دورية أكاديمية

Cortical parvalbumin neurons are responsible for homeostatic sleep rebound through CaMKII activation.

التفاصيل البيبلوغرافية
العنوان: Cortical parvalbumin neurons are responsible for homeostatic sleep rebound through CaMKII activation.
المؤلفون: Kon K; Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.; Kennedy Krieger Institute, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA., Ode KL; Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.; Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan., Mano T; Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.; Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan.; Department of Information Physics and Computing, Graduate School of Information Science and Technology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.; Computational Neuroethology Unit, Okinawa Institute of Science and Technology, Onna, Okinawa, Japan., Fujishima H; Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan.; Department of Systems Biology, Institute of Life Science, Kurume University, Kurume, Fukuoka, Japan., Takahashi RR; Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan., Tone D; Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.; Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan., Shimizu C; Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan., Shiono S; Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan., Yada S; Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.; International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan., Matsuzawa K; Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan., Yoshida SY; Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.; Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan., Yoshida Garçon J; Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan.; Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Izumi, Osaka, Japan., Kaneko M; Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research (BDR), Chuou-ku, Kobe, Hyogo, Japan., Shinohara Y; Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan.; Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan., Yamada RG; Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan.; Department of Systems Biology, Institute of Life Science, Kurume University, Kurume, Fukuoka, Japan., Shi S; Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.; Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan.; International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan., Miyamichi K; Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research (BDR), Chuou-ku, Kobe, Hyogo, Japan., Sumiyama K; Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan.; Laboratory of Animal Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan., Kiyonari H; Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research (BDR), Chuou-ku, Kobe, Hyogo, Japan., Susaki EA; Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.; Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan.; Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan., Ueda HR; Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan. uedah-tky@umin.ac.jp.; Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan. uedah-tky@umin.ac.jp.; Department of Information Physics and Computing, Graduate School of Information Science and Technology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan. uedah-tky@umin.ac.jp.; Department of Systems Biology, Institute of Life Science, Kurume University, Kurume, Fukuoka, Japan. uedah-tky@umin.ac.jp.
المصدر: Nature communications [Nat Commun] 2024 Jul 18; Vol. 15 (1), pp. 6054. Date of Electronic Publication: 2024 Jul 18.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: Calcium-Calmodulin-Dependent Protein Kinase Type 2*/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2*/genetics , Parvalbumins*/metabolism , Homeostasis* , Sleep*/physiology , Neurons*/metabolism , Neurons*/physiology , Wakefulness*/physiology , Cerebral Cortex*/metabolism, Animals ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic
مستخلص: The homeostatic regulation of sleep is characterized by rebound sleep after prolonged wakefulness, but the molecular and cellular mechanisms underlying this regulation are still unknown. In this study, we show that Ca 2+ /calmodulin-dependent protein kinase II (CaMKII)-dependent activity control of parvalbumin (PV)-expressing cortical neurons is involved in homeostatic regulation of sleep in male mice. Prolonged wakefulness enhances cortical PV-neuron activity. Chemogenetic suppression or activation of cortical PV neurons inhibits or induces rebound sleep, implying that rebound sleep is dependent on increased activity of cortical PV neurons. Furthermore, we discovered that CaMKII kinase activity boosts the activity of cortical PV neurons, and that kinase activity is important for homeostatic sleep rebound. Here, we propose that CaMKII-dependent PV-neuron activity represents negative feedback inhibition of cortical neural excitability, which serves as the distributive cortical circuits for sleep homeostatic regulation.
(© 2024. The Author(s).)
References: Neuron. 2016 Apr 6;90(1):70-85. (PMID: 26996081)
Science. 2014 Aug 1;345(6196):1255263. (PMID: 25082707)
Am J Physiol. 1991 Jul;261(1 Pt 2):R198-208. (PMID: 1858947)
J Neurosci. 2020 Dec 9;40(50):9576-9588. (PMID: 33158963)
Nat Protoc. 2009;4(4):484-94. (PMID: 19300442)
J Neurosci. 2011 Sep 14;31(37):13260-71. (PMID: 21917809)
J Neurophysiol. 2005 Feb;93(2):942-53. (PMID: 15385591)
Behav Neurosci. 2010 Feb;124(1):69-78. (PMID: 20141281)
Cell. 2016 Jun 2;165(6):1347-1360. (PMID: 27212237)
Nature. 2018 Jun;558(7710):435-439. (PMID: 29899451)
Nat Neurosci. 2021 Dec;24(12):1648-1659. (PMID: 34848882)
Science. 2019 Oct 11;366(6462):. (PMID: 31601740)
Nature. 1999 Apr 15;398(6728):627-30. (PMID: 10217146)
Neuron. 2018 Jan 17;97(2):378-389.e4. (PMID: 29307711)
J Sleep Res. 2000 Dec;9(4):367-71. (PMID: 11123523)
Nat Neurosci. 2021 Sep;24(9):1210-1215. (PMID: 34341585)
Nat Neurosci. 2005 Nov;8(11):1552-9. (PMID: 16222228)
J Neurosci. 2008 May 21;28(21):5570-81. (PMID: 18495891)
Nature. 2011 Apr 28;472(7344):443-7. (PMID: 21525926)
Cell Rep Methods. 2021 Jun 21;1(2):100038. (PMID: 35475238)
Sleep Med Rev. 2019 Feb;43:14-21. (PMID: 30502497)
Science. 2017 Feb 3;355(6324):511-515. (PMID: 28154077)
PLoS Biol. 2022 Oct 4;20(10):e3001813. (PMID: 36194579)
J Neurosci. 2022 Jun 15;42(24):4852-4866. (PMID: 35552234)
J Sleep Res. 2016 Apr;25(2):131-43. (PMID: 26762182)
J Neurosci. 2017 Sep 20;37(38):9132-9148. (PMID: 28821651)
Elife. 2020 Nov 18;9:. (PMID: 33206597)
Neuron. 2009 Sep 24;63(6):865-78. (PMID: 19778514)
J Neurosci. 2006 Sep 13;26(37):9426-33. (PMID: 16971526)
Curr Opin Neurobiol. 2013 Oct;23(5):812-8. (PMID: 23518138)
Genesis. 2010 May;48(5):317-27. (PMID: 20162675)
J Neurosci. 2021 May 12;41(19):4212-4222. (PMID: 33833082)
Nat Neurosci. 2018 Apr;21(4):625-637. (PMID: 29507408)
Curr Biol. 2019 May 6;29(9):1481-1490.e6. (PMID: 31031117)
Nat Neurosci. 2017 Aug;20(8):1172-1179. (PMID: 28671695)
Neuroscience. 2003;120(4):1115-24. (PMID: 12927216)
Nature. 2022 Dec;612(7940):512-518. (PMID: 36477539)
J Neurosci. 2017 May 10;37(19):4883-4902. (PMID: 28408413)
Neuron. 2010 Dec 22;68(6):1023-42. (PMID: 21172606)
Cell Rep. 2016 Jan 26;14(3):662-677. (PMID: 26774482)
Brain Sci. 2013 Mar 19;3(1):318-43. (PMID: 23772316)
Neuron. 2021 Mar 17;109(6):1013-1028.e9. (PMID: 33548174)
Neuron. 2020 Feb 19;105(4):621-629.e4. (PMID: 31831331)
Nat Neurosci. 2020 Dec;23(12):1629-1636. (PMID: 32807948)
Res Dev Disabil. 2014 Jul;35(7):1631-8. (PMID: 24780146)
Neuron. 2019 Aug 7;103(3):380-394. (PMID: 31394063)
J Neurophysiol. 2001 May;85(5):1969-85. (PMID: 11353014)
Am J Physiol. 1998 Jul;275(1):R148-57. (PMID: 9688973)
Dev Psychobiol. 1970;2(4):216-39. (PMID: 5527153)
Nat Neurosci. 2021 Mar;24(3):401-411. (PMID: 33619404)
Curr Biol. 2012 Aug 21;22(16):1459-67. (PMID: 22748320)
Nat Commun. 2020 Apr 27;11(1):1982. (PMID: 32341345)
Nat Neurosci. 2023 Feb;26(2):196-212. (PMID: 36581730)
Curr Biol. 2019 Oct 7;29(19):3315-3322.e3. (PMID: 31543455)
Front Cell Neurosci. 2020 Dec 18;14:577525. (PMID: 33390904)
Nature. 2018 Nov;563(7729):72-78. (PMID: 30382198)
Elife. 2019 Apr 11;8:. (PMID: 30973326)
Nat Commun. 2019 Sep 13;10(1):4169. (PMID: 31519873)
Nat Methods. 2019 Nov;16(11):1105-1108. (PMID: 31527839)
Neuron. 2017 Feb 22;93(4):747-765. (PMID: 28231463)
Neuron. 2001 May;30(2):525-36. (PMID: 11395012)
J Neurosci. 2009 May 27;29(21):7040-52. (PMID: 19474331)
PLoS One. 2011;6(10):e25245. (PMID: 21984908)
J Neurosci Res. 2020 Jun;98(6):1137-1149. (PMID: 32215963)
Nature. 2004 Jul 1;430(6995):78-81. (PMID: 15184907)
Neuron. 2016 Jul 20;91(2):260-92. (PMID: 27477017)
Nat Protoc. 2019 Feb;14(2):379-414. (PMID: 30626963)
Science. 1966 Apr 29;152(3722):604-19. (PMID: 17779492)
معلومات مُعتمدة: 18H05270 MEXT | Japan Society for the Promotion of Science (JSPS); RGP0019/2018 Human Frontier Science Program (HFSP); JPMJER2001 MEXT | JST | Exploratory Research for Advanced Technology (ERATO); JP21dm0207049 Japan Agency for Medical Research and Development (AMED); JP19am0401011 Japan Agency for Medical Research and Development (AMED)
المشرفين على المادة: EC 2.7.11.17 (Calcium-Calmodulin-Dependent Protein Kinase Type 2)
0 (Parvalbumins)
تواريخ الأحداث: Date Created: 20240718 Date Completed: 20240718 Latest Revision: 20240819
رمز التحديث: 20240819
مُعرف محوري في PubMed: PMC11258272
DOI: 10.1038/s41467-024-50168-5
PMID: 39025867
قاعدة البيانات: MEDLINE