دورية أكاديمية

Architecture and anatomy of executive processes: evidence from verbal fluency and Trail Making Test in 2009 stroke patients.

التفاصيل البيبلوغرافية
العنوان: Architecture and anatomy of executive processes: evidence from verbal fluency and Trail Making Test in 2009 stroke patients.
المؤلفون: Godefroy O; Department of Neurology, Amiens University Hospital, and Laboratory of Functional Neurosciences (UR UPJV 4559), Jules Verne University of Picardie, Amiens, France. golis1044@gmail.com., Weaver NA; Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands., Roussel M; Department of Neurology, Amiens University Hospital, and Laboratory of Functional Neurosciences (UR UPJV 4559), Jules Verne University of Picardie, Amiens, France., Dorchies F; Department of Neurology, Amiens University Hospital, and Laboratory of Functional Neurosciences (UR UPJV 4559), Jules Verne University of Picardie, Amiens, France., Kassir R; Department of Neurology, Amiens University Hospital, and Laboratory of Functional Neurosciences (UR UPJV 4559), Jules Verne University of Picardie, Amiens, France., Biesbroek JM; Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands.; Department of Neurology, Diakonessenhuis Hospital, Utrecht, The Netherlands., Lee KJ; Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea., Kim BJ; Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea., Bae HJ; Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea., Lim JS; Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea., Lee M; Department of Neurology, Hallym University Sacred Heart Hospital, Hayllm University College of Medicine, Anyang, Republic of Korea., Yu KH; Department of Neurology, Hallym University Sacred Heart Hospital, Hayllm University College of Medicine, Anyang, Republic of Korea., Aben HP; Department of Neurology, Elisabeth Tweesteden Hospital, Tilburg, The Netherlands., de Kort PLM; Department of Neurology, Elisabeth Tweesteden Hospital, Tilburg, The Netherlands., Bordet R; Department of Pharmacology, Lille University Hospital, Lille, France., Lopes R; Department of Pharmacology, Lille University Hospital, Lille, France., Dondaine T; Department of Pharmacology, Lille University Hospital, Lille, France., Biessels GJ; Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands., Aarabi A; Department of Neurology, Amiens University Hospital, and Laboratory of Functional Neurosciences (UR UPJV 4559), Jules Verne University of Picardie, Amiens, France.
مؤلفون مشاركون: MetaVCI map consortium
المصدر: Journal of neurology [J Neurol] 2024 Sep; Vol. 271 (9), pp. 6147-6159. Date of Electronic Publication: 2024 Jul 26.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 0423161 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1459 (Electronic) Linking ISSN: 03405354 NLM ISO Abbreviation: J Neurol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin ; New York, Springer-Verlag
مواضيع طبية MeSH: Executive Function*/physiology , Trail Making Test* , Stroke*/diagnostic imaging , Stroke*/physiopathology, Humans ; Male ; Female ; Middle Aged ; Aged ; Verbal Behavior/physiology ; Brain Mapping ; Magnetic Resonance Imaging ; Brain/diagnostic imaging ; Brain/physiopathology ; Brain/pathology ; Adult
مستخلص: Objectives: The few voxel-wise lesion-symptom mapping (VLSM) studies aimed at identifying the anatomy of executive function are limited by the absence of a model and by small populations. Using Trail Making Test (TMT) and verbal fluency and a model of their architectures, our objective was to identify the key structures underlying two major executive processes, set-shifting and strategic word search.
Methods: We applied a validated VLSM analysis to harmonized cognitive and imaging data from 2009 ischemic stroke patients as a part of the Meta VCI Map consortium. All contrast analyses used an adjusted threshold with 2000 Freedman-Lane permutations (p ≤ 0.05).
Results: The TMT parts A and B were associated with structures involved in visual-spatial processing, the motor system, the frontal lobes, and their subcortical connections. Set-shifting depended on the left dorsomedial frontal region. Both semantic and phonemic fluency tests depended on verbal output abilities and processing speed with similar slopes in different languages. The strategic search process depended on Broca's area, F2 and related tracts, temporal and deep regions. Lastly, the lesion map of set-shifting did not overlap with those of strategic word search processes.
Interpretation: Our results identify the anatomical substrates of two main executive processes, revealing that they represent only a specific subpart of previously reported structures. Finally, our results indicate that executive functions depend on several specific, anatomically separable executive processes mainly operating in various parts of the frontal lobes.
(© 2024. Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Godefroy O, Azouvi P, Robert P et al (2010) Dysexecutive syndrome: diagnostic criteria and validation study. Ann Neurol 68:855–864. https://doi.org/10.1002/ana.22117. (PMID: 10.1002/ana.2211721194155)
Shallice T, Burgess P (1991) Higher-order cognitive impairments and frontal lobe lesions in man. Frontal lobe function and dysfunction. Oxford University Press, New York, NY, US, pp 125–138. (PMID: 10.1093/oso/9780195062847.003.0006)
Godefroy O, Martinaud O, Narme P et al (2018) Dysexecutive disorders and their diagnosis: a position paper. Cortex J Devoted Study Nerv Syst Behav 109:322–335. https://doi.org/10.1016/j.cortex.2018.09.026. (PMID: 10.1016/j.cortex.2018.09.026)
Hachinski V, Iadecola C, Petersen RC et al (2006) National Institute of Neurological Disorders and Stroke-Canadian Stroke Network vascular cognitive impairment harmonization standards. Stroke 37:2220–2241. https://doi.org/10.1161/01.STR.0000237236.88823.47. (PMID: 10.1161/01.STR.0000237236.88823.4716917086)
Varjačić A, Mantini D, Levenstein J et al (2018) The role of left insula in executive set-switching: lesion evidence from an acute stroke cohort. Cortex J Devoted Study Nerv Syst Behav 107:92–101. https://doi.org/10.1016/j.cortex.2017.11.009. (PMID: 10.1016/j.cortex.2017.11.009)
Kopp B, Rösser N, Tabeling S et al (2015) Errors on the trail making test are associated with right hemispheric frontal lobe damage in stroke patients. Behav Neurol. https://doi.org/10.1155/2015/309235. (PMID: 10.1155/2015/309235260746734444530)
Miskin N, Thesen T, Barr WB et al (2016) Prefrontal lobe structural integrity and trail making test, part B: converging findings from surface-based cortical thickness and voxel-based lesion symptom analyses. Brain Imaging Behav 10:675–685. https://doi.org/10.1007/s11682-015-9455-8. (PMID: 10.1007/s11682-015-9455-8263992355786430)
Anziano M, Mouthon M, Thoeny H et al (2023) Mental flexibility depends on a largely distributed white matter network: causal evidence from connectome-based lesion-symptom mapping. Cortex J Devoted Study Nerv Syst Behav 165:38–56. https://doi.org/10.1016/j.cortex.2023.04.007. (PMID: 10.1016/j.cortex.2023.04.007)
Gläscher J, Adolphs R, Damasio H et al (2012) Lesion mapping of cognitive control and value-based decision making in the prefrontal cortex. Proc Natl Acad Sci USA 109:14681–14686. https://doi.org/10.1073/pnas.1206608109. (PMID: 10.1073/pnas.1206608109229082863437894)
Chan E, MacPherson SE, Robinson G et al (2015) Limitations of the trail making test part-B in assessing frontal executive dysfunction. J Int Neuropsychol Soc JINS 21:169–174. https://doi.org/10.1017/S135561771500003X. (PMID: 10.1017/S135561771500003X25697352)
Nishimura A, Sutoko S, Kiguchi M et al (2022) Projection of damaged visual and language regions on low trail making test part-B performance in stroke patients. Front Neurol. https://doi.org/10.3389/fneur.2022.853942. (PMID: 10.3389/fneur.2022.853942364389449681896)
Godefroy O, Aarabi A, Dorchies F et al (2023) Functional architecture of executive processes: evidence from verbal fluency and lesion mapping in stroke patients. Cortex 164:129–143. https://doi.org/10.1016/j.cortex.2023.03.013. (PMID: 10.1016/j.cortex.2023.03.01337207410)
Baldo JV, Schwartz S, Wilkins D, Dronkers NF (2006) Role of frontal versus temporal cortex in verbal fluency as revealed by voxel-based lesion symptom mapping. J Int Neuropsychol Soc JINS 12:896–900. https://doi.org/10.1017/S1355617706061078. (PMID: 10.1017/S135561770606107817064451)
Biesbroek JM, Lim J-S, Weaver NA et al (2021) Anatomy of phonemic and semantic fluency: a lesion and disconnectome study in 1231 stroke patients. Cortex 143:148–163. https://doi.org/10.1016/j.cortex.2021.06.019. (PMID: 10.1016/j.cortex.2021.06.01934450565)
Schmidt CSM, Nitschke K, Bormann T et al (2019) Dissociating frontal and temporal correlates of phonological and semantic fluency in a large sample of left hemisphere stroke patients. NeuroImage Clin. https://doi.org/10.1016/j.nicl.2019.101840. (PMID: 10.1016/j.nicl.2019.101840312001516562316)
Thye M, Szaflarski JP, Mirman D (2021) Shared lesion correlates of semantic and letter fluency in post-stroke aphasia. J Neuropsychol 15:143–150. https://doi.org/10.1111/jnp.12211. (PMID: 10.1111/jnp.1221132412102)
Cipolotti L, Xu T, Harry B et al (2021) Multi-model mapping of phonemic fluency. Brain Commun 3:fcab232. https://doi.org/10.1093/braincomms/fcab232. (PMID: 10.1093/braincomms/fcab232346932858530259)
Chouiter L, Holmberg J, Manuel AL et al (2016) Partly segregated cortico-subcortical pathways support phonologic and semantic verbal fluency: a lesion study. Neuroscience 329:275–283. https://doi.org/10.1016/j.neuroscience.2016.05.029. (PMID: 10.1016/j.neuroscience.2016.05.02927217213)
Weaver NA, Kuijf HJ, Aben HP et al (2021) Strategic infarct locations for post-stroke cognitive impairment: a pooled analysis of individual patient data from 12 acute ischaemic stroke cohorts. Lancet Neurol 20:448–459. https://doi.org/10.1016/S1474-4422(21)00060-0. (PMID: 10.1016/S1474-4422(21)00060-033901427)
Lo JW, Crawford JD, Desmond DW et al (2019) Profile of and risk factors for poststroke cognitive impairment in diverse ethnoregional groups. Neurology 93:e2257–e2271. https://doi.org/10.1212/WNL.0000000000008612. (PMID: 10.1212/WNL.0000000000008612317123686937495)
Lim J-S, Kim N, Jang MU et al (2014) Cortical hubs and subcortical cholinergic pathways as neural substrates of poststroke dementia. Stroke 45:1069–1076. https://doi.org/10.1161/STROKEAHA.113.004156. (PMID: 10.1161/STROKEAHA.113.00415624603067)
Yu K-H, Cho S-J, Oh MS et al (2013) Cognitive impairment evaluated with vascular cognitive impairment harmonization standards in a multicenter prospective stroke cohort in Korea. Stroke 44:786–788. https://doi.org/10.1161/STROKEAHA.112.668343. (PMID: 10.1161/STROKEAHA.112.66834323271507)
Barbay M, Taillia H, Nédélec-Ciceri C et al (2018) Prevalence of poststroke neurocognitive disorders using national institute of neurological disorders and Stroke-Canadian stroke network, VASCOG criteria (vascular behavioral and cognitive disorders), and optimized criteria of cognitive deficit. Stroke 49:1141–1147. https://doi.org/10.1161/STROKEAHA.117.018889. (PMID: 10.1161/STROKEAHA.117.01888929643258)
Aben HP, Reijmer YD, Visser-Meily JM et al (2018) A role for new brain magnetic resonance imaging modalities in daily clinical practice: protocol of the prediction of cognitive recovery after stroke (PROCRAS) study. JMIR Res Protoc. https://doi.org/10.2196/resprot.9431. (PMID: 10.2196/resprot.9431298078835997934)
Bournonville C, Hénon H, Dondaine T et al (2018) Identification of a specific functional network altered in poststroke cognitive impairment. Neurology 90:e1879–e1888. https://doi.org/10.1212/WNL.0000000000005553. (PMID: 10.1212/WNL.000000000000555329678937)
Godefroy O, Leclercq C, Roussel M et al (2012) French adaptation of the vascular cognitive impairment harmonization standards: the GRECOG-VASC study. Int J Stroke Off J Int Stroke Soc 7:362–363. https://doi.org/10.1111/j.1747-4949.2012.00794.x. (PMID: 10.1111/j.1747-4949.2012.00794.x)
Godefroy O, Gibbons L, Diouf M et al (2014) Validation of an integrated method for determining cognitive ability: Implications for routine assessments and clinical trials. Cortex J Devoted Study Nerv Syst Behav 54:51–62. https://doi.org/10.1016/j.cortex.2014.01.016. (PMID: 10.1016/j.cortex.2014.01.016)
Arnoux A, Toba MN, Duering M et al (2018) Is VLSM a valid tool for determining the functional anatomy of the brain? Usefulness of additional Bayesian network analysis. Neuropsychologia 121:69–78. https://doi.org/10.1016/j.neuropsychologia.2018.10.003. (PMID: 10.1016/j.neuropsychologia.2018.10.00330449718)
Puy L, Barbay M, Roussel M et al (2018) Neuroimaging determinants of poststroke cognitive performance: the GRECogVASC study. Stroke 49:2666–2673. https://doi.org/10.1161/STROKEAHA.118.021981. (PMID: 10.1161/STROKEAHA.118.02198130355190)
Kassir R, Roussel M, Abboud H (2023) Godefroy O (2023) Verbal fluency in bilingual Lebanese adults: is the prominent language advantage due to executive processes, language processes, or both? Appl Neuropsychol Adult. https://doi.org/10.1080/23279095.2023.2234536. (PMID: 10.1080/23279095.2023.223453637459566)
Jorm AF (1994) A short form of the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE): development and cross-validation. Psychol Med 24:145–153. https://doi.org/10.1017/s003329170002691x. (PMID: 10.1017/s003329170002691x8208879)
Turken A, Whitfield-Gabrieli S, Bammer R et al (2008) Cognitive processing speed and the structure of white matter pathways: convergent evidence from normal variation and lesion studies. Neuroimage 42:1032–1044. https://doi.org/10.1016/j.neuroimage.2008.03.057. (PMID: 10.1016/j.neuroimage.2008.03.05718602840)
Ouin E, Roussel M, Aarabi A et al (2022) Poststroke action slowing: Motor and attentional impairments and their imaging determinants. Evidence from lesion-symptom mapping, disconnection and fMRI activation studies. Neuropsychologia. https://doi.org/10.1016/j.neuropsychologia.2022.108401. (PMID: 10.1016/j.neuropsychologia.2022.10840136415018)
Roussel M, Dujardin K, Hénon H, Godefroy O (2012) Is the frontal dysexecutive syndrome due to a working memory deficit? Evidence from patients with stroke. Brain J Neurol 135:2192–2201. https://doi.org/10.1093/brain/aws132. (PMID: 10.1093/brain/aws132)
Collette F, Van der Linden M (2002) Brain imaging of the central executive component of working memory. Neurosci Biobehav Rev 26:105–125. https://doi.org/10.1016/s0149-7634(01)00063-x. (PMID: 10.1016/s0149-7634(01)00063-x11856556)
Duering M, Zieren N, Hervé D et al (2011) Strategic role of frontal white matter tracts in vascular cognitive impairment: a voxel-based lesion-symptom mapping study in CADASIL. Brain 134:2366–2375. https://doi.org/10.1093/brain/awr169. (PMID: 10.1093/brain/awr16921764819)
Périn B, Godefroy O, Fall S, de Marco G (2010) Alertness in young healthy subjects: an fMRI study of brain region interactivity enhanced by a warning signal. Brain Cogn 72:271–281. https://doi.org/10.1016/j.bandc.2009.09.010. (PMID: 10.1016/j.bandc.2009.09.01019875216)
Godefroy O, Roussel M, Despretz P et al (2010) Age-related slowing: perceptuomotor, decision, or attention decline? Exp Aging Res 36:169–189. https://doi.org/10.1080/03610731003613615. (PMID: 10.1080/0361073100361361520209420)
Roussel M, Martinaud O, Hénon H et al (2016) The behavioral and cognitive executive disorders of stroke: the GREFEX study. PLoS ONE. https://doi.org/10.1371/journal.pone.0147602. (PMID: 10.1371/journal.pone.0147602276849405042446)
Kerns JG, Cohen JD, MacDonald AW et al (2004) Anterior cingulate conflict monitoring and adjustments in control. Science 303:1023–1026. https://doi.org/10.1126/science.1089910. (PMID: 10.1126/science.108991014963333)
Donoso M, Collins AGE, Koechlin E (2014) Human cognition. Foundations of human reasoning in the prefrontal cortex. Science 344:1481–1486. https://doi.org/10.1126/science.1252254. (PMID: 10.1126/science.125225424876345)
Mummery CJ, Patterson K, Price CJ et al (2000) A voxel-based morphometry study of semantic dementia: relationship between temporal lobe atrophy and semantic memory. Ann Neurol 47:36–45. (PMID: 10.1002/1531-8249(200001)47:1<36::AID-ANA8>3.0.CO;2-L10632099)
Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42. https://doi.org/10.1146/annurev.ne.13.030190.000325. (PMID: 10.1146/annurev.ne.13.030190.0003252183676)
Godefroy O, Lhullier C, Rousseaux M (1996) Non-spatial attention disorders in patients with frontal or posterior brain damage. Brain J Neurol 119(Pt 1):191–202. https://doi.org/10.1093/brain/119.1.191. (PMID: 10.1093/brain/119.1.191)
Godefroy O, Rousseaux M (1996) Binary choice in patients with prefrontal or posterior brain damage. A relative judgement theory analysis. Neuropsychologia 34:1029–1038. https://doi.org/10.1016/0028-3932(96)00012-7. (PMID: 10.1016/0028-3932(96)00012-78843070)
Godefroy O, Cabaret M, Petit-Chenal V et al (1999) Control functions of the frontal lobes. Modularity of the central-supervisory system? Cortex J Devoted Study Nerv Syst Behav 35:1–20. https://doi.org/10.1016/s0010-9452(08)70782-2. (PMID: 10.1016/s0010-9452(08)70782-2)
Godefroy O, Martinaud O, Verny M et al (2014) The dysexecutive syndrome of Alzheimer’s disease: the GREFEX study. J Alzheimers Dis JAD 42:1203–1208. https://doi.org/10.3233/JAD-140585. (PMID: 10.3233/JAD-14058525024318)
Godefroy O, Bakchine S, Verny M et al (2016) Characteristics of Alzheimer’s disease patients with severe executive disorders. J Alzheimers Dis JAD 51:815–825. https://doi.org/10.3233/JAD-150971. (PMID: 10.3233/JAD-15097126890770)
Andriuta D, Roussel M, Barbay M et al (2018) Differentiating between Alzheimer’s disease and vascular cognitive impairment: is the “memory versus executive function” contrast still relevant? J Alzheimers Dis JAD 63:625–633. https://doi.org/10.3233/JAD-171097. (PMID: 10.3233/JAD-17109729689726)
معلومات مُعتمدة: DGOS R1/2013/144 Direction Générale de l'offre de Soins; Vici Grant 918.16.616 Netherlands ZONMW_ ZonMw; 842003011 Netherlands ZONMW_ ZonMw
فهرسة مساهمة: Keywords: Dementia; Executive functions; Infarct; Lesion-symptom mapping; Mild cognitive impairment; Stroke
تواريخ الأحداث: Date Created: 20240726 Date Completed: 20240905 Latest Revision: 20240905
رمز التحديث: 20240905
DOI: 10.1007/s00415-024-12541-8
PMID: 39060618
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-1459
DOI:10.1007/s00415-024-12541-8