دورية أكاديمية

Systemic delivery of full-length dystrophin in Duchenne muscular dystrophy mice.

التفاصيل البيبلوغرافية
العنوان: Systemic delivery of full-length dystrophin in Duchenne muscular dystrophy mice.
المؤلفون: Zhou Y; Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.; Department of Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China., Zhang C; Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA., Xiao W; Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA., Herzog RW; Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA., Han R; Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. rh11@iu.edu.
المصدر: Nature communications [Nat Commun] 2024 Jul 21; Vol. 15 (1), pp. 6141. Date of Electronic Publication: 2024 Jul 21.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: Dystrophin*/genetics , Dystrophin*/metabolism , Muscular Dystrophy, Duchenne*/genetics , Muscular Dystrophy, Duchenne*/metabolism , Muscular Dystrophy, Duchenne*/therapy , Muscular Dystrophy, Duchenne*/pathology , Genetic Therapy*/methods , Mice, Inbred mdx* , Dependovirus*/genetics , Muscle, Skeletal*/metabolism , Muscle, Skeletal*/pathology , Genetic Vectors*/genetics , Genetic Vectors*/administration & dosage, Animals ; Mice ; Male ; Disease Models, Animal ; Myocardium/metabolism ; Myocardium/pathology ; Sarcolemma/metabolism ; Humans ; Gene Transfer Techniques
مستخلص: Current gene therapy for Duchenne muscular dystrophy (DMD) utilizes adeno-associated virus (AAV) to deliver micro-dystrophin (µDys), which does not provide full protection for striated muscles as it lacks many important functional domains of full-length (FL) dystrophin. Here we develop a triple vector system to deliver FL-dystrophin into skeletal and cardiac muscles. We split FL-dystrophin into three fragments linked to two orthogonal pairs of split intein, allowing efficient assembly of FL-dystrophin. The three fragments packaged in myotropic AAV (MyoAAV4A) restore FL-dystrophin expression in both skeletal and cardiac muscles in male mdx 4cv mice. Dystrophin-glycoprotein complex components are also restored at the sarcolemma of dystrophic muscles. MyoAAV4A-delivered FL-dystrophin significantly improves muscle histopathology, contractility, and overall strength comparable to µDys, but unlike µDys, it also restores defective cavin 4 localization and associated signaling in mdx 4cv heart. Therefore, our data support the feasibility of a mutation-independent FL-dystrophin gene therapy for DMD, warranting further clinical development.
(© 2024. The Author(s).)
References: Landfeldt, E. et al. Life expectancy at birth in Duchenne muscular dystrophy: a systematic review and meta-analysis. Eur. J. Epidemiol. 35, 643–653 (2020). (PMID: 32107739738736710.1007/s10654-020-00613-8)
Forrest, S. et al. Further studies of gene deletions that cause Duchenne and Becker muscular dystrophies. Genomics 2, 109–114 (1988). (PMID: 341047410.1016/0888-7543(88)90091-2)
Ervasti, J. M. & Campbell, K. P. Membrane organization of the dystrophin-glycoprotein complex. Cell 66, 1121–1131 (1991). (PMID: 191380410.1016/0092-8674(91)90035-W)
Ohlendieck, K., Ervasti, J. M., Snook, J. B. & Campbell, K. P. Dystrophin-glycoprotein complex is highly enriched in isolated skeletal muscle sarcolemma. J. Cell Biol. 112, 135–148 (1991). (PMID: 198600210.1083/jcb.112.1.135)
Cohn, R. D. & Campbell, K. P. Molecular basis of muscular dystrophies. Muscle Nerve 23, 1456–1471 (2000). (PMID: 1100378110.1002/1097-4598(200010)23:10<1456::AID-MUS2>3.0.CO;2-T)
Han, R. et al. Basal lamina strengthens cell membrane integrity via the laminin G domain-binding motif of alpha-dystroglycan. Proc. Natl Acad. Sci. USA 106, 12573–12579 (2009). (PMID: 19633189271532810.1073/pnas.0906545106)
Olthoff, J. T. et al. Loss of peroxiredoxin-2 exacerbates eccentric contraction-induced force loss in dystrophin-deficient muscle. Nat. Commun. 9, 5104 (2018). (PMID: 30504831626944510.1038/s41467-018-07639-3)
Muntoni, F. Cardiomyopathy in muscular dystrophies. Curr. Opin. Neurol. 16, 577–583 (2003). (PMID: 1450184110.1097/00019052-200310000-00003)
Spurney, C. F. Cardiomyopathy of Duchenne muscular dystrophy: current understanding and future directions. Muscle Nerve 44, 8–19 (2011). (PMID: 2167451610.1002/mus.22097)
Mullard, A. FDA approves first gene therapy for Duchenne muscular dystrophy, despite internal objections. Nat. Rev. Drug Discov. 22, 610 (2023). (PMID: 3735366510.1038/d41573-023-00103-y)
England, S. B. et al. Very mild muscular dystrophy associated with the deletion of 46% of dystrophin. Nature 343, 180–182 (1990). (PMID: 240421010.1038/343180a0)
Banks, G. B., Judge, L. M., Allen, J. M. & Chamberlain, J. S. The polyproline site in hinge 2 influences the functional capacity of truncated dystrophins. PLoS Genet. 6, e1000958 (2010). (PMID: 20502633287392410.1371/journal.pgen.1000958)
Gregorevic, P. et al. rAAV6-microdystrophin preserves muscle function and extends lifespan in severely dystrophic mice. Nat. Med. 12, 787–789 (2006). (PMID: 16819550424488310.1038/nm1439)
Ramos, J. N. et al. Development of novel micro-dystrophins with enhanced functionality. Mol. Ther. 27, 623–635 (2019). (PMID: 30718090640348510.1016/j.ymthe.2019.01.002)
Birch, S. M. et al. Assessment of systemic AAV-microdystrophin gene therapy in the GRMD model of Duchenne muscular dystrophy. Sci. Transl. Med. 15, eabo1815 (2023). (PMID: 365990021110774810.1126/scitranslmed.abo1815)
Hoy, S. M. Delandistrogene moxeparvovec: first approval. Drugs 83, 1323–1329 (2023). (PMID: 3756621110.1007/s40265-023-01929-x)
Harper, S. Q. et al. Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy. Nat. Med. 8, 253–261 (2002). (PMID: 1187549610.1038/nm0302-253)
Bostick, B. et al. AAV micro-dystrophin gene therapy alleviates stress-induced cardiac death but not myocardial fibrosis in >21-m-old mdx mice, an end-stage model of Duchenne muscular dystrophy cardiomyopathy. J. Mol. Cell Cardiol. 53, 217–222 (2012). (PMID: 22587991338927410.1016/j.yjmcc.2012.05.002)
Wasala, L. P. et al. The implication of Hinge 1 and Hinge 4 in micro-dystrophin gene therapy for Duchenne muscular dystrophy. Hum. Gene Ther. 34, 459–470 (2023). (PMID: 363104391021023010.1089/hum.2022.180)
Halbert, C. L., Allen, J. M. & Miller, A. D. Efficient mouse airway transduction following recombination between AAV vectors carrying parts of a larger gene. Nat. Biotechnol. 20, 697–701 (2002). (PMID: 1208955410.1038/nbt0702-697)
Odom, G. L., Gregorevic, P., Allen, J. M. & Chamberlain, J. S. Gene therapy of mdx mice with large truncated dystrophins generated by recombination using rAAV6. Mol. Ther. 19, 36–45 (2011). (PMID: 2085926310.1038/mt.2010.205)
Sondergaard, P. C. et al. AAV.Dysferlin overlap vectors restore function in dysferlinopathy animal models. Ann. Clin. Transl. Neurol. 2, 256–270 (2015). (PMID: 25815352436927510.1002/acn3.172)
Pryadkina, M. et al. A comparison of AAV strategies distinguishes overlapping vectors for efficient systemic delivery of the 6.2 kb Dysferlin coding sequence. Mol. Ther. Methods Clin. Dev. 2, 15009 (2015). (PMID: 26029720444501010.1038/mtm.2015.9)
Duan, D., Yue, Y., Yan, Z. & Engelhardt, J. F. A new dual-vector approach to enhance recombinant adeno-associated virus-mediated gene expression through intermolecular cis activation. Nat. Med. 6, 595–598 (2000). (PMID: 1080271910.1038/75080)
Yan, Z., Zhang, Y., Duan, D. & Engelhardt, J. F. Trans-splicing vectors expand the utility of adeno-associated virus for gene therapy. Proc. Natl Acad. Sci. USA 97, 6716–6721 (2000). (PMID: 108415681871410.1073/pnas.97.12.6716)
Ghosh, A., Yue, Y., Lai, Y. & Duan, D. A hybrid vector system expands adeno-associated viral vector packaging capacity in a transgene-independent manner. Mol. Ther. 16, 124–130 (2008). (PMID: 1798497810.1038/sj.mt.6300322)
Koo, T., Popplewell, L., Athanasopoulos, T. & Dickson, G. Triple trans-splicing adeno-associated virus vectors capable of transferring the coding sequence for full-length dystrophin protein into dystrophic mice. Hum. Gene Ther. 25, 98–108 (2014). (PMID: 2419194510.1089/hum.2013.164)
Xu, L. et al. Efficient precise in vivo base editing in adult dystrophic mice. Nat. Commun. 12, 3719 (2021). (PMID: 34140489821179710.1038/s41467-021-23996-y)
Zuo, Y. et al. Liver-specific in vivo base editing of Angptl3 via AAV delivery efficiently lowers blood lipid levels in mice. Cell Biosci. 13, 109 (2023). (PMID: 373225471027371810.1186/s13578-023-01036-0)
Levy, J. M. et al. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat. Biomed. Eng. 4, 97–110 (2020). (PMID: 31937940698078310.1038/s41551-019-0501-5)
Tabebordbar, M. et al. Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell 184, 4919–4938 e4922 (2021). (PMID: 34506722934497510.1016/j.cell.2021.08.028)
Stevens, A. J. et al. Design of a split intein with exceptional protein splicing activity. J. Am. Chem. Soc. 138, 2162–2165 (2016). (PMID: 26854538489428010.1021/jacs.5b13528)
Carvajal-Vallejos, P., Pallisse, R., Mootz, H. D. & Schmidt, S. R. Unprecedented rates and efficiencies revealed for new natural split inteins from metagenomic sources. J. Biol. Chem. 287, 28686–28696 (2012). (PMID: 22753413343655410.1074/jbc.M112.372680)
Sadis, S., Atienza, C. Jr. & Finley, D. Synthetic signals for ubiquitin-dependent proteolysis. Mol. Cell Biol. 15, 4086–4094 (1995). (PMID: 762380423064710.1128/MCB.15.8.4086)
Luo, L., Jea, J. D., Wang, Y., Chao, P. W. & Yen, L. Control of mammalian gene expression by modulation of polyA signal cleavage at 5’ UTR. Nat. Biotechnol. (2024).
Bachmann, A. L. & Mootz, H. D. An unprecedented combination of serine and cysteine nucleophiles in a split intein with an atypical split site. J. Biol. Chem. 290, 28792–28804 (2015). (PMID: 26453311466139510.1074/jbc.M115.677237)
Thiel, I. V., Volkmann, G., Pietrokovski, S. & Mootz, H. D. An atypical naturally split intein engineered for highly efficient protein labeling. Angew. Chem. 53, 1306–1310 (2014). (PMID: 10.1002/anie.201307969)
Stevens, A. J., Sekar, G., Gramespacher, J. A., Cowburn, D. & Muir, T. W. An atypical mechanism of split intein molecular recognition and folding. J. Am. Chem. Soc. 140, 11791–11799 (2018). (PMID: 30156841723284410.1021/jacs.8b07334)
Burton, A. J., Haugbro, M., Parisi, E. & Muir, T. W. Live-cell protein engineering with an ultra-short split intein. Proc. Natl Acad. Sci. USA 117, 12041–12049 (2020). (PMID: 32424098727566710.1073/pnas.2003613117)
Li, X., Eastman, E. M., Schwartz, R. J. & Draghia-Akli, R. Synthetic muscle promoters: activities exceeding naturally occurring regulatory sequences. Nat. Biotechnol. 17, 241–245 (1999). (PMID: 1009629010.1038/6981)
Li, H. et al. Systemic AAV9.BVES delivery ameliorates muscular dystrophy in a mouse model of LGMDR25. Mol. Ther. 31, 398–408 (2023). (PMID: 3643364910.1016/j.ymthe.2022.11.012)
Li, H. et al. Defective BVES-mediated feedback control of cAMP in muscular dystrophy. Nat. Commun. 14, 1785 (2023). (PMID: 369975811006367210.1038/s41467-023-37496-8)
Wang, H. et al. Proteomic analysis identifies key differences in the cardiac interactomes of dystrophin and micro-dystrophin. Hum. Mol. Genet. 30, 1321–1336 (2021). (PMID: 33949649825513310.1093/hmg/ddab133)
Li, J., Sun, W., Wang, B., Xiao, X. & Liu, X. Q. Protein trans-splicing as a means for viral vector-mediated in vivo gene therapy. Hum. Gene Ther. 19, 958–964 (2008). (PMID: 18788906294062910.1089/hum.2008.009)
Chen, L. et al. The enhancing effects of the light chain on heavy chain secretion in split delivery of factor VIII gene. Mol. Ther. 15, 1856–1862 (2007). (PMID: 1765310110.1038/sj.mt.6300268)
Warner, L. E. et al. Expression of Dp260 in muscle tethers the actin cytoskeleton to the dystrophin-glycoprotein complex and partially prevents dystrophy. Hum. Mol. Genet. 11, 1095–1105 (2002). (PMID: 1197876810.1093/hmg/11.9.1095)
Barnabei, M. S., Sjaastad, F. V., Townsend, D., Bedada, F. B. & Metzger, J. M. Severe dystrophic cardiomyopathy caused by the enteroviral protease 2A-mediated C-terminal dystrophin cleavage fragment. Sci. Transl. Med. 7, 294ra106 (2015). (PMID: 2613647710.1126/scitranslmed.aaa4804)
Gramespacher, J. A., Stevens, A. J., Thompson, R. E. & Muir, T. W. Improved protein splicing using embedded split inteins. Protein Sci. 27, 614–619 (2018). (PMID: 29226478581874910.1002/pro.3357)
Weinmann, J. et al. Identification of a myotropic AAV by massively parallel in vivo evaluation of barcoded capsid variants. Nat. Commun. 11, 5432 (2020). (PMID: 33116134759522810.1038/s41467-020-19230-w)
El Andari, J. et al. Semirational bioengineering of AAV vectors with increased potency and specificity for systemic gene therapy of muscle disorders. Sci. Adv. 8, eabn4704 (2022). (PMID: 36129972949171410.1126/sciadv.abn4704)
Ruoslahti, E. RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol. 12, 697–715 (1996). (PMID: 897074110.1146/annurev.cellbio.12.1.697)
Bonnemann, C. G. et al. Dystrophin immunity after gene therapy for Duchenne’s muscular dystrophy. N. Engl. J. Med. 388, 2294–2296 (2023). (PMID: 3731471210.1056/NEJMc2212912)
Salabarria, S. M. et al. Thrombotic microangiopathy following systemic AAV administration is dependent on anti-capsid antibodies. J. Clin. Invest. 134, e173510 (2024). (PMID: 379881721076097110.1172/JCI173510)
Kaczmarek, R., Samelson-Jones, B. J. & Herzog, R. W. Immune tolerance induction by hepatic gene transfer: first-in-human evidence. Mol. Ther. 32, 863–864 (2024). (PMID: 3851876710.1016/j.ymthe.2024.03.016)
معلومات مُعتمدة: R01HL159900 U.S. Department of Health & Human Services | National Institutes of Health (NIH); R01HL170260 U.S. Department of Health & Human Services | National Institutes of Health (NIH); R21HL163720 U.S. Department of Health & Human Services | National Institutes of Health (NIH); R01HL169976 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
المشرفين على المادة: 0 (Dystrophin)
تواريخ الأحداث: Date Created: 20240721 Date Completed: 20240721 Latest Revision: 20240721
رمز التحديث: 20240722
DOI: 10.1038/s41467-024-50569-6
PMID: 39034316
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-024-50569-6