دورية أكاديمية

CRISPR-Cas12a exhibits metal-dependent specificity switching.

التفاصيل البيبلوغرافية
العنوان: CRISPR-Cas12a exhibits metal-dependent specificity switching.
المؤلفون: Nguyen GT; Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA., Schelling MA; Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA., Raju A; Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA., Buscher KA; Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA., Sritharan A; Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA., Sashital DG; Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA.
المصدر: Nucleic acids research [Nucleic Acids Res] 2024 Sep 09; Vol. 52 (16), pp. 9343-9359.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Oxford University Press Country of Publication: England NLM ID: 0411011 Publication Model: Print Cited Medium: Internet ISSN: 1362-4962 (Electronic) Linking ISSN: 03051048 NLM ISO Abbreviation: Nucleic Acids Res Subsets: MEDLINE
أسماء مطبوعة: Publication: 1992- : Oxford : Oxford University Press
Original Publication: London, Information Retrieval ltd.
مواضيع طبية MeSH: CRISPR-Cas Systems* , Magnesium*/metabolism , Magnesium*/chemistry , CRISPR-Associated Proteins*/metabolism , CRISPR-Associated Proteins*/genetics, Gene Editing/methods ; Endodeoxyribonucleases/metabolism ; Endodeoxyribonucleases/genetics ; Substrate Specificity ; Bacterial Proteins/metabolism ; Bacterial Proteins/genetics
مستخلص: Cas12a is the immune effector of type V-A CRISPR-Cas systems and has been co-opted for genome editing and other biotechnology tools. The specificity of Cas12a has been the subject of extensive investigation both in vitro and in genome editing experiments. However, in vitro studies have often been performed at high magnesium ion concentrations that are inconsistent with the free Mg2+ concentrations that would be present in cells. By profiling the specificity of Cas12a orthologs at a range of Mg2+ concentrations, we find that Cas12a switches its specificity depending on metal ion concentration. Lowering Mg2+ concentration decreases cleavage defects caused by seed mismatches, while increasing the defects caused by PAM-distal mismatches. We show that Cas12a can bind seed mutant targets more rapidly at low Mg2+ concentrations, resulting in faster cleavage. In contrast, PAM-distal mismatches cause substantial defects in cleavage following formation of the Cas12a-target complex at low Mg2+ concentrations. We observe differences in Cas12a specificity switching between three orthologs that results in variations in the routes of phage escape from Cas12a-mediated immunity. Overall, our results reveal the importance of physiological metal ion conditions on the specificity of Cas effectors that are used in different cellular environments.
(© The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.)
التعليقات: Update of: bioRxiv. 2024 Jan 17:2023.11.29.569287. doi: 10.1101/2023.11.29.569287. (PMID: 38076861)
References: Nat Biotechnol. 2016 Aug;34(8):863-8. (PMID: 27272384)
Cell Res. 2018 Apr;28(4):491-493. (PMID: 29531313)
Mol Cell. 2017 Apr 20;66(2):221-233.e4. (PMID: 28431230)
Nature. 2017 Jun 22;546(7659):559-563. (PMID: 28562584)
Methods Enzymol. 2023;679:97-129. (PMID: 36682874)
Cell Rep. 2018 Jan 9;22(2):359-371. (PMID: 29320733)
J Biol Chem. 2020 Apr 24;295(17):5538-5553. (PMID: 32161115)
Nat Biotechnol. 2021 Jan;39(1):84-93. (PMID: 32895548)
Biomed J. 2020 Feb;43(1):8-17. (PMID: 32200959)
Nat Methods. 2012 Jul;9(7):671-5. (PMID: 22930834)
J Bacteriol. 2008 Feb;190(4):1390-400. (PMID: 18065545)
Biometals. 2002 Sep;15(3):251-9. (PMID: 12206391)
Science. 2018 Apr 27;360(6387):436-439. (PMID: 29449511)
Mol Cell. 2018 Sep 06;71(5):816-824.e3. (PMID: 30078724)
Cell. 2015 Oct 22;163(3):759-71. (PMID: 26422227)
FEMS Microbiol Rev. 2006 May;30(3):321-81. (PMID: 16594962)
Mol Cell. 2019 Feb 07;73(3):589-600.e4. (PMID: 30639240)
Proc Natl Acad Sci U S A. 2021 Dec 07;118(49):. (PMID: 34853172)
Mol Cell. 2023 Oct 5;83(19):3533-3545.e5. (PMID: 37802026)
Nat Biotechnol. 2016 Aug;34(8):869-74. (PMID: 27347757)
Mol Syst Biol. 2006;2:2006.0008. (PMID: 16738554)
Biochemistry. 2008 May 13;47(19):5336-53. (PMID: 18422348)
Nucleic Acids Res. 2023 Sep 8;51(16):8730-8743. (PMID: 37522352)
Nucleic Acids Res. 1997 Oct 15;25(20):4067-71. (PMID: 9321659)
Cell. 2018 Dec 13;175(7):1856-1871.e21. (PMID: 30503205)
Proc Natl Acad Sci U S A. 2018 May 22;115(21):5444-5449. (PMID: 29735714)
Nature. 2014 Mar 6;507(7490):62-7. (PMID: 24476820)
Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10098-103. (PMID: 21646539)
Nucleic Acids Res. 2022 Jun 24;50(11):6414-6422. (PMID: 35670674)
Methods Enzymol. 2019;616:61-85. (PMID: 30691655)
Nat Microbiol. 2019 May;4(5):888-897. (PMID: 30833733)
Mol Cell. 2012 Jun 8;46(5):606-15. (PMID: 22521690)
Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9798-803. (PMID: 24912165)
mBio. 2021 Jun 29;12(3):e0136121. (PMID: 34154416)
Cell. 2024 Jun 20;187(13):3249-3261.e14. (PMID: 38781968)
Cell Host Microbe. 2021 Oct 13;29(10):1482-1495.e12. (PMID: 34582782)
Nat Biotechnol. 2020 Nov;38(11):1317-1327. (PMID: 32541958)
Trends Biochem Sci. 2022 Jun;47(6):464-476. (PMID: 35236570)
Mol Cell. 2012 Jun 8;46(5):595-605. (PMID: 22521689)
PLoS Biol. 2023 Apr 14;21(4):e3002065. (PMID: 37058530)
J Chem Inf Model. 2020 Dec 28;60(12):6427-6437. (PMID: 33107304)
Mol Cell. 2017 Oct 05;68(1):15-25. (PMID: 28985502)
Elife. 2020 Jun 10;9:. (PMID: 32519675)
Biochemistry. 2013 Dec 3;52(48):8777-85. (PMID: 24215455)
Nucleic Acids Res. 2021 Apr 19;49(7):4037-4053. (PMID: 33744974)
Curr Biol. 2018 Feb 5;28(3):444-451.e6. (PMID: 29358072)
Cell. 2017 Jun 29;170(1):35-47.e13. (PMID: 28666121)
FEMS Microbiol Lett. 2004 Aug 1;237(1):49-55. (PMID: 15268937)
Nat Chem Biol. 2022 Sep;18(9):1014-1022. (PMID: 35836018)
Cell Rep. 2015 Mar 10;10(9):1534-1543. (PMID: 25753419)
Ann Inst Pasteur (Paris). 1954 Dec;87(6):653-73. (PMID: 14350339)
Nat Methods. 2017 Jun;14(6):600-606. (PMID: 28459459)
معلومات مُعتمدة: R35 GM140876 United States GM NIGMS NIH HHS; GM140876 United States NH NIH HHS; Iowa State University; 1652661 National Science Foundation
فهرسة مساهمة: Local Abstract: [plain-language-summary] CRISPR-Cas systems are commonly used for biotechnology. Their specificity has been studied extensively and has previously been thought to be well understood. In this work, we asked a simple question about the effect of metal ion concentration on CRISPR specificity; the results are surprising and striking. At the actual metal ion concentrations found in cells, Cas12a specificity is inverted in comparison to the higher metal ion conditions that are typically used in test-tube assays. The specificity observed at lower metal ion concentration is more relevant under cellular conditions.
المشرفين على المادة: I38ZP9992A (Magnesium)
0 (CRISPR-Associated Proteins)
EC 3.1.- (Endodeoxyribonucleases)
EC 3.1.- (Cas12a protein)
0 (Bacterial Proteins)
تواريخ الأحداث: Date Created: 20240717 Date Completed: 20240909 Latest Revision: 20240911
رمز التحديث: 20240911
مُعرف محوري في PubMed: PMC11381342
DOI: 10.1093/nar/gkae613
PMID: 39019776
قاعدة البيانات: MEDLINE