دورية أكاديمية

Chandipura Virus Forms Cytoplasmic Inclusion Bodies through Phase Separation and Proviral Association of Cellular Protein Kinase R and Stress Granule Protein TIA-1.

التفاصيل البيبلوغرافية
العنوان: Chandipura Virus Forms Cytoplasmic Inclusion Bodies through Phase Separation and Proviral Association of Cellular Protein Kinase R and Stress Granule Protein TIA-1.
المؤلفون: Sarkar S; Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard University, Hamdard Nagar, New Delhi 110062, India., Ganguly S; Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard University, Hamdard Nagar, New Delhi 110062, India., Ganguly NK; Department of Education and Research, AERF, Artemis Hospitals, Gurugram 122001, India., Sarkar DP; Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India., Sharma NR; Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard University, Hamdard Nagar, New Delhi 110062, India.; Department of Education and Research, AERF, Artemis Hospitals, Gurugram 122001, India.
المصدر: Viruses [Viruses] 2024 Jun 26; Vol. 16 (7). Date of Electronic Publication: 2024 Jun 26.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: MDPI Country of Publication: Switzerland NLM ID: 101509722 Publication Model: Electronic Cited Medium: Internet ISSN: 1999-4915 (Electronic) Linking ISSN: 19994915 NLM ISO Abbreviation: Viruses Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Basel, Switzerland : MDPI
مواضيع طبية MeSH: eIF-2 Kinase*/metabolism , eIF-2 Kinase*/genetics , T-Cell Intracellular Antigen-1*/metabolism , T-Cell Intracellular Antigen-1*/genetics , Virus Replication* , Inclusion Bodies, Viral*/metabolism, Animals ; Chlorocebus aethiops ; Vero Cells ; Humans ; Stress Granules/metabolism ; Inclusion Bodies/metabolism ; Host-Pathogen Interactions ; Cytoplasmic Granules/metabolism ; Viral Proteins/metabolism ; Viral Proteins/genetics ; Phase Separation
مستخلص: Negative-strand RNA viruses form cytoplasmic inclusion bodies (IBs) representing virus replication foci through phase separation or biomolecular condensation of viral and cellular proteins, as a hallmark of their infection. Alternatively, mammalian cells form stalled mRNA containing antiviral stress granules (SGs), as a consequence of phosphorylation of eukaryotic initiation factor 2α (eIF2α) through condensation of several RNA-binding proteins including TIA-1. Whether and how Chandipura virus (CHPV), an emerging human pathogen causing influenza-like illness, coma and death, forms IBs and evades antiviral SGs remain unknown. By confocal imaging on CHPV-infected Vero-E6 cells, we found that CHPV infection does not induce formation of distinct canonical SGs. Instead, CHPV proteins condense and co-localize together with SG proteins to form heterogeneous IBs, which ensued independent of the activation of eIF2α and eIF2α kinase, protein kinase R (PKR). Interestingly, siRNA-mediated depletion of PKR or TIA-1 significantly decreased viral transcription and virion production. Moreover, CHPV infection also caused condensation and recruitment of PKR to IBs. Compared to SGs, IBs exhibited significant rapidity in disassembly dynamics. Altogether, our study demonstrating that CHPV replication co-optimizes with SG proteins and revealing an unprecedented proviral role of TIA-1/PKR may have implications in understanding the mechanisms regulating CHPV-IB formation and designing antiviral therapeutics. Importance: CHPV is an emerging tropical pathogen reported to cause acute influenza-like illness and encephalitis in children with a very high mortality rate of ~70%. Lack of vaccines and an effective therapy against CHPV makes it a potent pathogen for causing an epidemic in tropical parts of globe. Given these forewarnings, it is of paramount importance that CHPV biology must be understood comprehensively. Targeting of host factors offers several advantages over targeting the viral components due to the generally higher mutation rate in the viral genome. In this study, we aimed at understanding the role of SGs forming cellular RNA-binding proteins in CHPV replication. Our study helps understand participation of cellular factors in CHPV replication and could help develop effective therapeutics against the virus.
References: J Gen Virol. 2012 Jul;93(Pt 7):1385-1409. (PMID: 22535777)
Nat Rev Mol Cell Biol. 2009 Jun;10(6):430-6. (PMID: 19461665)
J Cell Biol. 2023 Nov 6;222(11):. (PMID: 37672657)
J Virol. 2012 Oct;86(20):11043-56. (PMID: 22855484)
Cell Host Microbe. 2007 Nov 15;2(5):295-305. (PMID: 18005751)
Cell. 2015 Sep 24;163(1):123-33. (PMID: 26406374)
Acta Trop. 2012 Oct;124(1):1-14. (PMID: 22721825)
PLoS Pathog. 2017 Oct 30;13(10):e1006677. (PMID: 29084250)
J Cell Biol. 2005 Jun 20;169(6):871-84. (PMID: 15967811)
Proc Natl Acad Sci U S A. 2007 May 22;104(21):9041-6. (PMID: 17502609)
Arch Virol. 2005 Apr;150(4):671-80. (PMID: 15614433)
Lancet. 2004 Dec 18-31;364(9452):2175; author reply 2175-6. (PMID: 15610795)
J Cell Sci. 2020 Jul 9;133(13):. (PMID: 32503941)
Sci Rep. 2021 Jun 24;11(1):13253. (PMID: 34168211)
J Mol Biol. 2022 Jan 15;434(1):167159. (PMID: 34274326)
Nat Commun. 2014 Sep 17;5:4819. (PMID: 25229650)
Mol Cell. 2009 Dec 25;36(6):932-41. (PMID: 20064460)
Nucleic Acids Res. 2019 Sep 26;47(17):9368-9385. (PMID: 31400113)
Mol Biol Cell. 2008 Oct;19(10):4469-79. (PMID: 18632980)
Cell Host Microbe. 2012 Jul 19;12(1):71-85. (PMID: 22817989)
Microbiol Mol Biol Rev. 2006 Dec;70(4):1032-60. (PMID: 17158706)
Genes Dev. 2013 Jul 15;27(14):1624-32. (PMID: 23824327)
Virol Sin. 2019 Apr;34(2):175-191. (PMID: 31037644)
Mol Cell Biochem. 2022 May;477(5):1607-1619. (PMID: 35211823)
J Cell Biol. 2004 Apr;165(1):31-40. (PMID: 15067023)
Front Microbiol. 2021 Oct 25;12:757238. (PMID: 34759908)
Arch Virol. 2016 Feb;161(2):327-33. (PMID: 26547579)
J Virol. 2013 Jan;87(1):372-83. (PMID: 23077311)
Cold Spring Harb Perspect Biol. 2018 Jul 2;10(7):. (PMID: 29440070)
J Biol Chem. 2000 Dec 1;275(48):37993-8. (PMID: 10988289)
J Cell Biol. 2016 Nov 7;215(3):313-323. (PMID: 27821493)
Biochem Soc Trans. 2006 Feb;34(Pt 1):7-11. (PMID: 16246168)
J Biol Chem. 2001 Jul 6;276(27):24946-58. (PMID: 11337501)
Nat Cell Biol. 2005 Dec;7(12):1261-6. (PMID: 16284623)
Mol Ther Oncolytics. 2021 Oct 05;23:254-265. (PMID: 34761105)
J Virol. 2002 Dec;76(23):11989-2000. (PMID: 12414941)
Cell Mol Life Sci. 2013 Oct;70(19):3493-511. (PMID: 23354059)
Cells. 2021 Jun 10;10(6):. (PMID: 34200781)
J Cell Sci. 2017 Mar 1;130(5):927-937. (PMID: 28096475)
Mol Biol Cell. 2004 Dec;15(12):5383-98. (PMID: 15371533)
Trends Biochem Sci. 2023 Mar;48(3):229-243. (PMID: 36272892)
Mol Cell Biol. 1998 Apr;18(4):2282-97. (PMID: 9528799)
Int J Mol Sci. 2023 Jan 21;24(3):. (PMID: 36768473)
J Biol Chem. 2016 Jan 29;291(5):2302-9. (PMID: 26699195)
PLoS Pathog. 2014 Jul 10;10(7):e1004217. (PMID: 25010204)
PLoS Pathog. 2015 Feb 06;11(2):e1004659. (PMID: 25658430)
J Mol Biol. 2002 Oct 25;323(3):573-84. (PMID: 12381310)
Trends Immunol. 2014 Sep;35(9):420-8. (PMID: 25153707)
J Virol. 2013 Nov;87(22):12398-406. (PMID: 24027318)
FASEB J. 2012 Apr;26(4):1629-39. (PMID: 22202676)
Genes Cells. 2013 Feb;18(2):135-46. (PMID: 23279204)
Front Cell Infect Microbiol. 2016 Nov 04;6:144. (PMID: 27867910)
Front Microbiol. 2022 Jan 05;12:794431. (PMID: 35069491)
Int J Clin Exp Pathol. 2013 Jun 15;6(7):1272-81. (PMID: 23826408)
Cells. 2019 Mar 22;8(3):. (PMID: 30909521)
Lancet. 2004 Sep 4-10;364(9437):869-74. (PMID: 15351194)
Virology. 2013 Feb 20;436(2):255-67. (PMID: 23290869)
Front Microbiol. 2018 Jul 06;9:1489. (PMID: 30034380)
Annu Rev Cell Dev Biol. 2014;30:39-58. (PMID: 25288112)
Proc Natl Acad Sci U S A. 2022 Jul 19;119(29):e2201169119. (PMID: 35858300)
Nature. 2023 Apr;616(7956):332-338. (PMID: 37020020)
PLoS One. 2012;7(4):e34945. (PMID: 22536341)
FEMS Microbiol Rev. 2021 Aug 17;45(4):. (PMID: 33512504)
Nat Commun. 2017 Jul 5;8(1):58. (PMID: 28680096)
Biosci Rep. 2007 Oct;27(4-5):275-98. (PMID: 17610154)
J Virol. 1968 Oct;2(10):955-61. (PMID: 4302013)
J Cell Sci. 2002 Aug 15;115(Pt 16):3227-34. (PMID: 12140254)
Trends Biochem Sci. 2008 Mar;33(3):141-50. (PMID: 18291657)
Cell Rep. 2018 Jan 2;22(1):59-71. (PMID: 29298433)
Science. 2004 Sep 3;305(5689):1437-41. (PMID: 15284456)
J Cell Biol. 2006 Mar 13;172(6):803-8. (PMID: 16520386)
J Biol Chem. 1999 Nov 5;274(45):32198-203. (PMID: 10542257)
Wiley Interdiscip Rev RNA. 2013 May-Jun;4(3):317-31. (PMID: 23554219)
Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):10005-10. (PMID: 16785445)
mBio. 2015 Mar 17;6(2):e02486. (PMID: 25784705)
Front Microbiol. 2018 Mar 20;9:499. (PMID: 29616011)
Trends Microbiol. 2012 Apr;20(4):175-83. (PMID: 22405519)
J Cell Biol. 2000 Dec 11;151(6):1257-68. (PMID: 11121440)
معلومات مُعتمدة: BT/RLF/Re-entry/40/2018 Department of Biotechnology
فهرسة مساهمة: Keywords: Chandipura virus; inclusion bodies; phase separation; protein kinase R; stress granules
المشرفين على المادة: EC 2.7.11.1 (eIF-2 Kinase)
0 (T-Cell Intracellular Antigen-1)
0 (TIA1 protein, human)
0 (Viral Proteins)
تواريخ الأحداث: Date Created: 20240727 Date Completed: 20240727 Latest Revision: 20240729
رمز التحديث: 20240729
مُعرف محوري في PubMed: PMC11281494
DOI: 10.3390/v16071027
PMID: 39066190
قاعدة البيانات: MEDLINE
الوصف
تدمد:1999-4915
DOI:10.3390/v16071027