia G, Van De Kar LD. Destruction of serotonergic nerve terminals prevents fluoxetine-induced desensitization of hypothalamic 5-HT(1A) receptors. Psychopharmacology (Berl). 2002;164:392–400.
Carr GV, Lucki I. The role of serotonin receptor subtypes in treating depression: a review of animal studies. Psychopharmacology (Berl). 2011;213:265–87.
Nautiyal KM, Hen R. Serotonin receptors in depression: from A to B. F1000Res. 2017;6:123.
Yohn CN, Gergues MM, Samuels BA. The role of 5-HT receptors in depression. Mol Brain. 2017;10:28.
Gao J, Wu R, Davis C, Li M. Activation of 5-HT(2A) receptor disrupts rat maternal behavior. Neuropharmacology. 2018;128:96–105.
Fuller RW. Serotonin receptors involved in regulation of pituitary-adrenocortical function in rats. Behav Brain Res. 1996;73:215–9.
Jaggar M, Weisstaub N, Gingrich JA, Vaidya VA. 5-HT(2A) receptor deficiency alters the metabolic and transcriptional, but not the behavioral, consequences of chronic unpredictable stress. Neurobiol Stress. 2017;7:89–102.
Jacobson LH, Hoyer D, Fehlmann D, Bettler B, Kaupmann K, Cryan JF. Blunted 5-HT(1A) receptor-mediated responses and antidepressant-like behavior in mice lacking the GABA(B1a) but not GABA(B1b) subunit isoforms. Psychopharmacology (Berl). 2017;234:1511–23.
Bonilla-Jaime H, Guadarrama-Cruz G, Alarcon-Aguilar FJ, Limon-Morales O, Vazquez-Palacios G. Antidepressant-like activity of Tagetes lucida Cav. is mediated by 5-HT(1A) and 5-HT(2A) receptors. J Nat Med. 2015;69:463–70.
El Khamlichi C, Reverchon F, Hervouet-Coste N, et al. Serodolin, a beta-arrestin-biased ligand of 5-HT(7) receptor, attenuates pain-related behaviors. Proc Natl Acad Sci USA. 2022;119:e2118847119.
Luttrell LM, Miller WE. Arrestins as regulators of kinases and phosphatases. Prog Mol Biol Transl Sci. 2013;118:115–47.
Haider RS, Reichel M, Matthees ESF, Hoffmann C. Conformational flexibility of beta-arrestins – how these scaffolding proteins guide and transform the functionality of GPCRs. Bioessays. 2023;45:e2300053.
Jean-Charles PY, Kaur S, Shenoy SK. G Protein-coupled receptor signaling through beta-arrestin-dependent mechanisms. J Cardiovasc Pharmacol. 2017;70:142–58.
Reiter E, Lefkowitz RJ. GRKs and beta-arrestins: roles in receptor silencing, trafficking and signaling. Trends Endocrinol Metab. 2006;17:159–65.
Sniecikowska J, Gluch-Lutwin M, Bucki A, et al. Discovery of Novel pERK1/2- or beta-Arrestin-Preferring 5-HT(1A) receptor-biased agonists: diversified therapeutic-like versus side effect profile. J Med Chem. 2020;63:10946–71.
Urban JD, Clarke WP, von Zastrow M, et al. Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther. 2007;320:1–13.
Raote I, Bhattacharyya S, Panicker MM. Functional selectivity in serotonin receptor 2A (5-HT2A) endocytosis, recycling, and phosphorylation. Mol Pharmacol. 2013;83:42–50.
Bohn LM, Schmid CL. Serotonin receptor signaling and regulation via beta-arrestins. Crit Rev Biochem Mol Biol. 2010;45:555–66.
Deo N, Redpath G. Serotonin receptor and transporter endocytosis is an important factor in the cellular basis of depression and anxiety. Front Cell Neurosci. 2021;15:804592.
Avissar S, Matuzany-Ruban A, Tzukert K, Schreiber G. Beta-arrestin-1 levels: reduced in leukocytes of patients with depression and elevated by antidepressants in rat brain. Am J Psychiatry. 2004;161:2066–72.
Matuzany-Ruban A, Avissar S, Schreiber G. Dynamics of beta-arrestin1 protein and mRNA levels elevation by antidepressants in mononuclear leukocytes of patients with depression. J Affect Disord. 2005;88:307–12.
Peng L, Gu L, Li B, Hertz L. Fluoxetine and all other SSRIs are 5-HT2B agonists – importance for their therapeutic effects. Curr Neuropharmacol. 2014;12:365–79.
Seyedabadi M, Ghahremani MH, Albert PR. Biased signaling of G protein coupled receptors (GPCRs): molecular determinants of GPCR/transducer selectivity and therapeutic potential. Pharmacol Ther. 2019;200:148–78.
Gray JA, Sheffler DJ, Bhatnagar A, et al. Cell-type specific effects of endocytosis inhibitors on 5-hydroxytryptamine(2A) receptor desensitization and resensitization reveal an arrestin-, GRK2-, and GRK5-independent mode of regulation in human embryonic kidney 293 cells. Mol Pharmacol. 2001;60:1020–30.
Gurevich EV, Benovic JL, Gurevich VV. Arrestin2 and arrestin3 are differentially expressed in the rat brain during postnatal development. Neuroscience. 2002;109:421–36.
Whalen EJ, Rajagopal S, Lefkowitz RJ. Therapeutic potential of beta-arrestin- and G protein-biased agonists. Trends Mol Med. 2011;17:126–39.
Grange-Midroit M, Garcia-Sevilla JA, Ferrer-Alcon M, La Harpe R, Huguelet P, Guimon J. Regulation of GRK 2 and 6, beta-arrestin-2 and associated proteins in the prefrontal cortex of drug-free and antidepressant drug-treated subjects with major depression. Brain Res Mol Brain Res. 2003;111:31–41.
Labasque M, Reiter E, Becamel C, Bockaert J, Marin P. Physical interaction of calmodulin with the 5-hydroxytryptamine2C receptor C-terminus is essential for G protein-independent, arrestin-dependent receptor signaling. Mol Biol Cell. 2008;19:4640–50.
Liu Y, Gibson AW, Levinstein MR, Lesiak AJ, Ong SE, Neumaier JF. 5-HT(1B) Receptor-Mediated Activation of ERK1/2 Requires Both Galpha(i/o) and beta-Arrestin Proteins. ACS Chem Neurosci. 2019;10:3143–53.
Stroth N, Niso M, Colabufo NA, et al. Arylpiperazine agonists of the serotonin 5-HT1A receptor preferentially activate cAMP signaling versus recruitment of beta-arrestin-2. Bioorg Med Chem. 2015;23:4824–30.
Salaciak K, Gluch-Lutwin M, Siwek A, et al. The antidepressant-like activity of chiral xanthone derivatives may be mediated by 5-HT1A receptor and beta-arrestin signalling. J Psychopharmacol. 2020;34:1431–42.
Bhatnagar A, Willins DL, Gray JA, Woods J, Benovic JL, Roth BL. The dynamin-dependent, arrestin-independent internalization of 5-hydroxytryptamine 2A (5-HT2A) serotonin receptors reveals differential sorting of arrestins and 5-HT2A receptors during endocytosis. J Biol Chem. 2001;276:8269–77.
Schmid CL, Streicher JM, Meltzer HY, Bohn LM. Clozapine acts as an agonist at serotonin 2A receptors to counter MK-801-induced behaviors through a betaarrestin2-independent activation of Akt. Neuropsychopharmacology. 2014;39:1902–13.
Nichols DE. Hallucinogens. Pharmacol Ther. 2004;101:131–81.
Schmid CL, Raehal KM, Bohn LM. Agonist-directed signaling of the serotonin 2A receptor depends on beta-arrestin-2 interactions in vivo. Proc Natl Acad Sci USA. 2008;105:1079–84.
Schmid CL, Bohn LM. Serotonin, but not N-methyltryptamines, activates the serotonin 2A receptor via a ss-arrestin2/Src/Akt signaling complex in vivo. J Neurosci. 2010;30:13513–24.
Dutta Gupta O, Karbat I, Pal K. Understanding the Molecular Regulation of Serotonin Receptor 5-HTR(1B)-beta-Arrestin1 Complex in Stress and Anxiety Disorders. J Mol Neurosci. 2023;73:664–77.
Bechade C, D’Andrea I, Etienne F, et al. The serotonin 2B receptor is required in neonatal microglia to limit neuroinflammation and sickness behavior in adulthood. Glia. 2021;69:638–54.
Fang Y, Ding X, Zhang Y, et al. Fluoxetine inhibited the activation of A1 reactive astrocyte in a mouse model of major depressive disorder through astrocytic 5-HT(2B)R/beta-arrestin2 pathway. J Neuroinflammation. 2022;19:23.
Labasque M, Meffre J, Carrat G, Becamel C, Bockaert J, Marin P. Constitutive activity of serotonin 2C receptors at G protein-independent signaling: modulation by RNA editing and antidepressants. Mol Pharmacol. 2010;78:818–26.
Leopoldo M, Lacivita E, Berardi F, Perrone R, Hedlund PB. Serotonin 5-HT7 receptor agents: Structure-activity relationships and potential therapeutic applications in central nervous system disorders. Pharmacol Ther. 2011;129:120–48.
Chaturvedi M, Schilling J, Beautrait A, Bouvier M, Benovic JL, Shukla AK. Emerging paradigm of intracellular targeting of G Protein-Coupled Receptors. Trends Biochem Sci. 2018;43:533–46.
Eichel K, von Zastrow M. Subcellular Organization of GPCR Signaling. Trends Pharmacol Sci. 2018;39:200–8.
Golan M, Schreiber G, Avissar S. Antidepressant-induced differential ubiquitination of beta-arrestins 1 and 2 in mononuclear leucocytes of patients with depression. Int J Neuropsychopharmacol. 2013;16:1745–54.
المشرفين على المادة: 0 (beta-Arrestins)
0 (Receptors, Serotonin)
333DO1RDJY (Serotonin)
تواريخ الأحداث: Date Created: 20240712 Date Completed: 20240712 Latest Revision: 20240926
رمز التحديث: 20240927
مُعرف محوري في PubMed: PMC11245247
DOI: 10.1097/MD.0000000000038943
PMID: 38996114
قاعدة البيانات: MEDLINE
الوصف
تدمد:1536-5964
DOI:10.1097/MD.0000000000038943