دورية أكاديمية

On the wing: Morphological variation in the osteology of Mediterranean, Near Eastern, and European Anatidae (excluding Anserinae).

التفاصيل البيبلوغرافية
العنوان: On the wing: Morphological variation in the osteology of Mediterranean, Near Eastern, and European Anatidae (excluding Anserinae).
المؤلفون: Haruda A; Department of Cross-Cultural and Regional Studies, University of Copenhagen, Copenhagen, Denmark.; Research Laboratory for Archaeology and the History of Art, School of Archaeology, University of Oxford, Oxford, UK., Mazzucato C; Department of Cross-Cultural and Regional Studies, University of Copenhagen, Copenhagen, Denmark., Yeomans L; Department of Cross-Cultural and Regional Studies, University of Copenhagen, Copenhagen, Denmark.
المصدر: Journal of morphology [J Morphol] 2024 Aug; Vol. 285 (8), pp. e21750.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: United States NLM ID: 0406125 Publication Model: Print Cited Medium: Internet ISSN: 1097-4687 (Electronic) Linking ISSN: 00222887 NLM ISO Abbreviation: J Morphol Subsets: MEDLINE
أسماء مطبوعة: Publication: <2005- > : Hoboken, N.J. : Wiley
Original Publication: 1931- : Philadelphia, Pa. : Wistar Institute of Anatomy and Biology
مواضيع طبية MeSH: Wings, Animal*/anatomy & histology , Ducks*/anatomy & histology, Animals ; Osteology ; Europe ; Fossils/anatomy & histology
مستخلص: Accurate identification of waterfowl bones in archaeological and fossil assemblages has potential to unlock new methods of past environmental reconstruction, as species have differing habitat preferences and migration patterns. Therefore, identifying the presence of avian species with different ecological niches is key to determining past environments and ultimately how prehistoric people responded to climatic and environmental realignments. However, the identification of osteological remains of waterbirds such as ducks to species level is notoriously challenging. We address this by presenting a new two-dimensional geometric morphometric protocol on wing elements from over 20 duck species and test the utility of these shape data for correct species identification. This is an ideal starting point to expand utilization of these types of approaches in avifaunal research and test applicability to an extremely difficult taxonomic group.
(© 2024 The Author(s). Journal of Morphology published by Wiley Periodicals LLC.)
References: Adams, D., Collyer, M., Kaliontzopoulou, A., & Baken, E. (2023). Geomorph: Software for geometric morphometric analysis. R package version 4.0.6 (4.0.6) [R]. https://cran.r-project.org/package=geomorph.
Adams, D. C., Collyer, M. L., Kaliontzopoulou, A., & Sherratt, E. (2017Geomorph: Software for geometric morphometric analyses. (R package version 3.0.5) [Computer software]. https://cran.r-project.org/package=geomorph.
Alerstam, T. (1990). Bird migration. Cambridge University Press.
Baken, E. K., Collyer, M. L., Kaliontzopoulou, A., & Adams, D. C. (2021). geomorph v4.0 and gmShiny: Enhanced analytics and a new graphical interface for a comprehensive morphometric experience. Methods in Ecology and Evolution, 12, 2355–2363.
Bell, A., Marugán‐Lobón, J., Navalón, G., Nebreda, S. M., DiGuildo, J., & Chiappe, L. M. (2021). Quantitative analysis of morphometric data of pre‐modern birds: Phylogenetic versus ecological signal. Frontiers in Earth Science, 9, 663342. https://doi.org/10.3389/feart.2021.663342.
Bethke, R. W., & Thomas, V. G. (1988). Differences in flight and heart muscle mass among geese, dabbling ducks, and diving ducks relative to habitat use. Canadian Journal of Zoology, 66(9), 2024–2028. https://doi.org/10.1139/z88-297.
Biewener, A. A. (2011). Muscle function in avian flight: Achieving power and control. Philosophical Transactions of the Royal Society, B: Biological Sciences, 366(1570), 1496–1506. https://doi.org/10.1098/rstb.2010.0353.
Bjarnason, A., & Benson, R. (2021). A 3D geometric morphometric dataset quantifying skeletal variation in birds. MorphoMuseuM, 7, e125. https://doi.org/10.18563/journal.m3.125.
Bribiesca‐Contreras, F., Parslew, B., & Sellers, W. I. (2021). Functional morphology of the forelimb musculature reflects flight and foraging styles in aquatic birds. Journal of Ornithology, 162(3), 779–793. https://doi.org/10.1007/s10336-021-01868-y.
Buser, T. J., Sidlauskas, B. L., & Summers, A. P. (2018). 2D or not 2D? Testing the utility of 2D vs. 3D landmark data in geometric morphometrics of the sculpin subfamily oligocottinae (Pisces; Cottoidea). The Anatomical Record, 301(5), 806–818. https://doi.org/10.1002/ar.23752.
Cardini, A. (2024). A practical, step‐by‐step, guide to taxonomic comparisons using Procrustes geometric morphometrics and user‐friendly software (part B): Group comparisons. European Journal of Taxonomy, 934, 93–186. https://doi.org/10.5852/ejt.2024.934.2529.
Cardini, A., de Jong, Y. A., & Butynski, T. M. (2022). Can morphotaxa be assessed with photographs? Estimating the accuracy of two‐dimensional cranial geometric morphometrics for the study of threatened populations of African monkeys. The Anatomical Record, 305(6), 1402–1434. https://doi.org/10.1002/ar.24787.
Carro, S. C. S., Louys, J., & O'Connor, S. (2018). Shape does matter: A geometric morphometric approach to shape variation in Indo‐Pacific fish vertebrae for habitat identification. Journal of Archaeological Science, 99, 124–134. https://doi.org/10.1016/j.jas.2018.09.010.
Cohen, A., & Serjeantson, D. (1984). A manual for the identification of bird bones from archaeological sites. Archetype Press.
Collyer, M. L., & Adams, D. C. (2018). RRPP: An r package for fitting linear models to high‐dimensional data using residual randomization. Methods in Ecology and Evolution, 9(7), 1772–1779. https://doi.org/10.1111/2041-210X.13029.
Collyer, M. L., & Adams, D. C. (2023). RRPP: Linear model evaluation with randomized residuals in a permutation procedure (1.4.0) [R]. https://cran.r-project.org/package=RRPP.
Colwell, M. A., & Taft, O. W. (2000). Waterbird communities in managed wetlands of varying water depth. Waterbirds: The International Journal of Waterbird Biology, 23(1), 45–55.
Cooke, S. B., & Terhune, C. E. (2015). Form, function, and geometric morphometrics. The Anatomical Record, 298(1), 5–28. https://doi.org/10.1002/ar.23065.
Cooney, C. R., Bright, J. A., Capp, E. J. R., Chira, A. M., Hughes, E. C., Moody, C. J. A., Nouri, L. O., Varley, Z. K., & Thomas, G. H. (2017). Erratum: Corrigendum: Mega‐evolutionary dynamics of the adaptive radiation of birds. Nature, 552(7685), 430. https://doi.org/10.1038/nature24665.
Corfield, J. R., Price, K., Iwaniuk, A. N., Gutierrez‐Ibañez, C., Birkhead, T., & Wylie, D. R. (2015). Diversity in olfactory bulb size in birds reflects allometry, ecology, and phylogeny. Frontiers in Neuroanatomy, 9, 102. https://doi.org/10.3389/fnana.2015.00102.
Driver, J. C. (2011). Identification, classification and zooarchaeology. Ethnobiology Letters, 2, 19–39. https://doi.org/10.14237/ebl.2.2011.32.
Eastham, A. (1997). The potential of bird remains for environmental reconstruction. International Journal of Osteoarchaeology, 7(4), 422–429. https://doi.org/10.1002/(SICI)1099-1212(199707/08)7:4<422::AID-OA389>3.0.CO;2-V.
Eda, M., Baba, Y., Koike, H., & Higuchi, H. (2006). Do temporal size differences influence species identification of archaeological albatross remains when using modern reference samples. Journal of Archaeological Science, 33(3), 349–359. https://doi.org/10.1016/j.jas.2005.07.017.
Evin, A., Cucchi, T., Cardini, A., Strand Vidarsdottir, U., Larson, G., & Dobney, K. (2013). The long and winding road: Identifying pig domestication through molar size and shape. Journal of Archaeological Science, 40(1), 735–743. https://doi.org/10.1016/j.jas.2012.08.005.
Evin, A., Flink, L. G., Bălăşescu, A., Popovici, D., Andreescu, R., Bailey, D., Mirea, P., Lazăr r, C., Boroneanţ, A., Bonsall, C., Vidarsdottir, U.S., Brehard, S., Tresset, A., Cucchi, T., Larson, G., & Dobney, K. (2015). Unravelling the complexity of domestication: A case study using morphometrics and ancient DNA analyses of archaeological pigs from Romania. Philosophical Transactions of the Royal Society, B: Biological Sciences, 370(1660):20130616. https://doi.org/10.1098/rstb.2013.0616.
Felice, R. N., & Goswami, A. (2018). Developmental origins of mosaic evolution in the avian cranium. Proceedings of the National Academy of Sciences, 115(3), 555–560. https://doi.org/10.1073/pnas.1716437115.
Felice, R. N., & O'Connor, P. M. (2014). Ecology and caudal skeletal morphology in birds: The convergent evolution of pygostyle shape in underwater foraging taxa. PLoS One, 9(2), e89737. https://doi.org/10.1371/journal.pone.0089737.
Felice, R. N., Tobias, J. A., Pigot, A. L., & Goswami, A. (2019). Dietary niche and the evolution of cranial morphology in birds. Proceedings of the Royal Society B: Biological Sciences, 286(1897), 20182677. https://doi.org/10.1098/rspb.2018.2677.
Foster, A. (2018). Identifying chicken breeds in the archaeological record: A geometric and linear morphometric approach [PhD Thesis, University of Leicester].
Gonzalez, J., Düttmann, H., & Wink, M. (2009). Phylogenetic relationships based on two mitochondrial genes and hybridization patterns in Anatidae. Journal of Zoology, 279(3), 310–318. https://doi.org/10.1111/j.1469-7998.2009.00622.x.
González‐Gajardo, A., Sepúlveda, P. V., & Schlatter, R. (2009). Waterbird assemblages and habitat characteristics in wetlands: Influence of temporal variability on species‐habitat relationships. Waterbirds, 32(2), 225–233. https://doi.org/10.1675/063.032.0203.
Goodall, C. (1991). Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical Society Series B: Statistical Methodology, 53(2), 285–321. https://doi.org/10.2307/2345744.
Hedrick, B. P., Cordero, S. A., Zanno, L. E., Noto, C., & Dodson, P. (2019). Quantifying shape and ecology in avian pedal claws: The relationship between the bony core and keratinous sheath. Ecology and Evolution, 9(20), 11545–11556. https://doi.org/10.1002/ece3.5507.
Holvast, E. J., & Thomas, D. B. (2022). Taxonomic classification of seabird long bones using 3D shape: A method with wider potential in zooarchaeology. Journal of Archaeological Science: Reports, 45, 103641. https://doi.org/10.1016/j.jasrep.2022.103641.
Isola, C. R., Colwell, M. A., Taft, O. W., & Safran, R. J. (2000). Interspecific differences in habitat use of shorebirds and waterfowl foraging in managed wetlands of California's San Joaquin Valley. Waterbirds: The International Journal of Waterbird Biology, 23(2), 196–203.
Jeanjean, M., Haruda, A., Salvagno, L., Schafberg, R., Valenzuela‐Lamas, S., Nieto‐Espinet, A., Forest, V., Blaise, E., Vuillien, M., Mureau, C., & Evin, A. (2022). Sorting the flock: Quantitative identification of sheep and goat from isolated third lower molars and mandibles through geometric morphometrics. Journal of Archaeological Science, 141, 105580. https://doi.org/10.1016/j.jas.2022.105580.
Klingenberg, C. P. (2016). Size, shape, and form: Concepts of allometry in geometric morphometrics. Development Genes and Evolution, 226, 113–137. https://doi.org/10.1007/s00427-016-0539-2.
Kulemeyer, C., Asbahr, K., Gunz, P., Frahnert, S., & Bairlein, F. (2009). Functional morphology and integration of corvid skulls – A 3D geometric morphometric approach. Frontiers in Zoology, 6(1), 2. https://doi.org/10.1186/1742-9994-6-2.
Kuo, P.‐C., Navalón, G., Benson, R. B. J., & Field, D. J. (2024). Macroevolutionary drivers of morphological disparity in the avian quadrate. Proceedings of the Royal Society B: Biological Sciences, 291(2017), 20232250. https://doi.org/10.1098/rspb.2023.2250.
Lamb, J. S., Paton, P. W. C., Osenkowski, J. E., Badzinski, S. S., Berlin, A. M., Bowman, T., Dwyer, C., Fara, L. J., Gilliland, S. G., Kenow, K., Lepage, C., Mallory, M. L., Olsen, G. H., Perry, M. C., Petrie, S. A., Savard, J.‐P. L., Savoy, L., Schummer, M., Spiegel, C. S., & McWilliams, S. R. (2020). Assessing year‐round habitat use by migratory sea ducks in a multi‐species context reveals seasonal variation in habitat selection and partitioning. Ecography, 43(12), 1842–1858. https://doi.org/10.1111/ecog.05003.
LeFebvre, M. J., & Sharpe, A. E. (2018). Contemporary challenges in zooarchaeological specimen identification, Zooarchaeology in practice (pp. 35–57). Springer International Publishing. https://doi.org/10.1007/978-3-319-64763-0&#95;3.
L'Heureux, G. L., & Hernández, A. (2021). Geometric morphometrics of large South American camelids and their potential for the taxonomical identification in archaeological sites of the Northern Argentina. Historical Biology, 33(6), 823–836. https://doi.org/10.1080/08912963.2019.1663841.
Livezey, B. C. (1986). A phylogenetic analysis of recent anseriform genera using morphological characters. The Auk, 103(4), 737–754. https://doi.org/10.1093/auk/103.4.737.
Livezey, B. C. (1995a). Phylogeny and comparative ecology of stiff‐tailed ducks (Anatidae: Oxyurini). The Wilson Bulletin, 107(2), 214–234.
Livezey, B. C. (1995b). Phylogeny and evolutionary ecology of modern seaducks (Anatidae: Mergini). The Condor, 97(1), 233–255. https://doi.org/10.2307/1368999.
Lowi‐Merri, T. M., Benson, R. B. J., Claramunt, S., & Evans, D. C. (2021). The relationship between sternum variation and mode of locomotion in birds. BMC Biology, 19(1), 165. https://doi.org/10.1186/s12915-021-01105-1.
Lyman, R. L. (2017). Paleoenvironmental reconstruction from faunal remains: Ecological basics and analytical assumptions. Journal of Archaeological Research, 25(4), 315–371. https://doi.org/10.1007/s10814-017-9102-6.
Marugán‐Lobón, J., Nebreda, S. M., Navalón, G., & Benson, R. B. J. (2022). Beyond the beak: Brain size and allometry in avian craniofacial evolution. Journal of Anatomy, 240(2), 197–209. https://doi.org/10.1111/joa.13555.
De Mendoza, R. S., & Gómez, R. O. (2022). Ecomorphology of the tarsometatarsus of waterfowl (Anseriformes) based on geometric morphometrics and its application to fossils. The Anatomical Record, 305(11), 3243–3253. https://doi.org/10.1002/ar.24891.
Navalón, G., Bjarnason, A., Griffiths, E., & Benson, R. B. J. (2022). Environmental signal in the evolutionary diversification of bird skeletons. Nature, 611(7935), 306–311. https://doi.org/10.1038/s41586-022-05372-y.
Oueslati, T., & Gruwier, B. (2023). On the status of greylag geese in Roman Paris: A linear and 2D geometric morphometric approach. International Journal of Osteoarchaeology, 33, 577–587. https://doi.org/10.1002/oa.3203.
Owen, J., Dobney, K., Evin, A., Cucchi, T., Larson, G., & Strand Vidarsdottir, U. (2014). The zooarchaeological application of quantifying cranial shape differences in wild boar and domestic pigs (Sus scrofa) using 3D geometric morphometrics. Journal of Archaeological Science, 43(1), 159–167. https://doi.org/10.1016/j.jas.2013.12.010.
Paradis, E., & Schliep, K. (2019). ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526–528.
Perez, S. I., Bernal, V., & Gonzalez, P. N. (2006). Differences between sliding semi‐landmark methods in geometric morphometrics, with an application to human craniofacial and dental variation. Journal of Anatomy, 208(6), 769–784. https://doi.org/10.1111/j.1469-7580.2006.00576.x.
Pieper, H. (1982). Probleme der Artbestimmung an Knochen des Extremitätenskelettes sowie Bemerkungen zur systematischen Gliederung der Gattung Aythya (Aves: Anatidae). Schriften Aus Der Archäologisch‐Zoologischen Arbeitsgruppe Schleswig‐Kiel, 6, 63–95.
Piersma, T., & Lindström, Å. (2004). Migrating shorebirds as integrative sentinels of global environmental change. Ibis, 146, 61–69.
Pigot, A. L., Sheard, C., Miller, E. T., Bregman, T. P., Freeman, B. G., Roll, U., Seddon, N., Trisos, C. H., Weeks, B. C., & Tobias, J. A. (2020). Macroevolutionary convergence connects morphological form to ecological function in birds. Nature Ecology & Evolution, 4(2), 230–239. https://doi.org/10.1038/s41559-019-1070-4.
Poland, J. G. (2018). A methodological approach to the identification of duck and goose remains from archaeological sites with an application to Roman Britain [PhD Thesis, University of Sheffield].
Poysa, H. (1983). Morphology‐mediated niche organization in a guild of dabbling ducks. Ornis Scandinavica, 14(4), 317–326. https://doi.org/10.2307/3676325.
R Core Team. (2024). R: A language and environment for statistical computing [Computer software]. R Foundation for Statistical Computing. https://www.R-project.org.
Raikow, R. J. (1973). Locomotor mechanisms in North American ducks. Wilson Bulletin, 85(3), 295–307.
Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217–223.
Rohlf, F. J. (2021). tpsDig2 (2.32) [Windows]. https://sbmorphometrics.org/soft-dataacq.html.
Rohlf, F. J. (2023). tpsUtil (1.83) [Windows]. https://sbmorphometrics.org/index.html.
Rohlf, F. J., & Slice, D. (1990). Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39(1), 40. https://doi.org/10.2307/2992207.
Schlager, S. (2017). Morpho and Rvcg—Shape analysis in R. In G. Zheng, S. Li, & G. Szekely (Eds.), Statistical shape and deformation analysis (pp. 217–256). Academic Press.
Serjeantson, D. (2009). Birds. Cambridge University Press.
Serrano, F. J., Costa‐Pérez, M., Navalón, G., & Martín‐Serra, A. (2020). Morphological disparity of the humerus in modern birds. Diversity, 12(5), 173. https://doi.org/10.3390/d12050173.
Taylor‐Burt, K. R., & Biewener, A. A. (2020). Aquatic and terrestrial takeoffs require different hindlimb kinematics and muscle function in mallard ducks. Journal of Experimental Biology, 223(16), jeb223743. https://doi.org/10.1242/jeb.223743.
Tøttrup, A. P., Thorup, K., Rainio, K., Yosef, R., Lehikoinen, E., & Rahbek, C. (2008). Avian migrants adjust migration in response to environmental conditions en route. Biology Letters, 4, 685–688.
von den Driesch, A. (1976). A guide to the measurement of animal bones from archaeological sites. Peabody Museum Harvard University.
Watanabe, J. (2018). Clade‐specific evolutionary diversification along ontogenetic major axes in avian limb skeleton. Evolution, 72(12), 2632–2652. https://doi.org/10.1111/evo.13627.
Woelfle, E. (1967,Vergleichend morphologische Untersuchungen an Einzelknochen des postcranialen Skelettes in Mitteleuropa vorkommender Enten Halbgänse und Säger. Ludwig–Maximilians–Universität.
Wolverton, S. (2013). Data quality in zooarchaeological faunal identification. Journal of Archaeological Method and Theory, 20(3), 381–396.
Xu, S., Li, L., Luo, X., Chen, M., Tang, W., Zhan, L., Dai, Z., Lam, T. T., Guan, Y., & Yu, G. (2022). Ggtree: A serialized data object for visualization of a phylogenetic tree and annotation data. iMeta, 1(4), e56. https://doi.org/10.1002/imt2.56.
Yeomans, L., & Beech, M. J. (2021). An aid to the identification of fish bones from southeast Arabia: The influence of reference collections on taxonomic diversity. International Journal of Osteoarchaeology. https://onlinelibrary.wiley.com/doi/abs/10.1002/oa.2920.
Yeomans, L., Codlin, M. C., Mazzucato, C., Dal Bello, F., & Demarchi, B. (2024). Waterfowl eggshell refines palaeoenvironmental reconstruction and supports multi‐species niche construction at the Pleistocene‐Holocene transition in the levant. Journal of Archaeological Method and Theory. https://doi.org/10.1007/s10816-024-09641-0.
Yu, G. (2020). Using Ggtree to visualize data on tree‐like structures. Current Protocols in Bioinformatics, 69(1), e96. https://doi.org/10.1002/cpbi.96.
Yu, G. (2022). Data integration, manipulation and visualization of phylogenetic trees. Chapman and Hall/CRC. https://doi.org/10.1201/9781003279242.
Yu, G., Lam, T. T.‐Y., Zhu, H., & Guan, Y. (2018). Two methods for mapping and visualizing associated data on phylogeny using Ggtree. Molecular Biology and Evolution, 35(12), 3041–3043. https://doi.org/10.1093/molbev/msy194.
Yu, G., Smith, D. K., Zhu, H., Guan, Y., & Lam, T. T.‐Y. (2017). ggtree: An r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution, 8(1), 28–36. https://doi.org/10.1111/2041-210X.12628.
Žalakevičius, M., & Švažas, S. (2005). Global climate change and its impact on wetlands and waterbird populations. Acta Zoologica Lituanica, 15(3), 211–217.
معلومات مُعتمدة: 1024-00032B Independent Research Fund Denmark
فهرسة مساهمة: Keywords: Anatidae; Mediterranean; Zooarchaeology; ducks; geometric morphometrics; morphology
تواريخ الأحداث: Date Created: 20240720 Date Completed: 20240720 Latest Revision: 20240720
رمز التحديث: 20240721
DOI: 10.1002/jmor.21750
PMID: 39032031
قاعدة البيانات: MEDLINE
الوصف
تدمد:1097-4687
DOI:10.1002/jmor.21750