دورية أكاديمية

Intensified training augments cardiac function, but not blood volume, in male youth elite ice hockey team players.

التفاصيل البيبلوغرافية
العنوان: Intensified training augments cardiac function, but not blood volume, in male youth elite ice hockey team players.
المؤلفون: Fischer M; The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark., Jeppesen JS; The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark., Vigh-Larsen JF; Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark., Stöhr EJ; COR-HELIX (Cardiovascular Regulation and Exercise Laboratory - Integration and Xploration), Institute of Sports Science, Leibniz University, Hannover, Germany.; Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, New York, USA., Mohr M; Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, Odense, Denmark.; Centre of Health Sciences, Faculty of Health, University of the Faroe Islands, Tórshavn, Faroe Islands., Wickham KA; The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark., Gliemann L; The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark., Bangsbo J; The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark., Hellsten Y; The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark., Hostrup M; The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark.
المصدر: Experimental physiology [Exp Physiol] 2024 Jul 16. Date of Electronic Publication: 2024 Jul 16.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: England NLM ID: 9002940 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1469-445X (Electronic) Linking ISSN: 09580670 NLM ISO Abbreviation: Exp Physiol Subsets: MEDLINE
أسماء مطبوعة: Publication: Cambridge, Eng : Wiley-Blackwell
Original Publication: Cambridge ; New York, NY, USA : Published for the Physiological Society by Cambridge University Press, c1990-
مستخلص: While it is well-established that a period of interval training performed at near maximal effort, such as speed endurance training (SET), enhances intense exercise performance in well-trained individuals, less is known about its effect on cardiac morphology and function as well as blood volume. To investigate this, we subjected 12 Under-20 Danish national team ice hockey players (age 18 ± 1 years, mean ± SD) to 4 weeks of SET, consisting of 6-10 × 20 s skating bouts at maximal effort interspersed by 2 min of recovery conducted three times weekly. This was followed by 4 weeks of regular training (follow-up). We assessed resting cardiac function and dimensions using transthoracic echocardiography and quantified total blood volume with the carbon monoxide rebreathing technique at three time points: before SET, after SET and after the follow-up period. After SET, stroke volume had increased by 10 (2-18) mL (mean (95% CI)), left atrial end-diastolic volume by 10 (3-17) mL, and circumferential strain improved by 0.9%-points (1.7-0.1) (all P < 0.05). At follow-up, circumferential strain and left atrial end-diastolic volume were reverted to baseline levels, while stroke volume remained elevated. Blood volume and morphological parameters for the left ventricle, including mass and end-diastolic volume, did not change during the study. In conclusion, our findings demonstrate that a brief period of SET elicits beneficial central cardiac adaptations in elite ice hockey players independent of changes in blood volume.
(© 2024 The Author(s). Experimental Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.)
References: Arbab‐Zadeh, A., Perhonen, M., Howden, E., Peshock, R. M., Zhang, R., Adams‐Huet, B., Haykowsky, M. J., & Levine, B. D. (2014). Cardiac remodeling in response to 1 year of intensive endurance training. Circulation, 130(24), 2152–2161.
Baggish, A. L., Wang, F., Weiner, R. B., Elinoff, J. M., Tournoux, F., Boland, A., Picard, M. H., Adolph, M., Hutter, J., & Wood, M. J. (2008). Training‐specific changes in cardiac structure and function: A prospective and longitudinal assessment of competitive athletes. Journal of Applied Physiology, 104(4), 1121–1128.
Billig, S., Zayat, R., Ebeling, A., Steffen, H., Nix, C., Hatam, N., Schnöring, H., & Derwall, M. (2021). Transesophageal echocardiography in swine: Evaluation of left and right ventricular structure, function and myocardial work. The International Journal of Cardiovascular Imaging, 37(3), 835–846.
Bonne, T. C., Doucende, G., Flück, D., Jacobs, R. A., Nordsborg, N. B., Robach, P., Walther, G., & Lundby, C. (2014). Phlebotomy eliminates the maximal cardiac output response to six weeks of exercise training. American Journal of Physiology‐Regulatory Integrative and Comparative Physiology, 306(10), R752–R760..
Brocherie, F., Girard, O., & Millet, G. P. (2018). Updated analysis of changes in locomotor activities across periods in an international ice hockey game. Biology of Sport, 35(3), 261–267.
Burge, C. M., & Skinner, S. L. (1995). Determination of hemoglobin mass and blood volume with CO: Evaluation and application of a method. Journal of Applied Physiology, 79(2), 623–631.
Cameli, M., Caputo, M., Mondillo, S., Ballo, P., Palmerini, E., Lisi, M., Marino, E., & Galderisi, M. (2009). Feasibility and reference values of left atrial longitudinal strain imaging by two‐dimensional speckle tracking. Cardiovascular Ultrasound, 7(1), 6.
Cameli, M., Mandoli, G. E., Loiacono, F., Dini, F. L., Henein, M., & Mondillo, S. (2016). Left atrial strain: A new parameter for assessment of left ventricular filling pressure. Heart Failure Reviews, 21(1), 65–76.
Carrick‐Ranson, G., Hastings, J. L., Bhella, P. S., Fujimoto, N., Shibata, S., Palmer, M. D., Boyd, K., Livingston, S., Dijk, E., & Levine, B. D. (2014). The effect of lifelong exercise dose on cardiovascular function during exercise. Journal of Applied Physiology, 116(7), 736–745.
Cox, M. H., Miles, D. S., Verde, T. J., & Rhodes, E. C. (1995). Applied physiology of ice hockey. Sports Medicine, 19(3), 184–201.
D'Ascenzi, F., Biella, F., Lemme, E., Maestrini, V., Di Giacinto, B., & Pelliccia, A. (2020). Female Athlete's Heart: Sex Effects on Electrical and Structural Remodeling. Circulation. Cardiovascular imaging, 13(12), e011587.
D'Ascenzi, F., Cameli, M., Lisi, M., Zacà, V., Natali, B., Malandrino, A., Benincasa, S., Catanese, S., Causarano, A., & Mondillo, S. (2012). Left atrial remodelling in competitive adolescent soccer players. International Journal of Sports Medicine, 33(10), 795–801.
Doucende, G., Schuster, I., Rupp, T., Startun, A., Dauzat, M., Obert, P., & Nottin, S. (2010). Kinetics of left ventricular strains and torsion during incremental exercise in healthy subjects. Circulation: Cardiovascular Imaging, 3(5), 586–594.
Douglas, A. S., & Kennedy, C. R. (2020). Tracking in‐match movement demands using local positioning system in world‐class men's ice hockey. Journal of Strength and Conditioning Research, 34(3), 639–646.
DuBois, D., & DuBois, E. F. (1915). Fifth paper the measurement of the surface area of man. Archives of Internal Medicine, XV(5_2), 868–881.
Elliott, A. D., Ariyaratnam, J., Howden, E. J., La Gerche, A., & Sanders, P. (2023). Influence of exercise training on the left atrium: Implications for atrial fibrillation, heart failure, and stroke. American Journal of Physiology‐Heart and Circulatory Physiology, 325(4), H822–H836.
Esfandiari, S., Wolsk, E., Granton, D., Azevedo, L., Valle, F. H., Gustafsson, F., & Mak, S. (2019). Pulmonary arterial wedge pressure at rest and during exercise in healthy adults: A systematic review and meta‐analysis. Journal of Cardiac Failure, 25(2), 114–122.
Fujimoto, N., Prasad, A., Hastings, J. L., Arbab‐Zadeh, A., Bhella, P. S., Shibata, S., Palmer, D., & Levine, B. D. (2010). Cardiovascular effects of 1 year of progressive and vigorous exercise training in previously sedentary individuals older than 65 years of age [Comparative Study Research Support, N.I.H., Extramural Research Support, Non‐U.S. Gov't]. Circulation, 122(18), 1797–1805.
Gibala, M. J., Little, J. P., van Essen, M., Wilkin, G. P., Burgomaster, K. A., Safdar, A., Raha, S., & Tarnopolsky, M. A. (2006). Short‐term sprint interval versus traditional endurance training: Similar initial adaptations in human skeletal muscle and exercise performance. The Journal of Physiology, 575(Pt 3), 901–911.
Godfrey, R. J., Ingham, S. A., Pedlar, C. R., & GP, W. (2005). The detraining and retraining of an elite rower: A case study. Journal of Science and Medicine in Sport, 8(3), 314–320.
González‐Alonso, J., Mora‐Rodríguez, R., Below, P. R., & Coyle, E. F. (1995). Dehydration reduces cardiac output and increases systemic and cutaneous vascular resistance during exercise. Journal of Applied Physiology, 79(5), 1487–1496.
Hatle, H., Støbakk, P. K., Mølmen, H. E., Brønstad, E., Tjønna, A. E., Steinshamn, S., Skogvoll, E., Wisløff, U., Ingul, C. B., & Rognmo, Ø. (2014). Effect of 24 sessions of high‐intensity aerobic interval training carried out at either high or moderate frequency, a randomized trial. PLoS ONE, 9(2), e88375.
Helgerud, J., Høydal, K., Wang, E., Karlsen, T., Berg, P., Bjerkaas, M., Simonsen, T., Helgesen, C., Hjorth, N., Bach, R., & Hoff, J. (2007). Aerobic high‐intensity intervals improve VO2max more than moderate training. Medicine & Science in Sports & Exercise, 39(4), 665–671.
Howden, E. J., Perhonen, M., Peshock, R. M., Zhang, R., Arbab‐Zadeh, A., Adams‐Huet, B., & Levine, B. D. (2015). Females have a blunted cardiovascular response to one year of intensive supervised endurance training. Journal of applied physiology (1985), 119(1), 37–46.
Iaia, F. M., & Bangsbo, J. (2010). Speed endurance training is a powerful stimulus for physiological adaptations and performance improvements of athletes. Scandinavian Journal of Medicine & Science in Sports, 20(Suppl 2), 11–23.
Król, W., Jędrzejewska, I., Konopka, M., Burkhard‐Jagodzińska, K., Klusiewicz, A., Pokrywka, A., Chwalbińska, J., Sitkowski, D., Dłużniewski, M., Mamcarz, A., & Braksator, W. (2016). Left atrial enlargement in young high‐level endurance athletes—Another sign of athlete's heart? Journal of Human Kinetics, 53(1), 81–90.
Lang, R. M., Badano, L. P., Mor‐Avi, V., Afilalo, J., Armstrong, A., Ernande, L., Flachskampf, F. A., Foster, E., Goldstein, S. A., Kuznetsova, T., Lancellotti, P., Muraru, D., Picard, M. H., Rietzschel, E. R., Rudski, L., Spencer, K. T., Tsang, W., & Voigt, J. U. (2015). Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. European Heart Journal – Cardiovascular Imaging, 16(3), 233–271.
Levine, B. D. (2008). VO2max: what do we know, and what do we still need to know? The Journal of Physiology, 586(1), 25–34.
Lignell, E., Fransson, D., Krustrup, P., & Mohr, M. (2018). Analysis of high‐intensity skating in top‐class ice hockey match‐play in relation to training status and muscle damage. Journal of Strength and Conditioning Research, 32(5), 1303–1310.
Lord, R., Macleod, D., George, K., Oxborough, D., Shave, R., & Stembridge, M. (2018). Reduced left ventricular filling following blood volume extraction does not result in compensatory augmentation of cardiac mechanics. Experimental Physiology, 103(4), 495–501.
McKay, A. K. A., Stellingwerff, T., Smith, E. S., Martin, D. T., Mujika, I., Goosey‐Tolfrey, V. L., Sheppard, J., & Burke, L. M. (2022). Defining training and performance caliber: A participant classification framework. International Journal of Sports Physiology and Performance, 17(2), 317–331.
Mohr, M., Krustrup, P., Nielsen, J. J., Nybo, L., Rasmussen, M. K., Juel, C., & Bangsbo, J. (2007). Effect of two different intense training regimens on skeletal muscle ion transport proteins and fatigue development. American Journal of Physiology‐Regulatory, Integrative and Comparative Physiology, 292(4), R1594–R1602.
Montero, D., Breenfeldt‐Andersen, A., Oberholzer, L., Haider, T., Goetze, J. P., Meinild‐Lundby, A.‐K., & Lundby, C. (2017). Erythropoiesis with endurance training: dynamics and mechanisms. American Journal of Physiology‐Regulatory, Integrative and Comparative Physiology, 312(6), R894–R902.
Montero, D., & Lundby, C. (2017). Red cell volume response to exercise training: Association with aging. Scandinavian Journal of Medicine & Science in Sports, 27(7), 674–683.
Nyberg, M., Fiorenza, M., Lund, A., Christensen, M., Romer, T., Piil, P., Hostrup, M., Christensen, P. M., Holbek, S., Ravnholt, T., Gunnarsson, T. P., & Bangsbo, J. (2016). Adaptations to speed endurance training in highly trained soccer players. Medicine and Science in Sports and Exercise, 48(7), 1355–1364.
Ong, G., Connelly, K. A., Goodman, J., Leong‐Poi, H., Evangelista, V., Levitt, K., Gledhill, N., Jamnik, V., Gledhill, S., Yan, A. T., Chan, K. L., & Chow, C. M. (2017). Echocardiographic assessment of young male draft‐eligible elite hockey players invited to the medical and fitness combine by the national hockey league. American Journal of Cardiology, 119(12), 2088–2092.
Parolin, M. L., Chesley, A., Matsos, M. P., Spriet, L. L., Jones, N. L., & Heigenhauser, G. J. (1999). Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. American Journal of Physiology, 277(5), E890–900.
Parsons, I. T., Snape, D., O'Hara, J., Holdsworth, D. A., Stacey, M. J., Gall, N., Chowienczyk, P., Wainwright, B., & Woods, D. R. (2020). Echocardiographic changes following active heat acclimation. Journal of Thermal Biology, 93, 102705.
Pedlar, C. R., Brown, M. G., Shave, R. E., Otto, J. M., Drane, A., Michaud‐Finch, J., Contursi, M., Wasfy, M. M., Hutter, A., Picard, M. H., Lewis, G. D., & Baggish, A. L. (2018). Cardiovascular response to prescribed detraining among recreational athletes. Journal of Applied Physiology, 124(4), 813–820.
Perkins, D. R., Talbot, J. S., Lord, R. N., Dawkins, T. G., Baggish, A. L., Zaidi, A., Uzun, O., Mackintosh, K. A., McNarry, M. A., Cooper, S. M., Lloyd, R. S., Oliver, J. L., Shave, R. E., & Stembridge, M. (2022). The influence of maturation on exercise‐induced cardiac remodelling and haematological adaptation. The Journal of Physiology, 600(3), 583–601.
Rønnestad, B. R., Øfsteng, S. J., & Ellefsen, S. (2019). Block periodization of strength and endurance training is superior to traditional periodization in ice hockey players. Scandinavian Journal of Medicine & Science in Sports, 29(2), 180–188.
Saltin, B., Blomqvist, G., Mitchell, J. H., Johnson, R. L., Jr., Wildenthal, K., & Chapman, C. B (1968). Response to exercise after bed rest and after training. Circulation, 38(Suppl 5), Vii1–78.
Saltin, B., Larsen, H., Terrados, N., Bangsbo, J., Bak, T., Kim, C. K., Svedenhag, J., & Rolf, C. J. (1995). Aerobic exercise capacity at sea level and at altitude in Kenyan boys, junior and senior runners compared with Scandinavian runners. Scandinavian Journal of Medicine & Science in Sports, 5(4), 209–221.
Schierbauer, J., Hoffmeister, T., Treff, G., Wachsmuth, N. B., & Schmidt, W. F. J. (2021). Effect of exercise‐induced reductions in blood volume on cardiac output and oxygen transport capacity. Frontiers in Physiology, 12, 679232.
Shahgaldi, K., Manouras, A., Brodin, L., & Winter, R. (2010). Direct measurement of left ventricular outflow tract area using three‐dimensional echocardiography in biplane mode improves accuracy of stroke volume assessment. Echocardiography, 27(9), 1078–1085.
Siebenmann, C., Keiser, S., Robach, P., & Lundby, C. (2017). CORP: The assessment of total hemoglobin mass by carbon monoxide rebreathing. Journal of Applied Physiology, 123(3), 645–654.
Skattebo, Ø., Bjerring, A. W., Auensen, M., Sarvari, S. I., Cumming, K. T., Capelli, C., & Hallén, J. (2020). Blood volume expansion does not explain the increase in peak oxygen uptake induced by 10 weeks of endurance training. European Journal of Applied Physiology, 120(5), 985–999.
Sommer Jeppesen, J., Vigh‐Larsen, J. F., Oxfeldt, M. S., Laustsen, N. M., Mohr, M., Bangsbo, J., & Hostrup, M. (2022). Four weeks of intensified training enhances on‐ice intermittent exercise performance and increases maximal oxygen consumption of Youth National‐Team ice hockey players. International Journal of Sports Physiology and Performance, 17(10), 1507–1515.
Stöhr, E. J., Shave, R. E., Baggish, A. L., & Weiner, R. B. (2016). Left ventricular twist mechanics in the context of normal physiology and cardiovascular disease: A review of studies using speckle tracking echocardiography. American Journal of Physiology‐Heart and Circulatory Physiology, 311(3), H633–H644.
Stöhr, E. J., Stembridge, M., & Esformes, J. I. (2015). In vivo human cardiac shortening and lengthening velocity is region dependent and not coupled with heart rate: ‘longitudinal’ strain rate markedly underestimates apical contribution. Experimental Physiology, 100(5), 507–518.
Vigh‐Larsen, J. F., Beck, J. H., Daasbjerg, A., Knudsen, C. B., Kvorning, T., Overgaard, K., Andersen, T. B., & Mohr, M. (2019). Fitness Characteristics of elite and subelite male ice hockey players: A cross‐sectional study. Journal of Strength and Conditioning Research, 33(9), 2352–2360.
Vigh‐Larsen, J. F., Ermidis, G., Rago, V., Randers, M. B., Fransson, D., Nielsen, J. L., Gliemann, L., Piil, J. F., Morris, N. B., FV, D. E. P., Overgaard, K., Andersen, T. B., Nybo, L., Krustrup, P., & Mohr, M. (2020). Muscle metabolism and fatigue during simulated ice hockey match‐play in elite players. Medicine and Science in Sports and Exercise, 52(10), 2162–2171.
Watanabe, K., Stöhr, E. J., Akiyama, K., Watanabe, S., & González‐Alonso, J. (2020). Dehydration reduces stroke volume and cardiac output during exercise because of impaired cardiac filling and venous return, not left ventricular function. Physiological Reports, 8(11), e14433.
Westby, C. M., Martin, D. S., Lee, S. M., Stenger, M. B., & Platts, S. H. (2016). Left ventricular remodeling during and after 60 days of sedentary head‐down bed rest. Journal of Applied Physiology, 120(8), 956–964.
معلومات مُعتمدة: NNF.22SA0078293 Team Danmark through the Novo Nordisk Foundation
فهرسة مساهمة: Keywords: blood volume; echocardiography; high‐intensity interval training; performance
تواريخ الأحداث: Date Created: 20240717 Latest Revision: 20240717
رمز التحديث: 20240717
DOI: 10.1113/EP091674
PMID: 39014554
قاعدة البيانات: MEDLINE
الوصف
تدمد:1469-445X
DOI:10.1113/EP091674