دورية أكاديمية

A genetic mouse model mimicking MET related human osteofibrous dysplasia is characterized by delays in fracture repair and defective osteogenesis.

التفاصيل البيبلوغرافية
العنوان: A genetic mouse model mimicking MET related human osteofibrous dysplasia is characterized by delays in fracture repair and defective osteogenesis.
المؤلفون: Hong G; Traumatology & Orthopedics Institute, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China.; Department of Orthopedic, the Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China.; Division of Orthopaedic Surgery, University of Alberta, Edmonton, Alberta, Canada., Xie W; Developmental and Stem Cell Biology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada., Ahmed K; Developmental and Stem Cell Biology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada., Oborn C; Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada., Soltys CL; Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada., Kannu P; Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada.
المصدر: FASEB journal : official publication of the Federation of American Societies for Experimental Biology [FASEB J] 2024 Jul 31; Vol. 38 (14), pp. e23810.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Federation of American Societies for Experimental Biology Country of Publication: United States NLM ID: 8804484 Publication Model: Print Cited Medium: Internet ISSN: 1530-6860 (Electronic) Linking ISSN: 08926638 NLM ISO Abbreviation: FASEB J Subsets: MEDLINE
أسماء مطبوعة: Publication: 2020- : [Bethesda, Md.] : Hoboken, NJ : Federation of American Societies for Experimental Biology ; Wiley
Original Publication: [Bethesda, Md.] : The Federation, [c1987-
مواضيع طبية MeSH: Osteogenesis*/genetics , Proto-Oncogene Proteins c-met*/genetics , Proto-Oncogene Proteins c-met*/metabolism , Fracture Healing*/genetics , Bone Diseases, Developmental*/genetics , Bone Diseases, Developmental*/pathology , Disease Models, Animal* , Fibrous Dysplasia of Bone*/genetics , Fibrous Dysplasia of Bone*/pathology , Fibrous Dysplasia of Bone*/metabolism, Animals ; Mice ; Humans ; Osteoblasts/metabolism ; Osteoblasts/pathology ; Mutation ; Cell Differentiation ; Mice, Inbred C57BL ; Male
مستخلص: Osteofibrous dysplasia (OFD) is a rare, benign, fibro-osseous lesion that occurs most commonly in the tibia of children. Tibial involvement leads to bowing and predisposes to the development of a fracture which exhibit significantly delayed healing processes, leading to prolonged morbidity. We previously identified gain-of-function mutations in the MET gene as a cause for OFD. In our present study, we test the hypothesis that gain-of-function MET mutations impair bone repair due to reduced osteoblast differentiation. A heterozygous Met exon 15 skipping (Met Δ15 -HET) mouse was created to imitate the human OFD mutation. The mutation results in aberrant and dysregulation of MET-related signaling determined by RNA-seq in the murine osteoblasts extracted from the wide-type and genetic mice. Although no gross skeletal defects were identified in the mice, fracture repair was delayed in Met Δ15 -HET mice, with decreased bone formation observed 2-week postfracture. Our data are consistent with a novel role for MET-mediated signaling regulating osteogenesis.
(© 2024 The Author(s). The FASEB Journal published by Wiley Periodicals LLC on behalf of Federation of American Societies for Experimental Biology.)
References: Hitachi S, Hayashi K, Watanuki M, et al. Osteofibrous dysplasia arising in the humerus: a case report. Rare Tumors. 2018;10:2036361318808852. doi:10.1177/2036361318808852.
Dala‐Ali B, Donnan L, Masterton G, et al. Osteofibrous dysplasia of the tibia: the importance of deformity in surveillance. Bone Joint J. 2022;104‐B(2):302‐308. doi:10.1302/0301-620X.104B2.BJJ-2021-0815.R1.
Most MJ, Sim FH, Inwards CY. Osteofibrous dysplasia and adamantinoma. J Am Acad Orthop Surg. 2010;18:358‐366. doi:10.5435/00124635-201006000-00008.
Westacott D, Kannu P, Stimec J, Hopyan S, Howard A. Osteofibrous dysplasia of the tibia in children: outcome without resection. J Pediatr Orthop. 2019;39(8):e614‐e621. doi:10.1097/BPO.0000000000001116.
Gray MJ, Kannu P, Sharma S, et al. Mutations preventing regulated exon skipping in MET cause osteofibrous dysplasia. Am J Hum Genet. 2015;97:837‐847. doi:10.1016/j.ajhg.2015.11.001.
Park YK, Unni KK, McLeod RA, Pritchard DJ. Osteofibrous dysplasia: clinicopathologic study of 80 cases. Hum Pathol. 1993;24:1339‐1347. doi:10.1016/0046-8177(93)90268-L.
Wong SK, Alex D, Bosdet I, et al. MET exon 14 skipping mutation positive non‐small cell lung cancer: response to systemic therapy. Lung Cancer. 2021;154:142‐145. doi:10.1016/j.lungcan.2021.02.030.
Paik PK, Drilon A, Fan P‐D, et al. Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping. Cancer Discov. 2015;5(8):842‐849. doi:10.1158/2159-8290.CD-14-1467.
Organ SL, Tsao M‐S. An overview of the C‐MET signaling pathway. Ther Adv Med Oncol. 2011;3(1_suppl):S7‐S19. doi:10.1177/1758834011422556.
de Mara CS, Sartori AR, Duarte AS, Andrade ALL, Pedro MAC, Coimbra IB. Periosteum as a source of mesenchymal stem cells: the effects of TGF‐Β3 on chondrogenesis. Clinics. 2011;66:487‐492. doi:10.1590/s1807-59322011000300022.
Grano M, Galimi F, Zambonin G, et al. Hepatocyte growth factor is a coupling factor for osteoclasts and osteoblasts in vitro. Proc Natl Acad Sci USA. 2002;93:7644‐7648. doi:10.1073/pnas.93.15.7644.
Vallet S, Bashari MH, Fan FJ, et al. Pre‐osteoblasts stimulate migration of breast cancer cells via the HGF/MET pathway. PLoS One. 2016;11:e0150507. doi:10.1371/journal.pone.0150507.
Chen Y, Whetstone HC, Lin AC, et al. Beta‐catenin signaling plays a disparate role in different phases of fracture repair: implications for therapy to improve bone healing. PLoS Med. 2007;4:e249. doi:10.1371/journal.pmed.0040249.
Einhorn TA, Gerstenfeld LC. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol. 2015;11(1):45‐54. doi:10.1038/nrrheum.2014.164.
Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011;42:551‐555. doi:10.1016/j.injury.2011.03.031.
Uehara Y, Minowa O, Mori C, et al. Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature. 1995;373(6516):702‐705. doi:10.1038/373702a0.
Guo G, Narayan RN, Horton L, Patel TR, Habib AA. The role of EGFR‐met interactions in the pathogenesis of glioblastoma and resistance to treatment. Curr Cancer Drug Targets. 2017;17(3):297‐302. doi:10.2174/1568009616666161215162515.
Zhu J, Shimizu E, Zhang X, Partridge NC, Qin L. EGFR signaling suppresses osteoblast differentiation and inhibits expression of master osteoblastic transcription factors Runx2 and osterix. J Cell Biochem. 2011;112(7):1749‐1760. doi:10.1002/jcb.23094.
Hu K, Olsen BR. Osteoblast‐derived VEGF regulates osteoblast differentiation and bone formation during bone repair. J Clin Invest. 2016;126(2):509‐526. doi:10.1172/JCI82585.
Karner CM, Long F. Wnt signaling and cellular metabolism in osteoblasts. Cell Mol Life Sci. 2017;74(9):1649‐1657. doi:10.1007/s00018-016-2425-5.
Muro R, Nitta T, Kitajima M, Okada T, Suzuki H. Rasal3‐mediated T cell survival is essential for inflammatory responses. Biochem Biophys Res Commun. 2018;496(1):25‐30. doi:10.1016/j.bbrc.2017.12.159.
Papaioannou NE, Beniata OV, Vitsos P, Tsitsilonis O, Samara P. Harnessing the immune system to improve cancer therapy. Ann Transl Med. 2016;4(14):261. doi:10.21037/atm.2016.04.01.
Schindeler A, Little DG. Ras‐MAPK signaling in osteogenic differentiation: friend or foe? J Bone Miner Res. 2006;21(9):1331‐1338. doi:10.1359/jbmr.060603.
Diesenberg K, Beerbaum M, Fink U, Schmieder P, Krauss M. SEPT9 negatively regulates ubiquitin‐dependent downregulation of EGFR. J Cell Sci. 2015;128(2):397‐407. doi:10.1242/jcs.162206.
Jo M, Stolz DB, Esplen JE, Dorko K, Michalopoulos GK, Strom SC. Cross‐talk between epidermal growth factor receptor and c‐met signal pathways in transformed cells. J Biol Chem. 2000;275(12):8806‐8811. doi:10.1074/jbc.275.12.8806.
Muff R, Born W, Fischer JA. Calcitonin, calcitonin gene‐related peptide, adrenomedullin and amylin: homologous peptides, separate receptors and overlapping biological actions. Eur J Endocrinol. 1995;133(1):17‐20. doi:10.1530/eje.0.1330017.
Lausson S, Cressent M. Signal transduction pathways mediating the effect of adrenomedullin on osteoblast survival. J Cell Biochem. 2011;112(12):3807‐3815. doi:10.1002/jcb.23311.
Uzan B, Villemin A, Garel J‐M, Cressent M. Adrenomedullin is anti‐apoptotic in osteoblasts through CGRP1 receptors and MEK‐ERK pathway. J Cell Physiol. 2008;215(1):122‐128. doi:10.1002/jcp.21294.
Bahney CS, Zondervan RL, Allison P, et al. Cellular biology of fracture healing. J Orthop Res. 2019;37(1):35‐50. doi:10.1002/jor.24170.
Camal Ruggieri IN, Cícero AM, Issa JPM, Feldman S. Bone fracture healing: perspectives according to molecular basis. J Bone Miner Metab. 2021;39(3):311‐331. doi:10.1007/s00774-020-01168-0.
معلومات مُعتمدة: 166064 CIHR; WCHRI
فهرسة مساهمة: Keywords: Met; RNA‐seq; fracture; osteofibrous dysplasia; osteogenesis
المشرفين على المادة: EC 2.7.10.1 (Proto-Oncogene Proteins c-met)
SCR Disease Name: Osteofibrous Dysplasia
تواريخ الأحداث: Date Created: 20240723 Date Completed: 20240723 Latest Revision: 20240723
رمز التحديث: 20240725
DOI: 10.1096/fj.202400075RR
PMID: 39042586
قاعدة البيانات: MEDLINE
الوصف
تدمد:1530-6860
DOI:10.1096/fj.202400075RR