دورية أكاديمية

Current Protocols: Alopecia Areata Mouse Models for Drug Efficacy and Mechanism Studies.

التفاصيل البيبلوغرافية
العنوان: Current Protocols: Alopecia Areata Mouse Models for Drug Efficacy and Mechanism Studies.
المؤلفون: Sundberg JP; The Jackson Laboratory, Bar Harbor, Maine.; Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee., Wang EHC; Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada., McElwee KJ; Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada.; Centre for Skin Science, University of Bradford, Bradford, United Kingdom.
المصدر: Current protocols [Curr Protoc] 2024 Aug; Vol. 4 (8), pp. e1113.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: John Wiley & Sons Country of Publication: United States NLM ID: 101773894 Publication Model: Print Cited Medium: Internet ISSN: 2691-1299 (Electronic) Linking ISSN: 26911299 NLM ISO Abbreviation: Curr Protoc Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Hoboken, NJ : John Wiley & Sons, [2021]-
مواضيع طبية MeSH: Alopecia Areata*/drug therapy , Alopecia Areata*/pathology , Alopecia Areata*/immunology , Disease Models, Animal* , Mice, Inbred C3H* , Skin Transplantation*, Animals ; Mice ; Female ; Male ; Adoptive Transfer
مستخلص: Alopecia areata is the second most common form of hair loss in humans after androgenetic alopecia. Although a variety of animal models for alopecia areata have been described, currently the C3H/HeJ mouse model is the most commonly used and accepted. Spontaneous hair loss occurs in 15%-25% of older mice in which the lesions wax and wane, similar to the human disease, with alopecia being more common and severe in female mice. Full-thickness skin grafts from mice with spontaneous alopecia areata to young, normal-haired, histocompatible mice provide a highly reproducible model with progressive lesions that makes it useful for drug efficacy and mechanism-based studies. As alopecia areata is a cell-mediated autoimmune disease, transfer of cultured lymph node cells from affected mice to unaffected, histocompatible recipients also promotes disease development and provides an alternative, nonsurgical protocol. Protocols are presented to produce these models such that they can be used to study alopecia areata and to develop novel drug therapies. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Full-thickness skin grafts to reproducibly induce alopecia areata in C3H/HeJ mice Basic Protocol 2: Adoptive transfer of cultured lymphoid cells provides a nonsurgical method to induce alopecia areata in C3H/HeJ mice.
(© 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC.)
References: Abd El‐Raheem, T., Mahmoud, R. H., Hefzy, E. M., Masoud, M., Ismail, R., & Aboraia, N. M. M. (2020). Tumor necrosis factor (TNF)‐alpha‐308 G/A gene polymorphism (rs1800629) in Egyptian patients with alopecia areata and vitiligo, a laboratory and in silico analysis. PLoS ONE, 15, e0240221. https://doi.org/10.1371/journal.pone.0240221.
Alkhalifah, A., Alsantali, A., Wang, E., McElwee, K. J., & Shapiro, J. (2010a). Alopecia areata update: Part I. Clinical picture, histopathology, and pathogenesis. Journal of the American Academy of Dermatology, 62, 177–188. quiz 189‐190. https://doi.org/10.1016/j.jaad.2009.10.032.
Alkhalifah, A., Alsantali, A., Wang, E., McElwee, K. J., & Shapiro, J. (2010b). Alopecia areata update: Part II. Treatment. Journal of the American Academy of Dermatology, 62, 191–202. quiz 203–194. https://doi.org/10.1016/j.jaad.2009.10.031.
Bertolini, M., McElwee, K., Gilhar, A., Bulfone‐Paus, S., & Paus, R. (2020). Hair follicle immune privilege and its collapse in alopecia areata. Experimental Dermatology, 29, 703–725. https://doi.org/10.1111/exd.14155.
Bertolini, M., Zilio, F., Rossi, A., Kleditzsch, P., Emelianov, V. E., Gilhar, A., Keren, A., Meyer, K. C., Wang, E., Funk, W., McElwee, K., & Paus, R. (2014). Abnormal interactions between perifollicular mast cells and CD8+ T‐cells may contribute to the pathogenesis of alopecia areata. PLoS ONE, 9, e94260. https://doi.org/10.1371/journal.pone.0094260.
Boggess, D., Silva, K. A., Landel, C., Mobraaten, L., & Sundberg, J. P. (2006). Approaches to handling, breeding, strain preservation, genotyping, and drug administration for mouse models of cancer. In E. C. Holland (Ed.), Mouse models of human cancer (pp. 3–14). John Wiley and Sons.
Broadley, D., & McElwee, K. J. (2020). A "hair‐raising" history of alopecia areata. Experimental Dermatology, 29, 208–222. https://doi.org/10.1111/exd.14073.
Carroll, J. M., McElwee, K. J., King, L. E., Byrne, M. C., & Sundberg, J. P. (2002). Gene array profiling and immunomodulation studies define a cell‐mediated immune response underlying the pathogenesis of alopecia areata in a mouse model and humans. Journal of Investigative Dermatology, 119, 392–402. https://doi.org/10.1046/j.1523‐1747.2002.01811.x.
Colombo, S., Keen, J. A., Brownstein, D. G., Rhind, S. M., McGorum, B. C., & Hill, P. B. (2004). Alopecia areata with lymphocytic mural folliculitis affecting the isthmus in a thoroughbred mare. Veterinary Dermatology, 15, 260–265. https://doi.org/10.1111/j.1365‐3164.2004.00392.x.
Dai, Z., Chen, J., Chang, Y., & Christiano, A. M. (2021). Selective inhibition of JAK3 signaling is sufficient to reverse alopecia areata. JCI Insight, 6, e142205. https://doi.org/10.1172/jci.insight.142205.
Fehrholz, M., & Bertolini, M. (2020). Collapse and restoration of hair follicle immune privilege ex vivo: A model for alopecia areata. Methods in Molecular Biology, 2154, 133–141. https://doi.org/10.1007/978‐1‐0716‐0648‐3_11.
Freyschmidt‐Paul, P., McElwee, K. J., Botchkarev, V., Kissling, S., Wenzel, E., Sundberg, J. P., Happle, R., & Hoffmann, R. (2003). Fas‐deficient C3.MRL‐Tnfrsf6(lpr) mice and Fas ligand‐deficient C3H/HeJ‐Tnfsf6(gld) mice are relatively resistant to the induction of alopecia areata by grafting of alopecia areata‐affected skin from C3H/HeJ mice. The Journal of Investigative Dermatology. Symposium Proceedings, 8, 104–108. https://doi.org/10.1046/j.1523‐1747.2003.12182.x.
Freyschmidt‐Paul, P., McElwee, K. J., Happle, R., Kissling, S., Wenzel, E., Sundberg, J. P., Zoller, M., & Hoffmann, R. (2002). Interleukin‐10‐deficient mice are less susceptible to the induction of alopecia areata. Journal of Investigative Dermatology, 119, 980–982. https://doi.org/10.1046/j.1523‐1747.2002.00230.x.
Freyschmidt‐Paul, P., McElwee, K. J., Hoffmann, R., Sundberg, J. P., Vitacolonna, M., Kissling, S., & Zoller, M. (2006). Interferon‐gamma‐deficient mice are resistant to the development of alopecia areata. British Journal of Dermatology, 155, 515–521. https://doi.org/10.1111/j.1365‐2133.2006.07377.x.
Fuentes‐Duculan, J., Gulati, N., Bonifacio, K. M., Kunjravia, N., Zheng, X., Suarez‐Farinas, M., Shemer, A., Guttman‐Yassky, E., & Krueger, J. G. (2016). Biomarkers of alopecia areata disease activity and response to corticosteroid treatment. Experimental Dermatology, 25, 282–286. https://doi.org/10.1111/exd.12918.
Gong, Y., Zhao, Y., Zhang, X., Qi, S., Li, S., Ye, Y., Yang, J., Caulloo, S., McElwee, K. J., & Zhang, X. (2020). Serum level of IL‐4 predicts response to topical immunotherapy with diphenylcyclopropenone in alopecia areata. Experimental Dermatology, 29, 231–238. https://doi.org/10.1111/exd.13758.
Hashimoto, K., Yamada, Y., Fujikawa, M., Sekiguchi, K., Uratsuji, H., Mori, S., Watanabe, H., & Matsumoto, T. (2021). Altered T cell subpopulations and serum anti‐TYRP2 and tyrosinase antibodies in the acute and chronic phase of alopecia areata in the C3H/HeJ mouse model. Journal of Dermatological Science, 104, 21–29. https://doi.org/10.1016/j.jdermsci.2021.09.001.
Hashimoto, K., Yamada, Y., Sekiguchi, K., Matsuda, S., Mori, S., & Matsumoto, T. (2021). Induction of alopecia areata in C3H/HeJ mice using cryopreserved lymphocytes. Journal of Dermatological Science, 102, 177–183. https://doi.org/10.1016/j.jdermsci.2021.04.009.
Hashimoto, K., Yamada, Y., Sekiguchi, K., Mori, S., & Matsumoto, T. (2022). NLRP3 inflammasome activation contributes to development of alopecia areata in C3H/HeJ mice. Experimental Dermatology, 31, 133–142. https://doi.org/10.1111/exd.14432.
Hoolahan, D. E., White, S. D., Outerbridge, C. A., Shearer, P. L., & Affolter, V. K. (2013). Equine alopecia areata: A retrospective clinical descriptive study at the University of California, Davis (1980‐2011). Veterinary Dermatology, 24, 282–e264. https://doi.org/10.1111/vde.12013.
Husler, M. R., Beamer, W. G., Boggess, D., Sundberg, B. A., & Sundberg, J. P. (1998). Neoplastic and hyperplastic lesions in aging C3H/HeJ mice. Journal of Experimental Animal Science, 38, 165–180.
Ito, T., Ito, N., Saatoff, M., Hashizume, H., Fukamizu, H., Nickoloff, B. J., Takigawa, M., & Paus, R. (2008). Maintenance of hair follicle immune privilege is linked to prevention of NK cell attack. Journal of Investigative Dermatology, 128, 1196–1206. https://doi.org/10.1038/sj.jid.5701183.
Ito, T., Suzuki, T., Sakabe, J. I., Funakoshi, A., Fujiyama, T., & Tokura, Y. (2020). Plasmacytoid dendritic cells as a possible key player to initiate alopecia areata in the C3H/HeJ mouse. Allergology International, 69, 121–131. https://doi.org/10.1016/j.alit.2019.07.009.
King, B., Ohyama, M., Kwon, O., Zlotogorski, A., Ko, J., Mesinkovska, N. A., Hordinsky, M., Dutronc, Y., Wu, W. S., McCollam, J., Chiasserini, C., Yu, G., Stanley, S., Holzwarth, K., DeLozier, A. M., Sinclair, R., & Investigators, B. A. (2022). Two Phase 3 trials of baricitinib for alopecia areata. The New England Journal of Medicine, 386, 1687–1699. https://doi.org/10.1056/NEJMoa2110343.
Kos, L., & Conlon, J. (2009). An update on alopecia areata. Current Opinion in Pediatrics, 21, 475–480. https://doi.org/10.1097/MOP.0b013e32832db986.
Leary, S., Underwood, W., Anthony, R., Cartner, S., Grandin, T., Greenacre, C., Gwaltney‐Brant, S., McCrackin, M. A., Meyer, R., Miller, D., Shearer, J., Turner, T., Yanong, R., Johnson, C. L., & Patterson‐Kane, E. (2020). AVMA guidelines for the euthanasia of animals: 2020 Edition, Version 2020.0.1 ed. American Veterinary Medical Association.
Lee, E., Kim, M., & Lee, Y. J. (2022). Selective expansion of tregs using the Il‐2 cytokine antibody complex does not reverse established alopecia areata in C3H/HeJ mice. Frontiers in Immunology, 13, 874778. https://doi.org/10.3389/fimmu.2022.874778.
Liang, Y., Silva, K. A., Kennedy, V., & Sundberg, J. P. (2011). Comparisons of mouse models for hair follicle reconstitution. Experimental Dermatology, 20, 1011–1015. https://doi.org/10.1111/j.1600‐0625.2011.01366.x.
McElwee, K. J., Boggess, D., Burgett, B., Bates, R., Bedigan, H. G., Sundberg, J. P., & King, L. E. (1998). Murine cytomegalovirus is not associated with alopecia areata in C3H/HeJ mice. Journal of Investigative Dermatology, 110, 986–987. https://doi.org/10.1046/j.1523‐1747.1998.00207.x.
McElwee, K. J., Boggess, D., King, L. E. Jr., & Sundberg, J. P. (1998). Experimental induction of alopecia areata‐like hair loss in C3H/HeJ mice using full‐thickness skin grafts. Journal of Investigative Dermatology, 111, 797–803. https://doi.org/10.1046/j.1523‐1747.1998.00380.x.
McElwee, K. J., Boggess, D., Miller, J., King, L. E. Jr., & Sundberg, J. P. (1999). Spontaneous alopecia areata‐like hair loss in one congenic and seven inbred laboratory mouse strains. The Journal of Investigative Dermatology. Symposium Proceedings, 4, 202–206. https://doi.org/10.1038/sj.jidsp.5640211.
McElwee, K. J., Boggess, D., Olivry, T., Oliver, R. F., Whiting, D., Tobin, D. J., Bystryn, J. C., King, L. E. Jr., & Sundberg, J. P. (1998). Comparison of alopecia areata in human and nonhuman mammalian species. Pathobiology, 66, 90–107. https://doi.org/10.1159/000028002.
McElwee, K. J., Freyschmidt‐Paul, P., Hoffmann, R., Kissling, S., Hummel, S., Vitacolonna, M., & Zoller, M. (2005). Transfer of CD8+ cells induces localized hair loss whereas CD4+/CD25– cells promote systemic alopecia areata and CD4+/CD25+ cells blockade disease onset in the C3H/HeJ mouse model. Journal of Investigative Dermatology, 124, 947–957. https://doi.org/10.1111/j.0022‐202X.2005.23692.x.
McElwee, K. J., Freyschmidt‐Paul, P., Sundberg, J. P., & Hoffmann, R. (2003). The pathogenesis of alopecia areata in rodent models. The Journal of Investigative Dermatology. Symposium Proceedings, 8, 6–11. https://doi.org/10.1046/j.1523‐1747.2003.12164.x.
McElwee, K. J., Gilhar, A., Tobin, D. J., Ramot, Y., Sundberg, J. P., Nakamura, M., Bertolini, M., Inui, S., Tokura, Y., King, L. E. Jr., Duque‐Estrada, B., Tosti, A., Keren, A., Itami, S., Shoenfeld, Y., Zlotogorski, A., & Paus, R. (2013). What causes alopecia areata? Experimental Dermatology, 22, 609–626. https://doi.org/10.1111/exd.12209.
McElwee, K. J., Hoffmann, R., Freyschmidt‐Paul, P., Wenzel, E., Kissling, S., Sundberg, J. P., & Zoller, M. (2002). Resistance to alopecia areata in C3H/HeJ mice is associated with increased expression of regulatory cytokines and a failure to recruit CD4+ and CD8+ cells. Journal of Investigative Dermatology, 119, 1426–1433. https://doi.org/10.1046/j.1523‐1747.2002.19620.x.
McElwee, K. J., Niiyama, S., Freyschmidt‐Paul, P., Wenzel, E., Kissling, S., Sundberg, J. P., & Hoffmann, R. (2003). Dietary soy oil content and soy‐derived phytoestrogen genistein increase resistance to alopecia areata onset in C3H/HeJ mice. Experimental Dermatology, 12, 30–36. https://doi.org/10.1034/j.1600‐0625.2003.120104.x.
McElwee, K. J., Silva, K., Boggess, D., Bechtold, L., King, L. E. Jr., & Sundberg, J. P. (2003). Alopecia areata in C3H/HeJ mice involves leukocyte‐mediated root sheath disruption in advance of overt hair loss. Veterinary Pathology, 40, 643–650. https://doi.org/10.1354/vp.40‐6‐643.
McElwee, K. J., Yu, M., Park, S. W., Ross, E. K., Finner, A., & Shapiro, J. (2005). What can we learn from animal models of alopecia areata? Dermatology, 211, 47–53. https://doi.org/10.1159/000085580.
McMichael, A. J., Pearce, D. J., Wasserman, D., Camacho, F. T., Fleischer, A. B. Jr., Feldman, S. R., & Balkrishnan, R. (2007). Alopecia in the United States: Outpatient utilization and common prescribing patterns. Journal of the American Academy of Dermatology, 57, S49–51. https://doi.org/10.1016/j.jaad.2006.02.045.
Mirzoyev, S. A., Schrum, A. G., Davis, M. D., & Torgerson, R. R. (2014). Lifetime incidence risk of alopecia areata estimated at 2.1% by Rochester Epidemiology Project, 1990‐2009. Journal of Investigative Dermatology, 134, 1141–1142. https://doi.org/10.1038/jid.2013.464.
Perret, C., Wiesner‐Menzel, L., & Happle, R. (1984). Immunohistochemical analysis of T‐cell subsets in the peribulbar and intrabulbar infiltrates of alopecia areata. Acta Dermato‐venereologica, 64, 26–30. https://doi.org/10.2340/00015555642630.
Petukhova, L., Duvic, M., Hordinsky, M., Norris, D., Price, V., Shimomura, Y., Kim, H., Singh, P., Lee, A., Chen, W. V., Meyer, K. C., Paus, R., Jahoda, C. A., Amos, C. I., Gregersen, P. K., & Christiano, A. M. (2010). Genome‐wide association study in alopecia areata implicates both innate and adaptive immunity. Nature, 466, 113–117. https://doi.org/10.1038/nature09114.
Pratt, C. H., King, L. E. Jr., Messenger, A. G., Christiano, A. M., & Sundberg, J. P. (2017). Alopecia areata. Nature Reviews Disease Primers, 3, 17011. https://doi.org/10.1038/nrdp.2017.11.
Ranki, A., Kianto, U., Kanerva, L., Tolvanen, E., & Johansson, E. (1984). Immunohistochemical and electron microscopic characterization of the cellular infiltrate in alopecia (areata, totalis, and universalis). Journal of Investigative Dermatology, 83, 7–11. https://doi.org/10.1111/1523‐1747.ep12261627.
Scarampella, F., & Roccabianca, P. (2018). Alopecia areata in a dog: Clinical, dermoscopic and histological features. Skin Appendage Disorders, 4, 112–117. https://doi.org/10.1159/000479781.
Silva, K. A., & Sundberg, J. P. (2013). Surgical methods for full‐thickness skin grafts to induce alopecia areata in C3H/HeJ mice. Comparative Medicine, 63, 392–397.
Smyth, J. R. Jr., & McNeil, M. (1999). Alopecia areata and universalis in the Smyth chicken model for spontaneous autoimmune vitiligo. The Journal of Investigative Dermatology. Symposium Proceedings, 4, 211–215. https://doi.org/10.1038/sj.jidsp.5640213.
Sun, J., Silva, K. A., McElwee, K. J., King, L. E. Jr., & Sundberg, J. P. (2008). The C3H/HeJ mouse and DEBR rat models for alopecia areata: Review of preclinical drug screening approaches and results. Experimental Dermatology, 17, 793–805. https://doi.org/10.1111/j.1600‐0625.2008.00773.x.
Sundberg, J. P., Berndt, A., Sundberg, B. A., Silva, K. A., Kennedy, V., Bronson, R., Yuan, R., Paigen, B., Harrison, D., & Schofield, P. N. (2011). The mouse as a model for understanding chronic diseases of aging: The histopathologic basis of aging in inbred mice. Pathobiology of Aging and Age‐related Diseases, 1, https://doi.org/10.3402/pba.v1i0.7179.
Sundberg, J. P., Boggess, D., Silva, K. A., McElwee, K. J., King, L. E., Li, R., Churchill, G., & Cox, G. A. (2003). Major locus on mouse chromosome 17 and minor locus on chromosome 9 are linked with alopecia areata in C3H/HeJ mice. Journal of Investigative Dermatology, 120, 771–775. https://doi.org/10.1046/j.1523‐1747.2003.12135.x.
Sundberg, J. P., Cordy, W. R., & King, L. E. Jr. (1994). Alopecia areata in aging C3H/HeJ mice. Journal of Investigative Dermatology, 102, 847–856. https://doi.org/10.1111/1523‐1747.ep12382416.
Sundberg, J. P., Dunstan, R. W., Roop, D. R., & Beamer, W. G. (1994). Full‐thickness skin grafts from flaky skin mice to nude mice: Maintenance of the psoriasiform phenotype. Journal of Investigative Dermatology, 102, 781–788. https://doi.org/10.1111/1523‐1747.ep12377741.
Sundberg, J. P., King, L. E. Jr., & Kuiper, R. V. (2022). Skin, hair, and nails. In J. P. Sundberg, P. Vogel, & J. M. Ward (Eds.), Pathology of genetically engineered and other mutant mice (pp. 159–212). John Wiley & Sons, Inc.
Sundberg, J. P., McElwee, K., Brehm, M. A., Su, L., & King, L. E. Jr. (2015). Animal models for alopecia areata: What and where? The Journal of Investigative Dermatology. Symposium Proceedings, 17, 23–26. https://doi.org/10.1038/jidsymp.2015.35.
Sundberg, J. P., McElwee, K. J., Carroll, J. M., & King, L. E. Jr. (2011). Hypothesis testing: CTLA4 co‐stimulatory pathways critical in the pathogenesis of human and mouse alopecia areata. Journal of Investigative Dermatology, 131, 2323–2324. https://doi.org/10.1038/jid.2011.203.
Sundberg, J. P., Potter, C. S., & King, L. E. Jr. (2012). Skin and adnexa of the laboratory mouse. In H. J. Hedrich (Ed.), The Laboratory Mouse (pp. 193–208). Academic Press.
Sundberg, J. P., & Rice, R. H. (2023). Phenotyping mice with skin, hair, or nail abnormalities: A systematic approach and methodologies from simple to complex. Veterinary Pathology, 60, 829–842. https://doi.org/10.1177/03009858231170329.
Sundberg, J. P., Silva, K. A., Kennedy, V. E., Wilson, J. J., Gott, N. E., Sundberg, B. A., & Roopenian, D. C. (2019). 2‐deoxy D‐glucose treatment does not elicit a hair growth response in alopecia areata. Experimental Dermatology, 28, 1091–1093. https://doi.org/10.1111/exd.14008.
Sundberg, J. P., Silva, K. A., Li, R., Cox, G. A., & King, L. E. (2004). Adult‐onset alopecia areata is a complex polygenic trait in the C3H/HeJ mouse model. Journal of Investigative Dermatology, 123, 294–297. https://doi.org/10.1111/j.0022‐202X.2004.23222.x.
Suzuki, T., Tokura, Y., & Ito, T. (2016). Similarities of dermoscopic findings in alopecia areata between human and C3H/HeJ mouse. Journal of Dermatological Science, 83, 154–157. https://doi.org/10.1016/j.jdermsci.2016.04.007.
Timm, K., Rufenacht, S., von Tscharner, C., Bornand, V. F., Doherr, M. G., Oevermann, A., Flury, C., Rieder, S., Hirsbrunner, G., Drogemuller, C., & Roosje, P. J. (2010). Alopecia areata in Eringer cows. Veterinary Dermatology, 21, 545–553. https://doi.org/10.1111/j.1365‐3164.2010.00906.x.
Tobin, D. J., Alhaidari, Z., & Olivry, T. (1998). Equine alopecia areata autoantibodies target multiple hair follicle antigens and may alter hair growth. A preliminary study. Experimental Dermatology, 7, 289–297. https://doi.org/10.1111/j.1600‐0625.1998.tb00299.x‐i1.
Wang, E., & McElwee, K. J. (2011). Etiopathogenesis of alopecia areata: Why do our patients get it? Dermatologic Therapy, 24, 337–347. https://doi.org/10.1111/j.1529‐8019.2011.01416.x.
Wang, E. H. C., Khosravi‐Maharlooei, M., Jalili, R. B., Yu, R., Ghahary, A., Shapiro, J., & McElwee, K. J. (2015). Transfer of alopecia areata to C3H/HeJ mice using cultured lymph node‐derived cells. Journal of Investigative Dermatology, 135, 2530–2532. https://doi.org/10.1038/jid.2015.176.
Wang, E. H. C., & McElwee, K. J. (2020). Nonsurgical induction of alopecia areata in C3H/HeJ mice via adoptive transfer of cultured lymphoid cells. Methods in Molecular Biology, 2154, 121–131. https://doi.org/10.1007/978‐1‐0716‐0648‐3_10.
Wang, E. H. C., Sallee, B. N., Tejeda, C. I., & Christiano, A. M. (2018). JAK inhibitors for treatment of alopecia areata. Journal of Investigative Dermatology, 138, 1911–1916. https://doi.org/10.1016/j.jid.2018.05.027.
Xing, L., Dai, Z., Jabbari, A., Cerise, J. E., Higgins, C. A., Gong, W., de Jong, A., Harel, S., DeStefano, G. M., Rothman, L., Singh, P., Petukhova, L., Mackay‐Wiggan, J., Christiano, A. M., & Clynes, R. (2014). Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nature Medicine, 20, 1043–1049. https://doi.org/10.1038/nm.3645.
Zhang, B., Zhao, Y., Cai, Z., Caulloo, S., McElwee, K. J., Li, Y., Chen, X., Yu, M., Yang, J., Chen, W., Tang, X., & Zhang, X. (2013). Early stage alopecia areata is associated with inflammation in the upper dermis and damage to the hair follicle infundibulum. Australasian Journal of Dermatology, 54, 184–191. https://doi.org/10.1111/ajd.12065.
Zhang, X., Yu, M., Yu, W., Weinberg, J., Shapiro, J., & McElwee, K. J. (2009). Development of alopecia areata is associated with higher central and peripheral hypothalamic‐pituitary‐adrenal tone in the skin graft induced C3H/HeJ mouse model. Journal of Investigative Dermatology, 129, 1527–1538. https://doi.org/10.1038/jid.2008.371.
Zheng, M., Kim, M. H., Park, S. G., Kim, W. S., Oh, S. H., & Sung, J. H. I. (2024). CXCL12 neutralizing antibody promotes hair growth in androgenic alopecia and alopecia areata. International Journal of Molecular Sciences, 25, 1705. https://doi.org/10.3390/ijms25031705.
Zoller, M., McElwee, K. J., Engel, P., & Hoffmann, R. (2002). Transient CD44 variant isoform expression and reduction in CD4+/CD25+ regulatory T cells in C3H/HeJ mice with alopecia areata. Journal of Investigative Dermatology, 118, 983–992. https://doi.org/10.1046/j.1523‐1747.2002.01745.x.
معلومات مُعتمدة: The National Alopecia Areata Foundation
فهرسة مساهمة: Keywords: alopecia areata; cell transplants; drug efficacy trials; full‐thickness skin grafts; mouse models
تواريخ الأحداث: Date Created: 20240806 Date Completed: 20240806 Latest Revision: 20240806
رمز التحديث: 20240806
DOI: 10.1002/cpz1.1113
PMID: 39105684
قاعدة البيانات: MEDLINE
الوصف
تدمد:2691-1299
DOI:10.1002/cpz1.1113