دورية أكاديمية

TMEFF1 is a neuron-specific restriction factor for herpes simplex virus.

التفاصيل البيبلوغرافية
العنوان: TMEFF1 is a neuron-specific restriction factor for herpes simplex virus.
المؤلفون: Dai Y; Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China., Idorn M; Department of Biomedicine, Aarhus University, Aarhus, Denmark.; Center for Immunology of Viral Infections, Aarhus, Denmark., Serrero MC; Department of Biomedicine, Aarhus University, Aarhus, Denmark.; Center for Immunology of Viral Infections, Aarhus, Denmark., Pan X; Key Laboratory of System Control and Information Processing (Ministry of Education), Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China., Thomsen EA; Department of Biomedicine, Aarhus University, Aarhus, Denmark.; Center for Immunology of Viral Infections, Aarhus, Denmark., Narita R; Department of Biomedicine, Aarhus University, Aarhus, Denmark.; Center for Immunology of Viral Infections, Aarhus, Denmark., Maimaitili M; Department of Biomedicine, Aarhus University, Aarhus, Denmark.; Center for Immunology of Viral Infections, Aarhus, Denmark., Qian X; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China., Iversen MB; Department of Biomedicine, Aarhus University, Aarhus, Denmark.; Center for Immunology of Viral Infections, Aarhus, Denmark., Reinert LS; Department of Biomedicine, Aarhus University, Aarhus, Denmark.; Center for Immunology of Viral Infections, Aarhus, Denmark., Flygaard RK; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark., Chen M; Department of Biomedicine, Aarhus University, Aarhus, Denmark.; Center for Immunology of Viral Infections, Aarhus, Denmark.; Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark., Ding X; Department of Biomedicine, Aarhus University, Aarhus, Denmark.; Center for Immunology of Viral Infections, Aarhus, Denmark., Zhang BC; Department of Biomedicine, Aarhus University, Aarhus, Denmark.; Center for Immunology of Viral Infections, Aarhus, Denmark., Carter-Timofte ME; Department of Biomedicine, Aarhus University, Aarhus, Denmark.; Center for Immunology of Viral Infections, Aarhus, Denmark., Lu Q; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China., Jiang Z; Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China., Zhong Y; Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China., Zhang S; Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China., Da L; Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China., Zhu J; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China., Denham M; Department of Biomedicine, Aarhus University, Aarhus, Denmark.; Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark., Nissen P; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.; Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark., Mogensen TH; Department of Biomedicine, Aarhus University, Aarhus, Denmark.; Center for Immunology of Viral Infections, Aarhus, Denmark.; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark., Mikkelsen JG; Department of Biomedicine, Aarhus University, Aarhus, Denmark.; Center for Immunology of Viral Infections, Aarhus, Denmark., Zhang SY; University of Paris, Imagine Institute, Paris, France.; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA., Casanova JL; University of Paris, Imagine Institute, Paris, France.; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA.; Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France.; Howard Hughes Medical Institute, New York, NY, USA., Cai Y; Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China. yujia.cai@sjtu.edu.cn.; Department of Biomedicine, Aarhus University, Aarhus, Denmark. yujia.cai@sjtu.edu.cn., Paludan SR; Department of Biomedicine, Aarhus University, Aarhus, Denmark. srp@biomed.au.dk.; Center for Immunology of Viral Infections, Aarhus, Denmark. srp@biomed.au.dk.; Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden. srp@biomed.au.dk.
المصدر: Nature [Nature] 2024 Aug; Vol. 632 (8024), pp. 383-389. Date of Electronic Publication: 2024 Jul 24.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Antiviral Restriction Factors*/metabolism , Brain*/cytology , Brain*/metabolism , Brain*/pathology , Brain*/virology , Herpes Simplex*/immunology , Herpes Simplex*/metabolism , Herpes Simplex*/virology , Herpesvirus 1, Human*/growth & development , Herpesvirus 1, Human*/immunology , Herpesvirus 1, Human*/physiology , Membrane Proteins*/metabolism , Membrane Proteins*/deficiency , Membrane Proteins*/genetics , Neurons*/virology , Neurons*/metabolism , Virus Internalization* , Virus Replication*, Animals ; Female ; Humans ; Male ; Mice ; Cell Death ; CRISPR-Cas Systems/genetics ; Viral Load ; Nectins/metabolism ; Nonmuscle Myosin Type IIA/metabolism ; Nonmuscle Myosin Type IIB/metabolism ; Interferon Type I ; Neuroinflammatory Diseases/immunology ; Neuroinflammatory Diseases/metabolism ; Neuroinflammatory Diseases/pathology ; Neuroinflammatory Diseases/prevention & control ; Neuroinflammatory Diseases/virology
مستخلص: The brain is highly sensitive to damage caused by infection and inflammation 1,2 . Herpes simplex virus 1 (HSV-1) is a neurotropic virus and the cause of herpes simplex encephalitis 3 . It is unknown whether neuron-specific antiviral factors control virus replication to prevent infection and excessive inflammatory responses, hence protecting the brain. Here we identify TMEFF1 as an HSV-1 restriction factor using genome-wide CRISPR screening. TMEFF1 is expressed specifically in neurons of the central nervous system and is not regulated by type I interferon, the best-known innate antiviral system controlling virus infections. Depletion of TMEFF1 in stem-cell-derived human neurons led to elevated viral replication and neuronal death following HSV-1 infection. TMEFF1 blocked the HSV-1 replication cycle at the level of viral entry through interactions with nectin-1 and non-muscle myosin heavy chains IIA and IIB, which are core proteins in virus-cell binding and virus-cell fusion, respectively 4-6 . Notably, Tmeff1 -/- mice exhibited increased susceptibility to HSV-1 infection in the brain but not in the periphery. Within the brain, elevated viral load was observed specifically in neurons. Our study identifies TMEFF1 as a neuron-specific restriction factor essential for prevention of HSV-1 replication in the central nervous system.
(© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Stahl, J. P. & Mailles, A. Herpes simplex virus encephalitis update. Curr. Opin. Infect. Dis. 32, 239–243 (2019). (PMID: 3092108710.1097/QCO.0000000000000554)
Crow, Y. J. & Manel, N. Aicardi–Goutières syndrome and the type I interferonopathies. Nat. Rev. Immunol. 15, 429–440 (2015). (PMID: 2605209810.1038/nri3850)
Liesegang, T. J. Herpes simplex virus epidemiology and ocular importance. Cornea 20, 1–13 (2001). (PMID: 1118898910.1097/00003226-200101000-00001)
Geraghty, R. J., Krummenacher, C., Cohen, G. H., Eisenberg, R. J. & Spear, P. G. Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science 280, 1618–1620 (1998). (PMID: 961612710.1126/science.280.5369.1618)
Arii, J. et al. Non-muscle myosin IIA is a functional entry receptor for herpes simplex virus-1. Nature 467, 859–862 (2010). (PMID: 2094474810.1038/nature09420)
Arii, J., Hirohata, Y., Kato, A. & Kawaguchi, Y. Nonmuscle myosin heavy chain IIb mediates herpes simplex virus 1 entry. J. Virol. 89, 1879–1888 (2015). (PMID: 2542887610.1128/JVI.03079-14)
Casanova, J. L. Human genetic basis of interindividual variability in the course of infection. Proc. Natl Acad. Sci. USA 112, E7118–E7127 (2015). (PMID: 26621739469741510.1073/pnas.1521644112)
Paludan, S. R., Pradeu, T., Master, S. & Mogensen, T. H. Constitutive immune mechanisms: mediators of host defence and immune regulation. Nat. Rev. Immunol. 21, 137–150 (2021). (PMID: 3278235710.1038/s41577-020-0391-5)
Zhang, S. Y. et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science 317, 1522–1527 (2007). (PMID: 1787243810.1126/science.1139522)
Herman, M. et al. Heterozygous TBK1 mutations impair TLR3 immunity and underlie herpes simplex encephalitis of childhood. J. Exp. Med. 209, 1567–1582 (2012). (PMID: 22851595342895210.1084/jem.20111316)
Andersen, L. L. et al. Functional IRF3 deficiency in a patient with herpes simplex encephalitis. J. Exp. Med. 212, 1371–1379 (2015). (PMID: 26216125454806210.1084/jem.20142274)
Bastard, P. et al. Herpes simplex encephalitis in a patient with a distinctive form of inherited IFNAR1 deficiency. J. Clin. Investig. https://doi.org/10.1172/JCI139980 (2021).
Zhang, S. Y. et al. Inborn errors of RNA lariat metabolism in humans with brainstem viral infection. Cell 172, 952–965 (2018). (PMID: 29474921588637510.1016/j.cell.2018.02.019)
Lafaille, F. G. et al. Human SNORA31 variations impair cortical neuron-intrinsic immunity to HSV-1 and underlie herpes simplex encephalitis. Nat. Med. 25, 1873–1884 (2019). (PMID: 31806906737681910.1038/s41591-019-0672-3)
Chakraborty, S., Nazmi, A., Dutta, K. & Basu, A. Neurons under viral attack: victims or warriors? Neurochem. Int. 56, 727–735 (2010). (PMID: 20206655711538910.1016/j.neuint.2010.02.016)
Paludan, S. R. & Mogensen, T. H. Constitutive and latent immune mechanisms exert ‘silent’ control of virus infections in the central nervous system. Curr. Opin. Immunol. 72, 158–166 (2021). (PMID: 3406236410.1016/j.coi.2021.05.004)
Yordy, B., Iijima, N., Huttner, A., Leib, D. & Iwasaki, A. A neuron-specific role for autophagy in antiviral defense against herpes simplex virus. Cell Host. Microbe 12, 334–345 (2012). (PMID: 22980330345445410.1016/j.chom.2012.07.013)
Hait, A. S. et al. Defects in LC3B2 and ATG4A underlie HSV2 meningitis and reveal a critical role for autophagy in antiviral defense in humans. Sci. Immunol. 5, eabc2691 (2020). (PMID: 33310865761106710.1126/sciimmunol.abc2691)
Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014). (PMID: 2433657110.1126/science.1247005)
Pillay, S. et al. An essential receptor for adeno-associated virus infection. Nature 530, 108–112 (2016). (PMID: 26814968496291510.1038/nature16465)
Zhang, R. et al. Mxra8 is a receptor for multiple arthritogenic alphaviruses. Nature 557, 570–574 (2018). (PMID: 29769725597097610.1038/s41586-018-0121-3)
Park, R. J. et al. A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors. Nat. Genet. 49, 193–203 (2017). (PMID: 2799241510.1038/ng.3741)
Baggen, J. et al. Genome-wide CRISPR screening identifies TMEM106B as a proviral host factor for SARS-CoV-2. Nat. Genet. 53, 435–444 (2021). (PMID: 3368628710.1038/s41588-021-00805-2)
Wei, J. et al. Genome-wide CRISPR screens reveal host factors critical for SARS-CoV-2 infection. Cell 184, 76–91 (2021). (PMID: 3314744410.1016/j.cell.2020.10.028)
Negorev, D. G., Vladimirova, O. V., Ivanov, A., Rauscher, F. 3rd & Maul, G. G. Differential role of Sp100 isoforms in interferon-mediated repression of herpes simplex virus type 1 immediate-early protein expression. J. Virol. 80, 8019–8029 (2006). (PMID: 16873258156380910.1128/JVI.02164-05)
Xu, P. & Roizman, B. The SP100 component of ND10 enhances accumulation of PML and suppresses replication and the assembly of HSV replication compartments. Proc. Natl Acad. Sci. USA 114, E3823–E3829 (2017). (PMID: 284390265441741)
Reinert, L. S. et al. Sensing of HSV-1 by the cGAS-STING pathway in microglia orchestrates antiviral defense in the CNS. Nat. Commun. 7, 13348 (2016). (PMID: 27830700510955110.1038/ncomms13348)
Desai, P. & Person, S. Incorporation of the green fluorescent protein into the herpes simplex virus type 1 capsid. J. Virol. 72, 7563–7568 (1998). (PMID: 969685411000210.1128/JVI.72.9.7563-7568.1998)
Cabantous, S., Terwilliger, T. C. & Waldo, G. S. Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat. Biotechnol. 23, 102–107 (2005). (PMID: 1558026210.1038/nbt1044)
Montgomery, R. I., Warner, M. S., Lum, B. J. & Spear, P. G. Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell 87, 427–436 (1996). (PMID: 889819610.1016/S0092-8674(00)81363-X)
Suenaga, T. et al. Myelin-associated glycoprotein mediates membrane fusion and entry of neurotropic herpesviruses. Proc. Natl Acad. Sci. USA 107, 866–871 (2010). (PMID: 2008076710.1073/pnas.0913351107)
Wang, C. et al. Nectin-1 and non-muscle myosin heavy chain-IIB: major mediators of herpes simplex virus-1 entry into corneal nerves. Front. Microbiol. 13, 830699 (2022). (PMID: 35295302891996210.3389/fmicb.2022.830699)
Horie, M. et al. Identification and characterization of TMEFF2, a novel survival factor for hippocampal and mesencephalic neurons. Genomics 67, 146–152 (2000). (PMID: 1090383910.1006/geno.2000.6228)
Kanemoto, N. et al. Expression of TMEFF1 mRNA in the mouse central nervous system: precise examination and comparative studies of TMEFF1 and TMEFF2. Mol. Brain Res. 86, 48–55 (2001). (PMID: 1116537010.1016/S0169-328X(00)00257-6)
Laguette, N. et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474, 654–657 (2011). (PMID: 21613998359599310.1038/nature10117)
Ryoo, J. et al. The ribonuclease activity of SAMHD1 is required for HIV-1 restriction. Nat. Med. 20, 936–941 (2014). (PMID: 25038827431868410.1038/nm.3626)
Li, K. et al. IFITM proteins restrict viral membrane hemifusion. PLoS Pathog. 9, e1003124 (2013). (PMID: 23358889355458310.1371/journal.ppat.1003124)
Lanz, C. et al. IFITM3 incorporation sensitizes influenza A virus to antibody-mediated neutralization. J. Exp. Med. https://doi.org/10.1084/jem.20200303 (2021).
Xu, D. et al. PLSCR1 is a cell-autonomous defence factor against SARS-CoV-2 infection. Nature 619, 819–827 (2023). (PMID: 374385301037186710.1038/s41586-023-06322-y)
Kusano, S. & Ikeda, M. Interaction of phospholipid scramblase 1 with the Epstein-Barr virus protein BZLF1 represses BZLF1-mediated lytic gene transcription. J. Biol. Chem. 294, 15104–15116 (2019). (PMID: 31434743679132710.1074/jbc.RA119.008193)
Crameri, M. et al. MxB is an interferon-induced restriction factor of human herpesviruses. Nat. Commun. 9, 1980 (2018). (PMID: 29773792595805710.1038/s41467-018-04379-2)
Orzalli, M. H., Conwell, S. E., Berrios, C., DeCaprio, J. A. & Knipe, D. M. Nuclear interferon-inducible protein 16 promotes silencing of herpesviral and transfected DNA. Proc. Natl Acad. Sci. USA 110, E4492–E4501 (2013). (PMID: 24198334383972810.1073/pnas.1316194110)
Alandijany, T. Host intrinsic and innate intracellular immunity during herpes simplex virus type 1 (HSV-1) infection. Front. Microbiol. 10, 2611 (2019). (PMID: 31781083685686910.3389/fmicb.2019.02611)
Brinck Andersen, N. S. et al. Essential role of autophagy in restricting poliovirus infection revealed by identification of an ATG7 defect in a poliomyelitis patient. Autophagy https://doi.org/10.1080/15548627.2020.1831800 (2020).
Rosato, P. C. et al. Neuronal IFN signaling is dispensable for the establishment of HSV-1 latency. Virology 497, 323–327 (2016). (PMID: 2751854010.1016/j.virol.2016.06.016)
Cai, W. Z., Person, S., Warner, S. C., Zhou, J. H. & DeLuca, N. A. Linker-insertion nonsense and restriction-site deletion mutations of the gB glycoprotein gene of herpes simplex virus type 1. J. Virol. 61, 714–721 (1987). (PMID: 302739825401110.1128/jvi.61.3.714-721.1987)
Ligas, M. W. & Johnson, D. C. A herpes simplex virus mutant in which glycoprotein D sequences are replaced by beta-galactosidase sequences binds to but is unable to penetrate into cells. J. Virol. 62, 1486–1494 (1988). (PMID: 283360325317210.1128/jvi.62.5.1486-1494.1988)
Szpara, M. Isolation of herpes simplex virus nucleocapsid DNA. Methods Mol. Biol. 1144, 31–41 (2014). (PMID: 2467167510.1007/978-1-4939-0428-0_3)
Chen, M. et al. Rapid generation of regionally specified CNS neurons by sequential patterning and conversion of human induced pluripotent stem cells. Stem Cell Res. 48, 101945 (2020). (PMID: 3279148310.1016/j.scr.2020.101945)
Siletti, K. et al. Transcriptomic diversity of cell types across the adult human brain. Science 382, eadd7046 (2023). (PMID: 3782466310.1126/science.add7046)
Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014). (PMID: 25075903448624510.1038/nmeth.3047)
Neldeborg, S., Lin, L., Stougaard, M. & Luo, Y. Rapid and efficient gene deletion by CRISPR/Cas9. Methods Mol. Biol. 1961, 233–247 (2019). (PMID: 3091204910.1007/978-1-4939-9170-9_14)
Ryo, L. B., Thomsen, E. A. & Mikkelsen, J. G. Production and validation of lentiviral vectors for CRISPR/Cas9 delivery. Methods Mol. Biol. 1961, 93–109 (2019). (PMID: 3091204210.1007/978-1-4939-9170-9_7)
Dohner, K. et al. Importin alpha1 is required for nuclear import of herpes simplex virus proteins and capsid assembly in fibroblasts and neurons. PLoS Pathog. 14, e1006823 (2018). (PMID: 29304174577322010.1371/journal.ppat.1006823)
Reinert, L. S. et al. Brain immune cells undergo cGAS-STING-dependent apoptosis during herpes simplex virus type 1 infection to limit type I interferon production. J. Clin. Invest. 131, e136824 (2021). (PMID: 32990676777335610.1172/JCI136824)
Ogunjimi, B. et al. Inborn errors in RNA polymerase III underlie severe varicella zoster virus infections. J. Clin. Investig. 127, 3543–3556 (2017). (PMID: 28783042566956810.1172/JCI92280)
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). (PMID: 34265844837160510.1038/s41586-021-03819-2)
Abramson J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).
Saura, J., Tusell, J. M. & Serratosa, J. High-yield isolation of murine microglia by mild trypsinization. Glia 44, 183–189 (2003). (PMID: 1460346010.1002/glia.10274)
المشرفين على المادة: 0 (Antiviral Restriction Factors)
0 (Membrane Proteins)
0 (TMEFF1 protein, human)
0 (Tmeff1 protein, mouse)
0 (Nectins)
EC 3.6.1.- (Nonmuscle Myosin Type IIA)
EC 3.6.1.- (Nonmuscle Myosin Type IIB)
0 (Interferon Type I)
تواريخ الأحداث: Date Created: 20240724 Date Completed: 20240807 Latest Revision: 20240808
رمز التحديث: 20240809
DOI: 10.1038/s41586-024-07670-z
PMID: 39048823
قاعدة البيانات: MEDLINE