دورية أكاديمية

Effect of curcumin-donepezil combination on spatial memory, astrocyte activation, and cholinesterase expressions in brain of scopolamine-treated rats.

التفاصيل البيبلوغرافية
العنوان: Effect of curcumin-donepezil combination on spatial memory, astrocyte activation, and cholinesterase expressions in brain of scopolamine-treated rats.
المؤلفون: Ogunsuyi OB; Department of Biomedical Technology, School of Basic Medical Sciences, The Federal University of Technology, Akure, Nigeria. opeyemiogunsuyi@gmail.com.; Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, The Federal University of Technology, Akure, Nigeria. opeyemiogunsuyi@gmail.com., Ogunruku OO; Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Nigeria. omodesola.oluwafisayo@gmail.com., Umar HI; Department of Biochemistry, The Federal University of Technology, Akure, Nigeria.; Molecular Biology and Bioinformatics Lab, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria., Oboh G; Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, The Federal University of Technology, Akure, Nigeria.; Department of Biochemistry, The Federal University of Technology, Akure, Nigeria.
المصدر: Molecular biology reports [Mol Biol Rep] 2024 Jul 29; Vol. 51 (1), pp. 864. Date of Electronic Publication: 2024 Jul 29.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Reidel Country of Publication: Netherlands NLM ID: 0403234 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-4978 (Electronic) Linking ISSN: 03014851 NLM ISO Abbreviation: Mol Biol Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Dordrecht, Boston, Reidel.
مواضيع طبية MeSH: Donepezil*/pharmacology , Curcumin*/pharmacology , Curcumin*/administration & dosage , Scopolamine*/pharmacology , Astrocytes*/drug effects , Astrocytes*/metabolism , Spatial Memory*/drug effects , Acetylcholinesterase*/metabolism , Acetylcholinesterase*/genetics , Hippocampus*/drug effects , Hippocampus*/metabolism , Glial Fibrillary Acidic Protein*/metabolism , Glial Fibrillary Acidic Protein*/genetics, Animals ; Rats ; Male ; Brain/drug effects ; Brain/metabolism ; Rats, Wistar ; Oxidative Stress/drug effects ; Cholinesterases/metabolism ; Adenosine Deaminase/metabolism ; Adenosine Deaminase/genetics ; Butyrylcholinesterase/metabolism ; Butyrylcholinesterase/genetics ; Nitric Oxide/metabolism ; Cholinesterase Inhibitors/pharmacology ; Cholinesterase Inhibitors/administration & dosage
مستخلص: Background: The study investigated the effect of co-administration of curcumin and donepezil on several markers of cognitive function (such as spatial memory, astrocyte activation, cholinesterase expressions) in the brain cortex and hippocampus of scopolamine-treated rats.
Method and Results: For seven consecutive days, a pre-treatment of curcumin (50 mg/kg) and/or donepezil (2.5 mg/kg) was administered. On the seventh day, scopolamine (1 mg/kg) was administered to elicit cognitive impairment, 30 min before memory test was conducted. This was followed by evaluating changes in spatial memory, cholinesterase, and adenosine deaminase (ADA) activities, as well as nitric oxide (NO) level were determined. Additionally, RT-qPCR for glial fibrillary acidic protein (GFAP) and cholinesterase gene expressions was performed in the brain cortex and hippocampus. Also, GFAP immunohistochemistry  of the brain tissues for neuronal injury were performed in the brain cortex and hippocampus. In comparison to the control group, rats given scopolamine had impaired memory, higher levels of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and ADA activities, as well as elevated markers of oxidative stress. In addition to enhanced GFAP immunoreactivity, there was also overexpression of the GFAP and BChE genes in the brain tissues. The combination of curcumin and donepezil was, however, observed to better ameliorate these impairments in comparison to the donepezil-administered rat group.
Conclusion: Hence, this evidence provides more mechanisms to support the hypothesis that the concurrent administration of curcumin and donepezil mitigates markers of cognitive dysfunction in scopolamine-treated rat model.
(© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Breunig JJ, Guillot-Sestier MV, Town T (2013) Brain injury, neuroinflammation and Alzheimer’s disease. Front Aging Neurosci 5:26. (PMID: 10.3389/fnagi.2013.00026238742973708131)
Tahami Monfared AA, Byrnes MJ, White LA, Zhang Q (2022) Alzheimer’s disease: epidemiology and clinical progression. Neurol Ther 11:553–569. https://doi.org/10.1007/s40120-022-00338-8. (PMID: 10.1007/s40120-022-00338-8352865909095793)
Sharma C, Kim S, Nam Y et al (2021) Mitochondrial dysfunction as a driver of cognitive impairment in Alzheimer’s disease. Int J Mol Sci 22:4850. https://doi.org/10.3390/ijms22094850. (PMID: 10.3390/ijms22094850340637088125007)
Boutajangout A, Wisniewski T (2014) Tau-based therapeutic approaches for Alzheimer’s disease—a mini-review. Gerontology 60(5):381–385. (PMID: 10.1159/00035887524732638)
Anand R, Gill KD, Mahdi AA (2014) Therapeutics of Alzheimer’s disease: past, present and future. Neuropharmacology 76:27–50. (PMID: 10.1016/j.neuropharm.2013.07.00423891641)
Jorge RE, Robinson RG (2011) Treatment of late-life depression: a role of non-invasive brain stimulation techniques. Int Rev Psychiatry. https://doi.org/10.3109/09540261.2011.633501. (PMID: 10.3109/09540261.2011.633501222001333619934)
Kim J, Lee HJ, Lee KW (2010) Naturally occurring phytochemicals for the prevention of Alzheimer’s disease. J Neurochem 112:1415–1430. https://doi.org/10.1111/j.1471-4159.2009.06562.x. (PMID: 10.1111/j.1471-4159.2009.06562.x20050972)
Parsons AL, Bucknor EM, Castroflorio E, Soares TR, Oliver PL, Rial D (2022) The interconnected mechanisms of oxidative stress and neuroinflammation in epilepsy. Antioxidants 11(1):157. (PMID: 10.3390/antiox11010157350526618772850)
Franzoni F, Scarfò G, Guidotti S et al (2021) Oxidative stress and cognitive decline: the neuroprotective role of natural antioxidants. Front Neurosci. https://doi.org/10.3389/fnins.2021.729757. (PMID: 10.3389/fnins.2021.729757347208608548611)
Nguyen MD, Salbu RL (2013) Donepezil 23 mg: a brief insight on efficacy and safety concerns. Consult Pharm 28(12):800–803. (PMID: 10.4140/TCP.n.2013.80024322964)
Zaki HF, Abd-El-Fattah MA, Attia AS (2014) Naringenin protects against scopolamine-induced dementia in rats. Bull Fac Pharm. https://doi.org/10.1016/j.bfopcu.2013.11.001. (PMID: 10.1016/j.bfopcu.2013.11.001)
Yuede CM, Dong H, Csernansky JG (2007) Anti-dementia drugs and hippocampal-dependent memory in rodents. Behav Pharmacol 18(5–6):347–363. (PMID: 10.1097/FBP.0b013e3282da278d177625062666934)
Taqui R, Debnath M, Ahmed S, Ghosh A (2022) Advances on plant extracts and phytocompounds with acetylcholinesterase inhibition activity for possible treatment of Alzheimer’s disease. Phytomed Plus 2:100184. https://doi.org/10.1016/j.phyplu.2021.100184. (PMID: 10.1016/j.phyplu.2021.100184)
Snyder PJ, Bednar MM, Cromer JR, Maruff P (2005) Reversal of scopolamine-induced deficits with a single dose of donepezil, an acetylcholinesterase inhibitor. Alzheimer’s Dementia. https://doi.org/10.1016/j.jalz.2005.09.004. (PMID: 10.1016/j.jalz.2005.09.00419595845)
Zemek F, Drtinova L, Nepovimova E et al (2014) Outcomes of Alzheimer’s disease therapy with acetylcholinesterase inhibitors and memantine. Expert opinion on drug safety. 13(6):759–74. (PMID: 24845946)
Kumar N, Bedi PMS (2020) Molecular modelling based design and synthesis of donepezil like derivatives as acetylcholinesterase inhibitors. SSRN Electron J. https://doi.org/10.2139/ssrn.3529875. (PMID: 10.2139/ssrn.3529875)
Alipour M, Khoobi M, Foroumadi A et al (2012) Novel coumarin derivatives bearing N-benzyl pyridinium moiety: potent and dual binding site acetylcholinesterase inhibitors. Bioorg Med Chem. https://doi.org/10.1016/j.bmc.2012.08.052. (PMID: 10.1016/j.bmc.2012.08.05223140986)
Ogunsuyi OB, Omage FB, Ijomone OM et al (2022) Effect of chlorogenic acid plus donepezil on critical neurocortical enzyme activities, inflammatory markers, and synaptophysin immunoreactivity in scopolamine-assaulted rats, supported by multiple ligand simultaneous docking. J Food Biochem 46:1–15. https://doi.org/10.1111/jfbc.14312. (PMID: 10.1111/jfbc.14312)
Geldmacher DS (2004) Donepezil (Aricept®) for treatment of Alzheimer´s disease and other dementing conditions. Expert Rev Neurother 4:5–16. https://doi.org/10.1586/14737175.4.1.5. (PMID: 10.1586/14737175.4.1.515853610)
Bhatt P, Pandey P, Puri A et al (2014) Scopolamine induced behavioral and biochemical modifications and protective effect of Celastrus paniculatous and Angelica glauca in rats. Int J Nutr Pharmacol Neurol Dis. https://doi.org/10.4103/2231-0738.132675. (PMID: 10.4103/2231-0738.132675)
Deiana S, Harrington CR, Wischik CM, Riedel G (2009) Methylthioninium chloride reverses cognitive deficits induced by scopolamine: Comparison with rivastigmine. Psychopharmacology. https://doi.org/10.1007/s00213-008-1394-2. (PMID: 10.1007/s00213-008-1394-219005644)
Hashimoto T, Hatayama Y, Nakamichi K, Yoshida N (2014) Procognitive effect of AC-3933 in aged mice, and synergistic effect of combination with donepezil in scopolamine-treated mice. Eur J Pharmacol. https://doi.org/10.1016/j.ejphar.2014.10.015. (PMID: 10.1016/j.ejphar.2014.10.01525446931)
Aleksandrova K, Pounis G, di Giuseppe R (2018) Diet, healthy aging, and cognitive function. In: Analysis in nutrition research: principles of statistical methodology and interpretation of the results.
Kumar A, Dogra S, Prakash A (2009) Protective effect of curcumin (Curcuma longa), against aluminium toxicity: possible behavioral and biochemical alterations in rats. Behav Brain Res. https://doi.org/10.1016/j.bbr.2009.07.012. (PMID: 10.1016/j.bbr.2009.07.01219716383)
Ahsan R, Arshad M, Khushtar M et al (2020) A comprehensive review on physiological effects of curcumin. Drug Res. https://doi.org/10.1055/a-1207-9469. (PMID: 10.1055/a-1207-9469)
Mishra S, Palanivelu K (2008) The effect of curcumin (turmeric) on Alzheimer’s disease: an overview. Ann Indian Acad Neurol 11:13–19. (PMID: 10.4103/0972-2327.40220199669732781139)
Ma QL, Yang F, Rosario ER, Ubeda OJ, Beech W, Gant DJ, Chen PP, Hudspeth B, Chen C, Zhao Y, Vinters HV (2009) β-Amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: Suppression by omega-3 fatty acids and curcumin. J Neurosci. 29(28):9078–9089. (PMID: 10.1523/JNEUROSCI.1071-09.2009196056453849615)
Voulgaropoulou SD, van Amelsvoort TAMJ, Prickaerts J, Vingerhoets C (2019) The effect of curcumin on cognition in Alzheimer’s disease and healthy aging: a systematic review of pre-clinical and clinical studies. Brain Res 1725:146476. https://doi.org/10.1016/j.brainres.2019.146476. (PMID: 10.1016/j.brainres.2019.14647631560864)
Garcia-Alloza M, Borrelli LA, Rozkalne A et al (2007) Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J Neurochem. https://doi.org/10.1111/j.1471-4159.2007.04613.x. (PMID: 10.1111/j.1471-4159.2007.04613.x17472706)
Akinyemi AJ, Oboh G, Oyeleye SI, Ogunsuyi O (2017) Anti-amnestic effect of curcumin in combination with donepezil, an anticholinesterase drug: involvement of cholinergic system. Neurotoxicol Res. https://doi.org/10.1007/s12640-017-9701-5. (PMID: 10.1007/s12640-017-9701-5)
Barai P, Raval N, Acharya S, Acharya N (2018) Bergenia ciliata ameliorates streptozotocin-induced spatial memory deficits through dual cholinesterase inhibition and attenuation of oxidative stress in rats. Biomed Pharmacother. https://doi.org/10.1016/j.biopha.2018.03.115. (PMID: 10.1016/j.biopha.2018.03.11530227331)
Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. https://doi.org/10.1006/abio.1976.9999. (PMID: 10.1006/abio.1976.9999942051)
Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. https://doi.org/10.1016/0006-2952(61)90145-9. (PMID: 10.1016/0006-2952(61)90145-913726518)
Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126(1):131–138. (PMID: 10.1016/0003-2697(82)90118-X7181105)
Giusti G, Galanti B (1984) Adenosine deaminase: colorimetric method. Methods Enzym Anal 3:315–323.
Oboh G, Adebayo AA, Ademosun AO, Olowokere OG (2019) Rutin alleviates cadmium-induced neurotoxicity in Wistar rats: involvement of modulation of nucleotide-degrading enzymes and monoamine oxidase. Metab Brain Dis 34:1181–1190. https://doi.org/10.1007/s11011-019-00413-4. (PMID: 10.1007/s11011-019-00413-430972687)
Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys. https://doi.org/10.1016/0003-9861(59)90090-6. (PMID: 10.1016/0003-9861(59)90090-613650640)
Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. https://doi.org/10.1016/0003-2697(79)90738-3. (PMID: 10.1016/0003-2697(79)90738-336810)
Habig WH, Jakoby WB (1981) Assays for differentiation of glutathione S-transferases. Methods Enzymol. https://doi.org/10.1016/S0076-6879(81)77053-8. (PMID: 10.1016/S0076-6879(81)77053-87329316)
Ademiluyi AO, Oboh G, Ogunsuyi OB, Akinyemi AJ (2012) Attenuation of gentamycin-induced nephrotoxicity in rats by dietary inclusion of ginger (Zingiber officinale) and turmeric (Curcuma longa) rhizomes. Nutr Health 21:209–218. https://doi.org/10.1177/0260106013506668. (PMID: 10.1177/026010601350666824197862)
Ogunsuyi OB, Aro OP, Oboh G, Olagoke OC (2022) Curcumin improves the ability of donepezil to ameliorate memory impairment in Drosophila melanogaster: involvement of cholinergic and cnc/Nrf2-redox systems. Drug Chem Toxicol. https://doi.org/10.1080/01480545.2022.2119995. (PMID: 10.1080/01480545.2022.211999536069210)
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. https://doi.org/10.1006/meth.2001.1262. (PMID: 10.1006/meth.2001.126211846609)
Erukainure OL, Ijomone OM, Sanni O et al (2019) Type 2 diabetes induced oxidative brain injury involves altered cerebellar neuronal integrity and elemental distribution, and exacerbated Nrf2 expression: therapeutic potential of raffia palm (Raphia hookeri) wine. Metab Brain Dis. https://doi.org/10.1007/s11011-019-00444-x. (PMID: 10.1007/s11011-019-00444-x31201727)
Ijomone OM, Nwoha PU (2015) Nicotine inhibits hippocampal and striatal acetylcholinesterase activities, and demonstrates dual action on adult neuronal proliferation and maturation. Pathophysiology. https://doi.org/10.1016/j.pathophys.2015.09.002. (PMID: 10.1016/j.pathophys.2015.09.00226428579)
Wang X, Kim JR, Lee SB et al (2014) Effects of curcuminoids identified in rhizomes of Curcuma longa on BACE-1 inhibitory and behavioral activity and lifespan of Alzheimer’s disease Drosophila models. BMC Complement Altern Med. https://doi.org/10.1186/1472-6882-14-88. (PMID: 10.1186/1472-6882-14-88255164814301852)
Dahan A, Altman H (2004) Food-drug interaction: grapefruit juice augments drug bioavailability - Mechnism, extent and relevance. Eur J Clin Nutr 58(1):1–9. (PMID: 10.1038/sj.ejcn.160173614679360)
Bekdash RA (2021) The cholinergic system, the adrenergic system and the neuropathology of Alzheimer’s disease. Int J Mol Sci 22(3):1273. (PMID: 10.3390/ijms22031273335253577865740)
Nordberg A, Ballard C, Bullock R et al (2013) A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer’s disease. Prim Care Companion CNS Disord. https://doi.org/10.4088/PCC.12r01412. (PMID: 10.4088/PCC.12r01412239302333733526)
Greig NH, Lahiri DK, Sambamurti K (2002) Butyrylcholinesterase: an important new target in Alzheimer’s disease therapy. Int Psychogeriatr 14:77–91. https://doi.org/10.1017/S1041610203008676. (PMID: 10.1017/S104161020300867612636181)
Lane RM, Potkin SG, Enz A (2005) Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int J Neuropsychopharmacol 9:101. https://doi.org/10.1017/S1461145705005833. (PMID: 10.1017/S146114570500583316083515)
Sugimoto H, Ogura H, Arai Y et al (2002) Research and development of donepezil hydrochloride, a new type of acetylcholinesterase inhibitor. Jpn J Pharmacol 89:7–20. https://doi.org/10.1254/jjp.89.7. (PMID: 10.1254/jjp.89.712083745)
Abbasi MA, IlyasAziz-ur-Rehman M et al (2012) Curcumin and its derivatives: Moderate inhibitors of acetylcholinesterase, butyrylcholinesterase and trypsin. Sci Iran 19:1580–1583. https://doi.org/10.1016/j.scient.2012.10.014. (PMID: 10.1016/j.scient.2012.10.014)
Taheri P, Mohammadi F, Nazeri M et al (2020) Nitric oxide role in anxiety-like behavior, memory and cognitive impairments in animal model of chronic migraine. Heliyon 6:e05654. https://doi.org/10.1016/j.heliyon.2020.e05654. (PMID: 10.1016/j.heliyon.2020.e05654333191047723798)
Collado-Alsina A, Rampérez A, Sánchez-Prieto J, Torres M (2022) Nitric oxide and synaptic transmission in the cerebellum. Handbook of the cerebellum and cerebellar disorders. Springer, Cham, pp 1025–1046. (PMID: 10.1007/978-3-030-23810-0_112)
Qi Y, Wang S, Luo Y et al (2020) Exercise-induced nitric oxide contributes to spatial memory and hippocampal capillaries in rats. Int J Sports Med 41:951–961. https://doi.org/10.1055/a-1195-2737. (PMID: 10.1055/a-1195-273732643775)
Susswein AJ, Katzoff A, Miller N, Hurwitz I (2004) Nitric oxide and memory. Neuroscientist 10(2):153–162. (PMID: 10.1177/107385840326122615070489)
Sticozzi C, Belmonte G, Frosini M, Pessina F (2021) Nitric oxide/cyclic GMP-dependent calcium signalling mediates IL-6- and TNF-α-induced expression of glial fibrillary acid protein. J Mol Neurosci 71:854–866. https://doi.org/10.1007/s12031-020-01708-3. (PMID: 10.1007/s12031-020-01708-332964397)
Chen Y, Qin C, Huang J et al (2020) The role of astrocytes in oxidative stress of central nervous system: a mixed blessing. Cell Prolif. https://doi.org/10.1111/cpr.12781. (PMID: 10.1111/cpr.12781333825027849172)
Zhu G, Wang X, Chen L et al (2022) Crosstalk between the oxidative stress and glia cells after stroke: from mechanism to therapies. Front Immunol. https://doi.org/10.3389/fimmu.2022.852416. (PMID: 10.3389/fimmu.2022.852416368741529822774)
Daverey A, Agrawal SK (2016) Curcumin alleviates oxidative stress and mitochondrial dysfunction in astrocytes. Neuroscience 333:92–103. https://doi.org/10.1016/j.neuroscience.2016.07.012. (PMID: 10.1016/j.neuroscience.2016.07.01227423629)
Yang Q, Zhou J (2019) Neuroinflammation in the central nervous system: symphony of glial cells. Glia 67:1017–1035. https://doi.org/10.1002/glia.23571. (PMID: 10.1002/glia.2357130548343)
Preman P, Alfonso-Triguero M, Alberdi E et al (2021) Astrocytes in Alzheimer’s disease: pathological significance and molecular pathways. Cells 10:540. https://doi.org/10.3390/cells10030540. (PMID: 10.3390/cells10030540338062597999452)
Beamer E, Kuchukulla M, Boison D, Engel T (2021) ATP and adenosine—two players in the control of seizures and epilepsy development. Prog Neurobiol 204:102105. (PMID: 10.1016/j.pneurobio.2021.1021053414412310237002)
Burnstock G, Fredholm B, Verkhratsky A (2011) Adenosine and ATP receptors in the brain. Curr Top Med Chem. https://doi.org/10.2174/156802611795347627. (PMID: 10.2174/15680261179534762721401499)
Moreira-de-Sá A, Lourenço VS, Canas PM, Cunha RA (2021) Adenosine A2A receptors as biomarkers of brain diseases. Front Neurosci 15:702581. (PMID: 10.3389/fnins.2021.702581343351748322233)
Pietrowski MJ, Gabr AA, Kozlov S et al (2021) Glial purinergic signaling in neurodegeneration. Front Neurol 12:654850. (PMID: 10.3389/fneur.2021.654850340546988160300)
da Costa P, Gonçalves JF, Baldissarelli J et al (2017) Curcumin attenuates memory deficits and the impairment of cholinergic and purinergic signaling in rats chronically exposed to cadmium. Environ Toxicol. https://doi.org/10.1002/tox.22213. (PMID: 10.1002/tox.2221328181406)
Rodrigues RJ, Tomé AR, Cunha RA (2015) ATP as a multi-target danger signal in the brain. Front Neurosci 9:148. (PMID: 10.3389/fnins.2015.00148259727804412015)
Akinyemi AJ, Okonkwo PK, Faboya OA et al (2017) Curcumin improves episodic memory in cadmium induced memory impairment through inhibition of acetylcholinesterase and adenosine deaminase activities in a rat model. Metab Brain Dis. https://doi.org/10.1007/s11011-016-9887-x. (PMID: 10.1007/s11011-016-9887-x28849357)
Akbarian M, Mirzavi F, Amirahmadi S et al (2022) Amelioration of oxidative stress, cholinergic dysfunction, and neuroinflammation in scopolamine-induced amnesic rats fed with pomegranate seed. Inflammopharmacology 30:1021–1035. https://doi.org/10.1007/s10787-022-00971-7. (PMID: 10.1007/s10787-022-00971-735348947)
Hosseini Z, Mansouritorghabeh F, Kakhki FSH et al (2022) Effect of Sanguisorba minor on scopolamine-induced memory loss in rat: involvement of oxidative stress and acetylcholinesterase. Metab Brain Dis 37:473–488. https://doi.org/10.1007/s11011-021-00898-y. (PMID: 10.1007/s11011-021-00898-y34982352)
Hong IS, Lee HY, Kim HP (2014) Anti-oxidative effects of Rooibos tea (Aspalathus linearis) on immobilization-induced oxidative stress in rat brain. PLoS ONE. https://doi.org/10.1371/journal.pone.0087061. (PMID: 10.1371/journal.pone.0087061255460574278772)
Smith DG, Cappai R, Barnham KJ (2007) The redox chemistry of the Alzheimer’s disease amyloid β peptide. Biochim Biophys Acta Biomembr 1768(8):1976–1990. (PMID: 10.1016/j.bbamem.2007.02.002)
Saxena G, Singh SP, Agrawal R, Nath C (2008) Effect of donepezil and tacrine on oxidative stress in intracerebral streptozotocin-induced model of dementia in mice. Eur J Pharmacol. https://doi.org/10.1016/j.ejphar.2007.12.009. (PMID: 10.1016/j.ejphar.2007.12.00918234183)
Budzynska B, Boguszewska-Czubara A, Kruk-Slomka M et al (2015) Effects of imperatorin on scopolamine-induced cognitive impairment and oxidative stress in mice. Psychopharmacology. https://doi.org/10.1007/s00213-014-3728-6. (PMID: 10.1007/s00213-014-3728-625189792)
Chen W, Cheng X, Chen J et al (2014) Lycium barbarum polysaccharides prevent memory and neurogenesis impairments in scopolamine-treated rats. PLoS ONE. https://doi.org/10.1371/journal.pone.0088076. (PMID: 10.1371/journal.pone.0088076259196884281253)
Fuji T, Inoue T, Hasegawa Y (2018) Nacre extract prevents scopolamine-induced memory deficits in rodents. Asian Pac J Trop Med. https://doi.org/10.4103/1995-7645.228434. (PMID: 10.4103/1995-7645.228434)
Liu C, Wang W, Song M et al (2021) Corrigendum: radical scavenging efficiency of flavonoids increased by calcium(II) binding: structure-activity relationship. ChemistrySelect. https://doi.org/10.1002/slct.202103267. (PMID: 10.1002/slct.202103267)
معلومات مُعتمدة: 2020 Return Home Fellowship International Brain Research Organization
فهرسة مساهمة: Keywords: Amnesia; Cholinesterase inhibitors; Food–drug interaction; Neuroprotective; Turmeric
المشرفين على المادة: 8SSC91326P (Donepezil)
IT942ZTH98 (Curcumin)
DL48G20X8X (Scopolamine)
EC 3.1.1.7 (Acetylcholinesterase)
0 (Glial Fibrillary Acidic Protein)
EC 3.1.1.8 (Cholinesterases)
EC 3.5.4.4 (Adenosine Deaminase)
EC 3.1.1.8 (Butyrylcholinesterase)
31C4KY9ESH (Nitric Oxide)
0 (Cholinesterase Inhibitors)
تواريخ الأحداث: Date Created: 20240729 Date Completed: 20240729 Latest Revision: 20240729
رمز التحديث: 20240729
DOI: 10.1007/s11033-024-09712-1
PMID: 39073463
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-4978
DOI:10.1007/s11033-024-09712-1