دورية أكاديمية

Manipulation of protein corona for nanomedicines.

التفاصيل البيبلوغرافية
العنوان: Manipulation of protein corona for nanomedicines.
المؤلفون: Li T; NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China.; Southern Medical University, Guangzhou, People's Republic of China., Wang Y; NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China.; Southern Medical University, Guangzhou, People's Republic of China., Zhou D; NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China.; Southern Medical University, Guangzhou, People's Republic of China.
المصدر: Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology [Wiley Interdiscip Rev Nanomed Nanobiotechnol] 2024 Jul-Aug; Vol. 16 (4), pp. e1982.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: John Wiley & Sons Country of Publication: United States NLM ID: 101508311 Publication Model: Print Cited Medium: Internet ISSN: 1939-0041 (Electronic) Linking ISSN: 19390041 NLM ISO Abbreviation: Wiley Interdiscip Rev Nanomed Nanobiotechnol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Hoboken, NJ : John Wiley & Sons
مواضيع طبية MeSH: Protein Corona*/chemistry , Nanomedicine*, Humans ; Animals ; Drug Delivery Systems
مستخلص: Nanomedicines have significantly advanced the development of diagnostic and therapeutic strategies for various diseases, while they still encounter numerous challenges. Upon entry into the human body, nanomedicines interact with biomolecules to form a layer of proteins, which is defined as the protein corona that influences the biological properties of nanomedicines. Traditional approaches have primarily focused on designing stealthy nanomedicines to evade biomolecule adsorption; however, due to the intricacies of the biological environment within body, this method cannot completely prevent biomolecule adsorption. As research on the protein corona progresses, manipulating the protein corona to modulate the in vivo behaviors of nanomedicines has become a research focus. In this review, modern strategies focused on influencing the biological efficacy of nanomedicines in vivo by manipulating protein corona, along with their wide-ranging applications across diverse diseases are critically summarized, highlighted and discussed. Finally, future directions for this important yet challenging research area are also briefly discussed. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
(© 2024 Wiley Periodicals LLC.)
References: Achilli, E., Flores, C. Y., Temprana, C. F., Alonso, S., del Alonso, S. V., Radrizzani, M., & Grasselli, M. (2022). Enhanced gold nanoparticle‐tumor cell recognition by albumin multilayer coating. OpenNano, 6, 100033. https://doi.org/10.1016/j.onano.2021.100033.
Andersen, C. B., Torvund‐Jensen, M., Nielsen, M. J., de Oliveira, C. L., Hersleth, H. P., Andersen, N. H., Pedersen, J. S., Andersen, G. R., & Moestrup, S. K. (2012). Structure of the haptoglobin‐haemoglobin complex. Nature, 489(7416), 456–459. https://doi.org/10.1038/nature11369.
Arezki, Y., Delalande, F., Schaeffer‐Reiss, C., Cianferani, S., Rapp, M., Lebeau, L., Pons, F., & Ronzani, C. (2022). Surface charge influences protein corona, cell uptake and biological effects of carbon dots. Nanoscale, 14(39), 14695–14710. https://doi.org/10.1039/d2nr03611h.
Arnold, R. R., Cole, M. F., & McGhee, J. R. (1977). A bactericidal effect for human lactoferrin. Science, 197(4300), 263–265. https://doi.org/10.1126/science.327545.
Arranz‐Trullen, J., Lu, L., Pulido, D., Bhakta, S., & Boix, E. (2017). Host antimicrobial peptides: The promise of new treatment strategies against tuberculosis. Frontiers in Immunology, 7(8), 1499. https://doi.org/10.3389/fimmu.2017.01499.
Bai, L. Y., Shi, E., Li, Y., Yang, M., Li, C. Y., Li, C. Y., Wang, Y., & Wang, Y. S. (2022). Oxyhemoglobin‐based Nanophotosensitizer for specific and synergistic Photothermal and photodynamic therapies against Porphyromonas gingivalis oral infection. ACS Biomaterials Science & Engineering, 9(1), 485–497. https://doi.org/10.1021/acsbiomaterials.2c01034.
Barenholz, Y. (2012). Doxil(R)—The first FDA‐approved nano‐drug: Lessons learned. Journal of Controlled Release, 160(2), 117–151. https://doi.org/10.1016/j.jconrel.2012.03.020.
Barz, M., Luxenhofer, R., Zentel, R., & Vicent, M. J. (2011). Overcoming the PEG‐addiction: Well‐defined alternatives to PEG, from structure–property relationships to better defined therapeutics. Polymer Chemistry, 2(9), 1900–1918. https://doi.org/10.1039/c0py00406e.
Benkhaled, S., Schiappacasse, L., Awde, A., & Kinj, R. (2024). Stereotactic radiosurgery and stereotactic fractionated radiotherapy in the management of brain metastases. Cancers, 16(6), 1093. https://doi.org/10.3390/cancers16061093.
Bian, Y. Z., Rong, Z. X., & Chang, T. M. S. (2011). Polyhemoglobin‐superoxide dismutase‐catalase‐carbonic anhydrase: A novel biotechnology‐based blood substitute that artificial cells. Blood Substitutes, and Biotechnology, 39(3), 127–136. https://doi.org/10.3109/10731199.2011.581052.
Brahimi‐Horn, M. C., Chiche, J., & Pouyssegur, J. (2007). Hypoxia signalling controls metabolic demand. Current Opinion in Cell Biology, 19(2), 223–229. https://doi.org/10.1016/j.ceb.2007.02.003.
Cai, R., & Chen, C. (2019). The crown and the scepter: Roles of the protein Corona in Nanomedicine. Advanced Materials, 31(45), e1805740. https://doi.org/10.1002/adma.201805740.
Chan, W. C. W. (2023). Principles of nanoparticle delivery to solid tumors. BME Frontiers, 4(31), 0016. https://doi.org/10.34133/bmef.0016.
Chang, T. M. S. (2004). Hemoglobin‐based red blood cell substitutes. Artificial Organs, 28(9), 789–794. https://doi.org/10.1111/j.1525-1594.2004.07394.x.
Chen, C. M., Zhang, W., Ouyang, Y., Tan, Y. X., Zhao, S., Chen, Y., He, L., Lu, S. Y., Ran, H. T., & Liu, H. (2023). Hemoglobin‐decorated boron‐carbon Nanosheets with catalytic ability and near‐infrared II light response for tumor Photothermal Chemodynamic therapy. ACS Applied Nano Materials, 6(9), 7572–7581. https://doi.org/10.1021/acsanm.3c00726.
Chen, Z. K., Liu, L. L., Liang, R. J., Luo, Z. Y., He, H. M., Wu, Z. H., Tian, H., Zheng, M. B., Ma, Y. F., & Cai, L. T. (2018). Bioinspired hybrid protein oxygen Nanocarrier amplified photodynamic therapy for eliciting anti‐tumor immunity and abscopal effect. ACS Nano, 12(8), 8633–8645. https://doi.org/10.1021/acsnano.8b04371.
Desai, N., Trieu, V., Damascelli, B., & Soon‐Shiong, P. (2009). SPARC expression correlates with tumor response to albumin‐bound paclitaxel in head and neck cancer patients. Translational Oncology, 2(2), 59–64. https://doi.org/10.1593/tlo.09109.
Etzerodt, A., Tsalkitzi, K., Maniecki, M., Damsky, W., Delfini, M., Baudoin, E., Moulin, M., Bosenberg, M., Graversen, J. H., Auphan‐Anezin, N., Moestrup, S. K., & Lawrence, T. (2019). Specific targeting of CD163+ TAMs mobilizes inflammatory monocytes and promotes T cell–mediated tumor regression. Journal of Experimental Medicine, 216(10), 2394–2411. https://doi.org/10.1084/jem.20182124.
Gao, R. L., Gu, Y., Yang, Y., He, Y. P., Huang, W. P., Sun, T., Tang, Z. X., Wang, Y., & Yang, W. (2022). Robust radiosensitization of hemoglobin‐curcumin nanoparticles suppresses hypoxic hepatocellular carcinoma. Journal of Nanobiotechnology, 20(1), 115–130. https://doi.org/10.1186/s12951-022-01316-w.
Gao, Z., Jiang, C., Zhang, J., Jiang, X., Li, L., Zhao, P., Yang, H., Huang, Y., & Li, J. (2023). Hierarchical graph learning for protein‐protein interaction. Nature Communications, 14(1), 1093. https://doi.org/10.1038/s41467-023-36736-1.
Garcia‐Montoya, I. A., Cendon, T. S., Arevalo‐Gallegos, S., & Rascon‐Cruz, Q. (2012). Lactoferrin a multiple bioactive protein: An overview. Biochimica et Biophysica Acta, 1820(3), 226–236. https://doi.org/10.1016/j.bbagen.2011.06.018.
Garg, U., Jain, N., Kaul, S., & Nagaich, U. (2023). Role of albumin as a targeted drug carrier in the Management of Rheumatoid Arthritis: A comprehensive review. Molecular Pharmaceutics, 20(11), 5345–5358. https://doi.org/10.1021/acs.molpharmaceut.3c00581.
Gell, D. A. (2018). Structure and function of haemoglobins. Blood Cells, Molecules, and Diseases, 70, 13–42. https://doi.org/10.1016/j.bcmd.2017.10.006.
Geng, X. R., Chen, Y. H., Chen, Z. Y., Wei, X. Y., Dai, Y. L., & Yuan, Z. (2022). Oxygen‐carrying biomimetic nanoplatform for sonodynamic killing of bacteria and treatment of infection diseases. Ultrasonics Sonochemistry, 84, 105972. https://doi.org/10.1016/j.ultsonch.2022.105972.
Giulimondi, F., Vulpis, E., Digiacomo, L., Giuli, M. V., Mancusi, A., Capriotti, A. L., Laganà, A., Cerrato, A., Zenezini Chiozzi, R., Nicoletti, C., Amenitsch, H., Cardarelli, F., Masuelli, L., Bei, R., Screpanti, I., Pozzi, D., Zingoni, A., Checquolo, S., & Caracciolo, G. (2022). Opsonin‐deficient Nucleoproteic Corona endows UnPEGylated liposomes with stealth properties in vivo. ACS Nano, 16(2), 2088–2100. https://doi.org/10.1021/acsnano.1c07687.
Gruner, M. S., Kauscher, U., Linder, M. B., & Monopoli, M. P. (2016). An environmental route of exposure affects the formation of nanoparticle coronas in blood plasma. Journal of Proteomics, 137, 52–58. https://doi.org/10.1016/j.jprot.2015.10.028.
Hadjidemetriou, M., McAdam, S., Garner, G., Thackeray, C., Knight, D., Smith, D., Al‐Ahmady, Z., Mazza, M., Rogan, J., Clamp, A., & Kostarelos, K. (2019). The human in vivo biomolecule Corona onto PEGylated liposomes: A proof‐of‐concept clinical study. Advanced Materials, 31(4), e1803335. https://doi.org/10.1002/adma.201803335.
Han, H., Li, J., & Santos, H. A. (2023). Recent advances in Fenton and Fenton‐like reaction mediated nanoparticle in cancer therapy. Biomedical Technology, 3, 40–51. https://doi.org/10.1016/j.bmt.2022.12.004.
He, Y. P., Fang, Y. F., Zhang, M., Zhao, Y. G., Tu, B., Shi, M. J., Muhitdinov, B., Asrorov, A., Xu, Q., & Huang, Y. Y. (2022). Remodeling “cold” tumor immune microenvironment via epigenetic‐based therapy using targeted liposomes with in situ formed albumin corona. Acta Pharmaceutica Sinica B, 12(4), 2057–2073. https://doi.org/10.1016/j.apsb.2021.09.022.
He, Z., Qu, S., & Shang, L. (2024). Perspectives on protein‐nanoparticle interactions at the in vivo level. Langmuir, 40(15), 7781–7790. https://doi.org/10.1021/acs.langmuir.4c00181.
Hu, H., Zhang, Z., Fang, Y., Chen, L., & Wu, J. (2023). Therapeutic poly(amino acid)s as drug carriers for cancer therapy. Chinese Chemical Letters, 34(6), 107953. https://doi.org/10.1016/j.cclet.2022.107953.
Hua, P., Liang, R., Yang, S., Tu, Y., & Chen, M. (2024). Microneedle‐assisted dual delivery of PUMA gene and celastrol for synergistic therapy of rheumatoid arthritis through restoring synovial homeostasis. Bioactive Materials, 36, 83–95. https://doi.org/10.1016/j.bioactmat.2024.02.030.
Huang, H., Feng, W., Chen, Y., & Shi, J. L. (2020). Inorganic nanoparticles in clinical trials and translations. Nano Today, 35, 100972. https://doi.org/10.1016/j.nantod.2020.100972.
Huang, H., Yu, D., Hu, F., Huang, S. C., Song, J., Chen, H. Y., Li, L. L., & Peng, S. (2022). Clusters induced electron redistribution to tune oxygen reduction activity of transition metal single‐atom for metal–air batteries. Angewandte Chemie International Edition, 61(12), e202116068. https://doi.org/10.1002/anie.202116068.
Infantino, V., Santarsiero, A., Convertini, P., Todisco, S., & Iacobazzi, V. (2021). Cancer cell metabolism in hypoxia: Role of HIF‐1 as key regulator and therapeutic target. International Journal of Molecular Sciences, 22(11), 5703–5723. https://doi.org/10.3390/ijms22115703.
Ji, P., Wang, X., Yin, J., Mou, Y., Huang, H., & Ren, Z. (2022). Selective delivery of curcumin to breast cancer cells by self‐targeting apoferritin nanocages with pH‐responsive and low toxicity. Drug Delivery, 29(1), 986–996. https://doi.org/10.1080/10717544.2022.2056662.
Jia, C., Guo, Y., & Wu, F. G. (2022). Chemodynamic therapy via fenton and fenton‐like nanomaterials: Strategies and recent advances. Small, 18(6), e2103868. https://doi.org/10.1002/smll.202103868.
Karimi, M., Bahrami, S., Ravari, S. B., Zangabad, P. S., Mirshekari, H., Bozorgomid, M., Shahreza, S., Sori, M., & Hamblin, M. R. (2016). Albumin nanostructures as advanced drug delivery systems. Expert Opinion on Drug Delivery, 13(11), 1609–1623. https://doi.org/10.1080/17425247.2016.1193149.
Kianfar, E. (2021). Protein nanoparticles in drug delivery: Animal protein, plant proteins and protein cages, albumin nanoparticles. Journal of Nanobiotechnology, 19(1), 159. https://doi.org/10.1186/s12951-021-00896-3.
Kristiansen, M., Graversen, J. H., Jacobsen, C., Sonne, O., Hoffman, H., Law, S. K., & Moestrup, S. K. (2001). Identification of the haemoglobin scavenger receptor. Nature, 409, 198–201. https://doi.org/10.1038/35051594.
Lamichhane, S., & Lee, S. (2020). Albumin nanoscience: Homing nanotechnology enabling targeted drug delivery and therapy. Archives of Pharmacal Research, 43(1), 118–133. https://doi.org/10.1007/s12272-020-01204-7.
Lazarov, T., Juarez‐Carreño, S., Cox, N., & Geissmann, F. (2023). Physiology and diseases of tissue‐resident macrophages. Nature, 618(7966), 698–707. https://doi.org/10.1038/s41586-023-06002-x.
Lee, H. S., Yoo, S. Y., Lee, S. M., Kang, N. W., Kim, S. K., Song, G. Y., Kim, D. D., & Lee, J. Y. (2023). Hypoxia‐alleviating hemoglobin nanoclusters for sensitizing chemo‐photodynamic therapy of cervical cancer. Chemical Engineering Journal, 457(22), 100–108. https://doi.org/10.1016/j.cej.2022.141224.
Li, D. X., Chen, T., Zhang, Y. F., Xu, Y. H., & Niu, H. T. (2021). Synergistical starvation and chemo‐dynamic therapy for combating multidrug‐resistant bacteria and accelerating diabetic wound healing. Advanced Healthcare Materials, 10(18), e2100716. https://doi.org/10.1002/adhm.202100716.
Li, L., Yang, Y., Wang, L., Xu, F., Li, Y., & He, X. (2023). The effects of serum albumin pre‐adsorption of nanoparticles on protein corona and membrane interaction: A molecular simulation study. Journal of Molecular Biology, 435(1), 167771. https://doi.org/10.1016/j.jmb.2022.167771.
Li, M., Jin, X., Liu, T., Fan, F., Gao, F., Chai, S., & Yang, L. (2022). Nanoparticle elasticity affects systemic circulation lifetime by modulating adsorption of apolipoprotein A‐I in corona formation. Nature Communications, 13(1), 4137. https://doi.org/10.1038/s41467-022-31882-4.
Li, W., Yang, J., Luo, L., Jiang, M., Qin, B., Yin, H., Zhu, C., Yuan, X., Zhang, J., Luo, Z., Du, Y., Li, Q., Lou, Y., Qiu, Y., & You, J. (2019). Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nature Communications, 10(1), 3349. https://doi.org/10.1038/s41467-019-11269-8.
Li, Y., Fu, R. Z., Duan, Z. G., Zhu, C. H., & Fan, D. D. (2022). Artificial nonenzymatic antioxidant MXene Nanosheet‐anchored injectable hydrogel as a mild Photothermal‐controlled oxygen release platform for diabetic wound healing. ACS Nano, 16(5), 7486–7502. https://doi.org/10.1021/acsnano.1c10575.
Li, Z., Xiao, C., Yong, T. Y., Li, Z. F., Gan, L., & Yang, X. L. (2020). Influence of nanomedicine mechanical properties on tumor targeting delivery. Chemical Society Reviews, 49(8), 2273–2290. https://doi.org/10.1039/c9cs00575g.
Liang, G. H., Sadhukhan, T., Banerjee, S., Tang, D. S., Zhang, H. C., Cui, M. H., Montesdeoca, N., Karges, J., & Xiao, H. H. (2023). Reduction of platinum(IV) prodrug hemoglobin nanoparticles with deeply penetrating ultrasound radiation for tumor‐targeted therapeutically enhanced anticancer therapy. Angewandte Chemie International Edition, 62(22), e202301074. https://doi.org/10.1002/anie.202301074.
Liang, S., Yao, J. J., Liu, D., Rao, L., Chen, X. Y., & Wang, Z. H. (2023). Harnessing nanomaterials for cancer Sonodynamic immunotherapy. Advanced Materials, 35(33), e2211130. https://doi.org/10.1002/adma.202211130.
Liu, Q. Y., Zou, J. H., Chen, Z. J., He, W., & Wu, W. (2023). Current research trends of nanomedicines. Acta Pharmaceutica Sinica B, 13(11), 4391–4416. https://doi.org/10.1016/j.apsb.2023.05.018.
Liu, Y. G., Guo, Z. R., Li, F., Xiao, Y. Q., Zhang, Y. L., Bu, T., Jia, P., Zhe, T. T., & Wang, L. (2019). Multifunctional magnetic copper ferrite nanoparticles as Fenton‐like reaction and near‐infrared Photothermal agents for synergetic antibacterial therapy. ACS Applied Materials & Interfaces, 11(35), 31649–31660. https://doi.org/10.1021/acsami.9b10096.
Liu, Z. J., Liu, Q. Q., Zhang, H. Q., Zhang, X. Y., Wu, J., Sun, Z. Y., Zhu, M. S., Hu, X. Y., Qi, T., Kang, H. L., Chen, R., Huang, X. L., & Zhuang, J. (2022). Genetically engineered protein Corona‐based Cascade Nanozymes for enhanced tumor therapy. Advanced Functional Materials, 32(51), 18201–18207. https://doi.org/10.1002/adfm.202208513.
Lu, J., Gao, X., Wang, S., He, Y., Ma, X., Zhang, T., & Liu, X. (2023). Advanced strategies to evade the mononuclear phagocyte system clearance of nanomaterials. Exploration, 3(1), 20220045. https://doi.org/10.1002/exp.20220045.
Luan, J., Li, R., Xu, W., Sun, H., Li, Q., Wang, D., Dong, S., & Ding, J. (2023). Functional biomaterials for comprehensive periodontitis therapy. Acta Pharmaceutica Sinica B, 13(6), 2310–2333. https://doi.org/10.1016/j.apsb.2022.10.026.
Luo, S., Yang, Y., Zhao, T., Zhang, R., Fang, C., Li, Y., Zhang, Z., & Gong, T. (2023). Albumin‐based Silibinin nanocrystals targeting activated hepatic stellate cells for liver fibrosis therapy. ACS Applied Materials & Interfaces, 15(6), 7747–7758. https://doi.org/10.1021/acsami.2c19269.
Luo, Z. Y., Tian, H., Liu, L. L., Chen, Z. K., Liang, R. J., Chen, Z., Wu, Z. H., Ma, A. Q., Zheng, M. Q., & Cai, L. T. (2018). Tumor‐targeted hybrid protein oxygen carrier to simultaneously enhance hypoxia‐dampened chemotherapy and photodynamic therapy at a single dose. Theranostics, 8(13), 3584–3596. https://doi.org/10.7150/thno.25409.
Mahmoudi, M., Landry, M. P., Moore, A., & Coreas, R. (2023). The protein corona from nanomedicine to environmental science. Nature Reviews Materials, 8, 1–17. https://doi.org/10.1038/s41578-023-00552-2.
Marques, C., Hajipour, M. J., Marets, C., Oudot, A., Safavi‐Sohi, R., Guillemin, M., Borchard, G., Jordan, O., Saviot, L., & Maurizi, L. (2023). Identification of the proteins determining the blood circulation time of nanoparticles. ACS Nano, 17(13), 12458–12470. https://doi.org/10.1021/acsnano.3c02041.
Miclăuş, T., Beer, C., Chevallier, J., Scavenius, C., Bochenkov, V. E., Enghild, J. J., & Sutherland, D. S. (2016). Dynamic protein coronas revealed as a modulator of silver nanoparticle sulphidation in vitro. Nature Communications, 7(1), 11770. https://doi.org/10.1038/ncomms11770.
Monopoli, M. P., Walczyk, D., Campbell, A., Elia, G., Lynch, I., Bombelli, F. B., & Dawson, K. A. (2011). Physical‐chemical aspects of protein corona: Relevance to in vitro and in vivo biological impacts of nanoparticles. Journal of the American Chemical Society, 133(8), 2525–2534. https://doi.org/10.1021/ja107583h.
Mortimer, G. M., Butcher, N. J., Musumeci, A. W., Deng, Z. J., Martin, D. J., & Minchin, R. F. (2014). Cryptic epitopes of albumin determine mononuclear phagocyte system clearance of nanomaterials. ACS Nano, 8(4), 3357–3366. https://doi.org/10.1021/nn405830g.
Mu, X., Feng, W., Li, C., Li, K., Li, Y., Jing, X., Lu, Y., Zhou, X., & Li, Z. (2022). Lighting up self‐quenching nanoaggregates with protein Corona for simultaneous intraoperative imaging and Photothermal Theranostics of metastatic cancer. Analytical Chemistry, 94(27), 9775–9784. https://doi.org/10.1021/acs.analchem.2c01462.
Niaz, T., Sarkar, A., Mackie, A., & Imran, M. (2021). Impact of albumin corona on mucoadhesion and antimicrobial activity of carvacrol loaded chitosan nano‐delivery systems under simulated gastro‐intestinal conditions. International Journal of Biological Macromolecules, 169, 171–182. https://doi.org/10.1016/j.ijbiomac.2020.12.085.
Pan, X., Pei, X., Huang, H., Su, N., Wu, Z., Wu, Z., & Qi, X. (2021). One‐in‐one individual package and delivery of CRISPR/Cas9 ribonucleoprotein using apoferritin. Journal of Controlled Release, 337, 686–697. https://doi.org/10.1016/j.jconrel.2021.08.015.
Pan, Z., Fu, Q. Q., Wang, M. H., Gao, H. L., Dong, L., Zhou, P., Cheng, D. D., Chen, Y., Zou, D. H., He, J. C., Feng, X., & Yu, S. H. (2023). Designing nanohesives for rapid, universal, and robust hydrogel adhesion. Nature Communications, 14(1), 5378. https://doi.org/10.1038/s41467-023-40753-5.
Pana, M., Hu, D. R., Yuan, L. P., Yu, Y., Li, Y. C., & Qian, Z. Y. (2023). Newly developed gas‐assisted sonodynamic therapy in cancer treatment. Acta Pharmaceutica Sinica B, 13(7), 2951–2954. https://doi.org/10.1016/j.apsb.2022.12.021.
Piella, J., Bastús, N. G., & Puntes, V. (2016). Size‐dependent protein–nanoparticle interactions in citrate‐stabilized gold nanoparticles: The emergence of the protein Corona. Bioconjugate Chemistry, 28(1), 88–97. https://doi.org/10.1021/acs.bioconjchem.6b00575.
Pustulka, S. M., Ling, K., Pish, S. L., & Champion, J. A. (2020). Protein nanoparticle charge and hydrophobicity govern protein Corona and macrophage uptake. ACS Applied Materials & Interfaces, 12(43), 48284–48295. https://doi.org/10.1021/acsami.0c12341.
Saha, K., Moyano, D. F., & Rotello, V. M. (2014). Protein coronas suppress the hemolytic activity of hydrophilic and hydrophobic nanoparticles. Materials Horizons, 1(1), 102–105. https://doi.org/10.1039/c3mh00075c.
Salvati, A., Pitek, A. S., Monopoli, M. P., Prapainop, K., Bombelli, F. B., Hristov, D. R., Kelly, P. M., Åberg, C., Mahon, E., & Dawson, K. A. (2013). Transferrin‐functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nature Nanotechnology, 8(2), 137–143. https://doi.org/10.1038/nnano.2012.237.
Semenova, M. (2017). Protein–polysaccharide associative interactions in the design of tailor‐made colloidal particles. Current Opinion in Colloid & Interface Science, 28, 15–21. https://doi.org/10.1016/j.cocis.2016.12.003.
Shang, L., Yang, L., Seiter, J., Heinle, M., Brenner‐Weiss, G., Gerthsen, D., & Nienhaus, G. U. (2013). Nanoparticles interacting with proteins and cells: A systematic study of protein surface charge effects. Advanced Materials Interfaces, 1(2), 1300079. https://doi.org/10.1002/admi.201300079.
Shao, Q., Ding, T., Pan, F., Li, G., Shen, S., Qian, J., Zhan, C., & Wei, X. (2022). Protein corona mediated liposomal drug delivery for bacterial infection management. Asian Journal of Pharmaceutical Sciences, 17(6), 855–866. https://doi.org/10.1016/j.ajps.2022.10.003.
Shi, X. D., Yang, W. T., Ma, Q., Lu, Y., Xu, Y., Bian, K. X., Liu, F. J., Shi, C. Z., Wang, H., Shi, Y. X., & Zhang, B. B. (2020). Hemoglobin‐mediated biomimetic synthesis of paramagnetic O2‐evolving theranostic nanoprobes for MR imaging‐guided enhanced photodynamic therapy of tumor. Theranostics, 10(25), 11607–11621. https://doi.org/10.7150/thno.46228.
Shim, B. S., Lee, T. H., & Kang, Y. S. (1965). Immunological and biochemical investigations of human serum haptoglobin: Composition of haptoglobin–haemoglobin intermediate, haemoglobin‐binding sites and presence of additional alleles for‐chain. Nature, 207, 1264–1267. https://doi.org/10.1038/2071264a0.
Sica, A., & Mantovani, A. (2012). Macrophage plasticity and polarization: In vivo veritas. Journal of Clinical Investigation, 122(3), 787–795. https://doi.org/10.1172/JCI59643.
Silvin, A., Qian, J., & Ginhoux, F. (2023). Brain macrophage development, diversity and dysregulation in health and disease. Cellular & Molecular Immunology, 20(11), 1277–1289. https://doi.org/10.1038/s41423-023-01053-6.
Sonali, S. R. P., Singh, N., Sharma, G., Vijayakumar, M. R., Koch, B., Singh, S., Singh, U., Dash, D., Pandey, B. L., & Muthu, M. S. (2016). Transferrin liposomes of docetaxel for brain‐targeted cancer applications: Formulation and brain theranostics. Drug Delivery, 23(4), 1261–1271. https://doi.org/10.3109/10717544.2016.1162878.
Song, D., & Xu, Q. (2022). Engineering a Nano/biointerface for cell and organ‐selective drug delivery. Langmuir, 38(30), 9092–9098. https://doi.org/10.1021/acs.langmuir.2c01609.
Song, N., Zhang, J., Zhai, J., Hong, J., Yuan, C., & Liang, M. (2021). Ferritin: A multifunctional Nanoplatform for biological detection, imaging diagnosis, and drug delivery. Accounts of Chemical Research, 54(17), 3313–3325. https://doi.org/10.1021/acs.accounts.1c00267.
Sun, J. H., Liang, X. L., Cai, M. Y., Yan, L. B., Chen, Z. J., Guo, L., Jing, L., Wang, Y. P., & Zhou, D. F. (2022). Protein‐crowned micelles for targeted and synergistic tumor‐associated macrophage reprogramming to enhance cancer treatment. Nano Letters, 22(11), 4410–4420. https://doi.org/10.1021/acs.nanolett.2c00901.
Sun, Y., Wang, Y. H., Han, R. Y., Ren, Z. W., Chen, X., Dong, W. Z., Choi, S., Liu, Q. H., & Wang, X. B. (2023). Ultrasound cascade regulation of nano‐oxygen hybrids triggering ferroptosis augmented sonodynamic anticancer therapy. Nano Research, 16(5), 7280–7292. https://doi.org/10.1007/s12274-023-5377-0.
Taguchi, K., Yamasaki, K., Maruyama, T., & Otagiri, M. (2017). Comparison of the pharmacokinetic properties of hemoglobin‐based oxygen carriers. Journal of Functional Biomaterials, 8(1), 11–29. https://doi.org/10.3390/jfb8010011.
Tang, Z., Liu, Y., He, M., & Bu, W. (2019). Chemodynamic therapy: Tumour microenvironment‐mediated Fenton and Fenton‐like reactions. Angewandte Chemie International Edition, 58(4), 946–956. https://doi.org/10.1002/anie.201805664.
Tian, R., Zeng, Q., Zhu, S., Lau, J., Chandra, S., Ertsey, R., Hettie, K. S., Teraphongphom, T., Hu, Z., Niu, G., Kiesewetter, D. O., Sun, H., Zhang, X., Antaris, A. L., Brooks, B. R., & Chen, X. (2019). Albumin‐chaperoned cyanine dye yields superbright NIR‐II fluorophore with enhanced pharmacokinetics. Science Advances, 5, eaaw0672. https://doi.org/10.1126/sciadv.aaw0672.
Truffi, M., Fiandra, L., Sorrentino, L., Monieri, M., Corsi, F., & Mazzucchelli, S. (2016). Ferritin nanocages: A biological platform for drug delivery, imaging and theranostics in cancer. Pharmacological Research, 107, 57–65. https://doi.org/10.1016/j.phrs.2016.03.002.
Vash, B., Phung, N., Zein, S., & DeCamp, D. (1998). Three complement‐type repeats of the low‐density lipoprotein receptor‐related protein define a common binding site for RAP, PAI‐1, and Lactoferrin. Blood, 92(9), 3277–3285. https://doi.org/10.1182/blood.V92.9.3277.
Walkey, C. D., Olsen, J. B., Song, F. Y., Liu, R., Guo, H. B., Olsen, D. W. H., Cohen, Y., Emili, A., & Chan, W. C. W. (2014). Protein Corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano, 12(3), 2439–2452. https://doi.org/10.1021/nn406018q.
Wang, G., Jiang, Y., Xu, J., Shen, J., Lin, T., Chen, J., Fei, W., Qin, Y., Zhou, Z., Shen, Y., & Huang, P. (2023). Unraveling the plasma protein Corona by ultrasonic cavitation augments active‐transporting of liposome in solid tumor. Advanced Materials, 35(9), e2207271. https://doi.org/10.1002/adma.202207271.
Wang, L., Notomi, R., Sasaki, S., & Taniguchi, Y. (2023). Inhibition of transcription and antiproliferative effects in a cancer cell line using antigene oligonucleotides containing artificial nucleoside analogues. RSC Medicinal Chemistry, 14(8), 1482–1491. https://doi.org/10.1039/d3md00139c.
Wang, R., Zhang, L., Razzaq, A., Khan, N. U., Alfaifi, M. Y., Elbehairi, S. E. I., Shati, A. A., Iqbal, H., & Ni, J. (2024). Albumin‐coated green‐synthesized zinc oxide nanoflowers inhibit skin melanoma cells growth via intra‐cellular oxidative stress. International Journal of Biological Macromolecules, 263(1), 130694. https://doi.org/10.1016/j.ijbiomac.2024.130694.
Wang, T., Peng, W. R., Du, M., & Chen, Z. Y. (2023). Immunogenic sonodynamic therapy for inducing immunogenic cell death and activating antitumor immunity. Frontiers in Oncology, 13, 1167105. https://doi.org/10.3389/fonc.2023.1167105.
Wang, W., Liu, H., Huang, Z., Fu, F., Wang, W., Wu, L., Huang, Y., Wu, C., & Pan, X. (2022). The effect of organic ligand modification on protein corona formation of nanoscale metal organic frameworks. Chinese Chemical Letters, 33(9), 4185–4190. https://doi.org/10.1016/j.cclet.2022.02.052.
Wang, W., Mo, W., Xiao, X., Cai, M., Feng, F., Wang, Y., & Zhou, D. (2024). Antibiotic‐loaded Lactoferrin nanoparticles as a platform for enhanced infection therapy through targeted elimination of intracellular bacteria. Asian Journal of Pharmaceutical Sciences, 100926. https://doi.org/10.1016/j.ajps.2024.100926.
Wang, Y. F., Zhou, Y., Sun, J., Wang, X., Jia, Y., Ge, K., Yan, Y., Dawson, K. A., Guo, S., Zhang, J., & Liang, X. J. (2023). The Yin and Yang of the protein corona on the delivery journey of nanoparticles. Nano Research, 16(1), 715–734. https://doi.org/10.1007/s12274-022-4849-6.
Wang, Y. P., Yu, J., Luo, Z. J., Shi, Q. K., Liu, G. L., Wu, F., Wang, Z. Z., Huang, Y. B., & Zhou, D. F. (2021). Engineering endogenous tumor‐associated macrophage‐targeted biomimetic Nano‐RBC to reprogram tumor immunosuppressive microenvironment for enhanced chemo‐immunotherapy. Advanced Materials, 33(39), e2103497. https://doi.org/10.1002/adma.202103497.
Wen, M., Li, Y., Zhong, W., Li, Q., Cao, L., Tan, L. L., & Shang, L. (2022). Interactions of cationic gold nanoclusters with serum proteins and effects on their cellular responses. Journal of Colloid and Interface Science, 610, 116–125. https://doi.org/10.1016/j.jcis.2021.12.044.
Wu, S. Y., Ye, Y. X., Zhang, Q., Kang, Q. J., Xu, Z. M., Ren, S. Z., Lin, F., Duan, Y. T., Xu, H. J., Hu, Z. Y., Yang, S. S., Zhu, H. L., Zou, M. J., & Wang, Z. C. (2022). Multifunctional protein hybrid Nanoplatform for synergetic photodynamic‐chemotherapy of malignant carcinoma by homologous targeting combined with oxygen transport. Advanced Science, 10(5), e2203742. https://doi.org/10.1002/advs.202203742.
Xiao, Q., Zoulikha, M., Qiu, M., Teng, C., Lin, C., Li, X., Sallam, M. A., Xu, Q., & He, W. (2022). The effects of protein corona on in vivo fate of nanocarriers. Advanced Drug Delivery Reviews, 186, 114356. https://doi.org/10.1016/j.addr.2022.114356.
Xiao, W., Wang, Y., Zhang, H., Liu, Y., Xie, R., He, X., Zhou, Y., Liang, L., & Gao, H. (2021). The protein corona hampers the transcytosis of transferrin‐modified nanoparticles through blood‐brain barrier and attenuates their targeting ability to brain tumor. Biomaterials, 274, 120888. https://doi.org/10.1016/j.biomaterials.2021.120888.
Xu, M. Z., Qi, Y. M., Liu, G. S., Song, Y. Q., Jiang, X. Y., & Du, B. J. (2023). Size‐dependent in vivo transport of nanoparticles: Implications for delivery, targeting, and clearance. ACS Nano, 17(21), 20825–20849. https://doi.org/10.1021/acsnano.3c05853.
Xu, R., Saw, P. E., & Xu, L. (2022). Long‐circulating Theranostic 2D metal‐organic frameworks with concurrent O2 self‐supplying and GSH depletion characteristic for enhanced cancer Chemodynamic therapy. Small Methods, 6(6), e2200178. https://doi.org/10.1002/smtd.202200178.
Xu, T., Ma, Y. Y., Yuan, Q. L., Hu, H. X., Hu, X. K., Qian, Z. Y., Rolle, J. K., Gu, Y. Q., & Li, S. (2020). Enhanced Ferroptosis by oxygen‐boosted phototherapy based on 2‐in‐1 Nanoplatform of ferrous hemoglobin for tumor synergistic therapy. ACS Nano, 14(3), 3414–3425. https://doi.org/10.1021/acsnano.9b09426.
Yang, J., Li, W., Luo, L. H., Jiang, M. S., Zhu, C. Q., Qin, B., Yin, H., Yuan, X. L., Yin, X. Y., Zhang, J. L., Luo, Z. Y., Du, Y. Z., & You, J. (2018). Hypoxic tumor therapy by hemoglobin‐mediated drug delivery and reversal of hypoxia‐induced chemoresistance. Biomaterials, 182, 145–156. https://doi.org/10.1016/j.biomaterials.2018.08.004.
Yin, C., Zhu, Y., Lv, Y., Deng, H., & Liu, B. (2023). The potential of engineered multifunctional quantum dots for macrophage theranostics. The Innovation, 4(5), 100492. https://doi.org/10.1016/j.xinn.2023.100492.
Yin, T., Yin, J., Ran, H., Ren, Y. G., Lu, C. Y., Liu, L. L., Shi, Q. X., Qiu, Y. Z., Pan, H., & Ma, A. (2022). Hypoxia‐alleviated sonodynamic therapy based on a hybrid protein oxygen carrier to enhance tumor inhibition. Biomaterials Science, 10(1), 294–305. https://doi.org/10.1039/d1bm01710a.
Yu, Q., Zhou, J., Song, J., Zhou, H., Kang, B., Chen, H. Y., & Xu, J. J. (2022). A Cascade Nanoreactor of metal‐protein‐polyphenol capsule for oxygen‐mediated synergistic tumor starvation and Chemodynamic therapy. Small, 19(5), e2206592. https://doi.org/10.1002/smll.202206592.
Zhang, N. N., & Palmer, A. F. (2011). Development of a dichloroacetic acid‐hemoglobin conjugate as a potential targeted anti‐cancer therapeutic. Biotechnology and Bioengineering, 108(6), 1413–1433. https://doi.org/10.1002/bit.23071.
Zhang, P., Meng, J., Li, Y., Yang, C., Hou, Y., Tang, W., McHugh, K. J., & Jing, L. (2021). Nanotechnology‐enhanced immunotherapy for metastatic cancer. The Innovation, 2(4), 100174. https://doi.org/10.1016/j.xinn.2021.100174.
Zhang, T., Li, G., Miao, Y., Lu, J., Gong, N., Zhang, Y., Sun, Y., He, Y., Peng, M., Liu, X., Liang, X. J., & Fan, H. (2021). Magnetothermal regulation of in vivo protein corona formation on magnetic nanoparticles for improved cancer nanotherapy. Biomaterials, 276, 121021. https://doi.org/10.1016/j.biomaterials.2021.121021.
Zhang, Y., Zou, Z., Liu, S., Chen, F., Li, M., Zou, H., Liu, H., & Ding, J. (2024). Edaravone‐loaded poly(amino acid) nanogel inhibits ferroptosis for neuroprotection in cerebral ischemia injury. Asian Journal of Pharmaceutical Sciences, 19(2), 100886. https://doi.org/10.1016/j.ajps.2024.100886.
Zhang, Z.‐A., Xin, X., Liu, C., Liu, Y.‐H., Duan, H.‐X., Qi, L.‐L., Zhang, Y.‐Y., Zhao, H.‐M., Chen, L.‐Q., Jin, M.‐J., Gao, Z.‐G., & Huang, W. (2021). Novel brain‐targeted nanomicelles for anti‐glioma therapy mediated by the ApoE‐enriched protein corona in vivo. Journal of Nanobiotechnology, 19(1), 453. https://doi.org/10.1186/s12951-021-01097-8.
Zhao, H., Liu, R., Wang, L., Tang, F., Chen, W., & Liu, Y. N. (2023). Artificial macrophage with hierarchical nanostructure for biomimetic reconstruction of antitumor immunity. Nano‐Micro Letters, 15(1), 216. https://doi.org/10.1007/s40820-023-01193-4.
Zhao, J., Yang, Y. G., Xu, X., Li, H. Y., Fei, J. B., Liu, Y. L., Zhang, X. M., & Li, J. B. (2022). Super light‐sensitive photosensitizer nanoparticles for improved photodynamic therapy against solid tumors. Angewandte Chemie International Edition, 61(43), e202210920. https://doi.org/10.1002/anie.202210920.
Zhao, L., Gu, C., Gan, Y., Shao, L., Chen, H., & Zhu, H. (2020). Exosome‐mediated siRNA delivery to suppress postoperative breast cancer metastasis. Journal of Controlled Release, 318, 1–15. https://doi.org/10.1016/j.jconrel.2019.12.005.
Zhao, N. N., Jiao, Z. L., Chen, L. H., Liu, Z. W., Zhao, X. Y., & Xu, F. J. (2023). Hybrids of polysaccharides and inorganic nanoparticles: From morphological design to diverse biomedical applications. Accounts of Materials Research, 4(12), 1068–1082. https://doi.org/10.1021/accountsmr.3c00172.
Zhao, Y., Yang, Y., Zhang, J., Wang, R., Cheng, B., Kalambhe, D., Wang, Y., Gu, Z., Chen, D., Wang, B., & Huang, Y. (2020). Lactoferrin‐mediated macrophage targeting delivery and patchouli alcohol‐based therapeutic strategy for inflammatory bowel diseases. Acta Pharmaceutica Sinica B, 10(10), 1966–1976. https://doi.org/10.1016/j.apsb.2020.07.019.
Zhou, T. J., Zhang, M. M., Liu, D. M., Huang, L. L., Yu, H. Q., Wang, Y., Xing, L., & Jiang, H. L. (2024). Glutathione depletion and dihydroorotate dehydrogenase inhibition actuated ferroptosis‐augment to surmount triple‐negative breast cancer. Biomaterials, 305, 122447. https://doi.org/10.1016/j.biomaterials.2023.122447.
معلومات مُعتمدة: 22275081 National Natural Science Foundation of China; 82372117 National Natural Science Foundation of China; 202206010068 Guangzhou Municipal Science and Technology Bureau; 2021YFC2400600/2021YFC2400602 National Key Research and Development Program of China; 2022YFC3601900/2022YFC3601902 National Key Research and Development Program of China; 2022M711532 China Postdoctoral Science Foundation; 2022T150302 China Postdoctoral Science Foundation
فهرسة مساهمة: Keywords: nanomedicines; nanomedicine‐protein interaction; protein corona; protein decoration; protein–protein interaction
المشرفين على المادة: 0 (Protein Corona)
تواريخ الأحداث: Date Created: 20240714 Date Completed: 20240714 Latest Revision: 20240714
رمز التحديث: 20240715
DOI: 10.1002/wnan.1982
PMID: 39004508
قاعدة البيانات: MEDLINE