دورية أكاديمية

A time series transcriptome profiling of host cell responses to Newcastle disease virus infection.

التفاصيل البيبلوغرافية
العنوان: A time series transcriptome profiling of host cell responses to Newcastle disease virus infection.
المؤلفون: Nayak BN; National Institute of Animal Biotechnology, Hyderabad, Telangana, India.; Graduate studies, Regional Centre for Biotechnology, New Delhi, India., Palanisamy P; Department of Biotechnology, Anna University, Chennai, Tamilnadu, India., Venkataraman S; Department of Biotechnology, Anna University, Chennai, Tamilnadu, India. sangita.venkataraman@gmail.com., Subbiah M; National Institute of Animal Biotechnology, Hyderabad, Telangana, India. madhuri@niab.org.in.; Adjunct Faculty, Regional Centre for Biotechnology, New Delhi, India. madhuri@niab.org.in.
المصدر: Archives of virology [Arch Virol] 2024 Aug 08; Vol. 169 (9), pp. 175. Date of Electronic Publication: 2024 Aug 08.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Austria NLM ID: 7506870 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-8798 (Electronic) Linking ISSN: 03048608 NLM ISO Abbreviation: Arch Virol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Wien, New York, Springer-Verlag.
مواضيع طبية MeSH: Newcastle disease virus*/genetics , Newcastle disease virus*/pathogenicity , Newcastle disease virus*/physiology , Newcastle Disease*/virology , Newcastle Disease*/immunology , Chickens*/virology , Gene Expression Profiling* , Fibroblasts*/virology , Host-Pathogen Interactions*/genetics, Animals ; Chick Embryo ; Cell Line ; Transcriptome ; Poultry Diseases/virology ; Poultry Diseases/genetics ; Virus Replication/genetics
مستخلص: Newcastle disease virus (NDV), an avian paramyxovirus, causes major economic losses in the poultry industry worldwide. NDV strains are classified as avirulent, moderately virulent, or virulent according to the severity of the disease they cause. In order to gain a deeper understanding of the molecular mechanisms of virus-host interactions, we conducted Illumina HiSeq-based RNA-Seq analysis on chicken embryo fibroblast (DF1) cells during the first 24 hours of infection with NDV strain Komarov. Comparative analysis of uninfected DF1 cells versus NDV-infected DF1 cells at 6, 12, and 24 h postinfection identified 462, 459, and 410 differentially expressed genes, respectively. The findings revealed an increase in the expression of genes linked to the MAPK signalling pathway in the initial stages of NDV infection. This overexpression potentially aids viral multiplication while hindering pathogen detection and subsequent immune responses from the host. Our findings provide initial insights into the early responses of DF1 cells to NDV infection.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.)
References: Abbas YM, Pichlmair A, Górna MW, Superti-Furga G, Nagar B (2013) Structural basis for viral 5′-PPP-RNA recognition by human IFIT proteins. Nature 494(7435):60–64. (PMID: 10.1038/nature11783233344204931921)
Afgan E, Lonie A, Taylor J, Goonasekera N (2019) CloudLaunch: discover and deploy cloud applications. Future generations computer systems : FGCS 94:802–810. https://doi.org/10.1016/j.future.2018.04.037. (PMID: 10.1016/j.future.2018.04.03734366521)
Alexander, D. J. (2000). Newcastle disease and other avian paramyxoviruses. Rev Sci Tech, 19(2), 443-462. https://doi.org/10.20506/rst.19.2.1231.
Alexander DJ, Senne D (2003) Newcastle disease. Diseases of poultry 11(1):64–87.
Alqazlan N, Emam M, Nagy É et al (2021) Transcriptomics of chicken cecal tonsils and intestine after infection with low pathogenic avian influenza virus H9N2. Sci Rep 11:20462. https://doi.org/10.1038/s41598-021-99182-3. (PMID: 10.1038/s41598-021-99182-3346501218517014)
Anders S, Pyl PT, Huber W (2015) HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics (Oxford, England) 31(2):166–169. https://doi.org/10.1093/bioinformatics/btu638. (PMID: 10.1093/bioinformatics/btu63825260700)
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature genetics 25(1):25–29. https://doi.org/10.1038/75556. (PMID: 10.1038/7555610802651)
Assenov Y, Ramirez F, Schelhorn SE, Lengauer T, Albrecht M (2008) Computing topological parameters of biological networks. Bioinformatics 24(2):282–284. https://doi.org/10.1093/bioinformatics/btm554. (PMID: 10.1093/bioinformatics/btm55418006545)
Chanthavixay G, Kern C, Wang Y, Saelao P, Lamont SJ, Gallardo RA, Rincon G, Zhou H (2020) Integrated Transcriptome and Histone Modification Analysis Reveals NDV Infection Under Heat Stress Affects Bursa Development and Proliferation in Susceptible Chicken Line. Front Genet 11:567812. https://doi.org/10.3389/fgene.2020.567812. (PMID: 10.3389/fgene.2020.567812331013897545831)
Chen J, Wang W, Li S, Wang Z, Zuo W, Nong T, Li Y, Liu H, Wei P, He X (2024) RNA-seq reveals role of cell-cycle regulating genes in the pathogenicity of a field very virulent infectious bursal disease virus. Frontiers in Veterinary Science 11:1334586. https://doi.org/10.3389/fvets.2024.1334586. (PMID: 10.3389/fvets.2024.13345863836229510867150)
Cheng S, Liu X, Mu J et al (2022) Intense Innate Immune Responses and Severe Metabolic Disorders in Chicken Embryonic Visceral Tissues Caused by Infection with Highly Virulent Newcastle Disease Virus Compared to the Avirulent Virus: A Bioinformatics Analysis. Viruses 14(5):911. https://doi.org/10.3390/v14050911. (PMID: 10.3390/v14050911356326519145607)
Chin, C. H., Chen, S. H., Wu, H. H., Ho, C. W., Ko, M. T., & Lin, C. Y. (2014). cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol, 8 Suppl 4(Suppl 4), S11. https://doi.org/10.1186/1752-0509-8-S4-S11.
Del Vesco, A. P., Jang, H. J., Monson, M. S., & Lamont, S. J. (2021). Role of the chicken oligoadenylate synthase-like gene during in vitro Newcastle disease virus infection. Poultry Science, 100(5), 101067. https://doi.org/10.1016/j.psj.2021.101067.
Deng, L., Zeng, Q., Wang, M., Cheng, A., Jia, R., Chen, S., Zhu, D., Liu, M., Yang, Q., Wu, Y., Zhao, X., Zhang, S., Liu, Y., Yu, Y., Zhang, L., & Chen, X. (2018). Suppression of NF-κB Activity: A Viral Immune Evasion Mechanism. Viruses, 10(8). https://doi.org/10.3390/v10080409.
Doncheva NT, Morris JH, Gorodkin J, Jensen LJ (2019) Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data. J Proteome Res 18(2):623–632. https://doi.org/10.1021/acs.jproteome.8b00702. (PMID: 10.1021/acs.jproteome.8b0070230450911)
Guo LX, Nie FR, Huang AQ, Wang RN, Li MY, Deng HY, Zhou YZ, Zhou XM, Huang YK, Zhou J, Ji YD (2021) Transcriptomic analysis of chicken immune response to infection of different doses of Newcastle disease vaccine. Gene 15(766):145077. https://doi.org/10.1016/j.gene.2020.145077. (PMID: 10.1016/j.gene.2020.145077)
He W, Wang Q, Xu J, Xu X, Padilla MT, Ren G, Gou X, Lin Y (2012) Attenuation of TNFSF10/TRAIL-induced apoptosis by an autophagic survival pathway involving TRAF2- and RIPK1/RIP1-mediated MAPK8/JNK activation. Autophagy 8(12):1811–1821. https://doi.org/10.4161/auto.22145. (PMID: 10.4161/auto.22145230519143541290)
https://bioinformatics.psb.ugent.be/webtools/Venn/.
Isham IM, Vatandour S, Boulianne M, Dozois CM, Gagnon CA, Barjesteh N, Faizal M (2024) Host Immune Response Modulation in Avian Coronavirus Infection: Tracheal Transcriptome Profiling In Vitro and In Vivo. Viruses 16(4):605. https://doi.org/10.3390/v16040605. (PMID: 10.3390/v160406053867594611053446)
Janeway, C. J. T., P., Walport, M., Shlomchik, MJ. (2001). The Immune System in Health and Disease. In Immunobiology. Garland Science. Available from: https://www.ncbi.nlm.nih.gov/books/NBK10757/.
Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30. https://doi.org/10.1093/nar/28.1.27. (PMID: 10.1093/nar/28.1.2710592173102409)
Kim D, Paggi JM, Park C et al (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37:907–915. https://doi.org/10.1038/s41587-019-0201-4. (PMID: 10.1038/s41587-019-0201-4313758077605509)
Komarov A, Goldsmit L (1946) Preliminary observation on the modification of a strain of Newcastle disease virus by intracerebral passage through ducklings. Br Vet J 102:212–218. https://doi.org/10.1016/s0372-5545(17)31454-2. (PMID: 10.1016/s0372-5545(17)31454-220990783)
Kramer, I. M. (2016). Chapter 14 - Chemokines and Traffic of White Blood Cells. In I. M. Kramer (Ed.), Signal Transduction (Third Edition) (pp. 777-812). Academic Press. https://doi.org/10.1016/B978-0-12-394803-8.00014-0.
Kumar R, Khandelwal N, Thachamvally R, Tripathi BN, Barua S, Kashyap SK, Maherchandani S, Kumar N (2018) Role of MAPK/MNK1 signaling in virus replication. Virus Res 253:48–61. https://doi.org/10.1016/j.virusres.2018.05.028. (PMID: 10.1016/j.virusres.2018.05.02829864503)
Langmead B, Salzberg S (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923. (PMID: 10.1038/nmeth.1923223882863322381)
Li J, Ding J, Chen M, Chen K, Zou Y, Xu X, Zhang D, Yu X, Ding Z (2022) Transcriptome-wide N6-methyladenosine modification profiling of mRNAs during infection of Newcastle disease virus in chicken macrophages. Virus Res 323:198993. https://doi.org/10.1016/j.virusres.2022.198993. (PMID: 10.1016/j.virusres.2022.1989933632650810194374)
Liu W, Qiu X, Song C, Sun Y, Meng C, Liao Y, Tan L, Ding Z, Liu X, Ding C (2018) Deep Sequencing-Based Transcriptome Profiling Reveals Avian Interferon-Stimulated Genes and Provides Comprehensive Insight into Newcastle Disease Virus-Induced Host Responses. Viruses 10(4):162. https://doi.org/10.3390/v10040162. (PMID: 10.3390/v10040162296015085923456)
Liu, Y., Cheng, Y., Shan, W., Ma, J., Wang, H., Sun, J., & Yan, Y. (2018). Chicken interferon regulatory factor 1 (IRF1) involved in antiviral innate immunity via regulating IFN-β production. Developmental & Comparative Immunology, 88, 77-82. https://doi.org/10.1016/j.dci.2018.07.003.
Marcel, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal, [S.l.], v. 17, n. 1, p. pp. 10-12, may 2011. ISSN 2226-6089. https://doi.org/10.14806/ej.17.1.200 .
Matveeva OV, Guo ZS, Shabalina SA, Chumakov PM (2015) Oncolysis by paramyxoviruses: multiple mechanisms contribute to therapeutic efficiency. Molecular Therapy-Oncolytics 2:15011. (PMID: 10.1038/mto.2015.11266408164667958)
Meng Q, Xia Y (2011) c-Jun, at the crossroad of the signaling network. Protein Cell 2(11):889–898. https://doi.org/10.1007/s13238-011-1113-3. (PMID: 10.1007/s13238-011-1113-3221800884875184)
Mi, H., Muruganujan, A., Huang, X., Ebert, D., Mills, C., Guo, X., & Thomas, P. D. (2019). Protocol Update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nature protocols, 14(3), 703–721. https://doi.org/10.1038/s41596-019-0128-8.
Morrison, D. K. (2012). MAP kinase pathways. Cold Spring Harb Perspect Biol, 4(11). https://doi.org/10.1101/cshperspect.a011254.
Nayak BN, Rajagopal K, Shunmugasundaram R, Rao PL, Vaidyanathan S, Subbiah M (2023) Molecular characterization suggests kinetic modulation of expression of accessory viral protein, W, in Newcastle disease virus infected DF1 cells. VirusDis. 34:236–247. https://doi.org/10.1007/s13337-023-00813-2. (PMID: 10.1007/s13337-023-00813-2)
Okude H, Ori D, Kawai T (2020) Signaling Through Nucleic Acid Sensors and Their Roles in Inflammatory Diseases. Front Immunol 11:625833. https://doi.org/10.3389/fimmu.2020.625833. (PMID: 10.3389/fimmu.2020.62583333633744)
Panner Selvam, M.K., Kanagaraj, V., Kathaperumal, K. et al. Comparative transcriptome analysis of spleen of Newcastle Disease Virus (NDV) infected chicken and Japanese quail: a potential role of NF-κβ pathway activation in NDV resistance. VirusDis. 34, 402–409 (2023). https://doi.org/10.1007/s13337-023-00833-y.
Parks GD, Alexander-Miller MA (2013) Paramyxovirus activation and inhibition of innate immune responses. J Mol Biol 425(24):4872–4892. https://doi.org/10.1016/j.jmb.2013.09.015. (PMID: 10.1016/j.jmb.2013.09.015240561733940258)
Perng Y-C, Lenschow DJ (2018) ISG15 in antiviral immunity and beyond. Nat Rev Microbiol 16(7):423–439. https://doi.org/10.1038/s41579-018-0020-5. (PMID: 10.1038/s41579-018-0020-5297696537097117)
Pichlmair A, Lassnig C, Eberle C-A, Górna MW, Baumann CL, Burkard TR, Bürckstümmer T, Stefanovic A, Krieger S, Bennett KL (2011) IFIT1 is an antiviral protein that recognizes 5′-triphosphate RNA. Nat Immunol 12(7):624–630. (PMID: 10.1038/ni.204821642987)
Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, Vilo J (2019) g: Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res 47(W1):W191–W198. (PMID: 10.1093/nar/gkz369310664536602461)
Schoggins JW, Rice CM (2011) Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol 1(6):519–525. https://doi.org/10.1016/j.coviro.2011.10.008. (PMID: 10.1016/j.coviro.2011.10.008223289123274382)
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. https://doi.org/10.1101/gr.1239303. (PMID: 10.1101/gr.123930314597658403769)
Stawowczyk M, Van Scoy S, Kumar KP, Reich NC (2011) The interferon stimulated gene 54 promotes apoptosis. J Biol Chem 286(9):7257–7266. https://doi.org/10.1074/jbc.M110.207068. (PMID: 10.1074/jbc.M110.20706821190939)
Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 31(1):46–53. https://doi.org/10.1038/nbt.2450. (PMID: 10.1038/nbt.245023222703)
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515. https://doi.org/10.1038/nbt.1621. (PMID: 10.1038/nbt.1621204364643146043)
Ul-Rahman A, Rabani M, Shabbir MZ (2023) A comparative evaluation of transcriptome changes in lung and spleen tissues of chickens infected with velogenic and mesogenic Avian Orthoavulavirus 1. Microb Pathog 174:105956. https://doi.org/10.1016/j.micpath.2022.105956. (PMID: 10.1016/j.micpath.2022.10595636572195)
Ul-Rahman A, Rabani M, Shabbir MZ (2022) A comparative evaluation of transcriptome changes in lung and spleen tissues of chickens infected with velogenic and mesogenic Avian Orthoavulavirus 1. Microb Pathog 174:105956. https://doi.org/10.1016/j.micpath.2022.105956. (PMID: 10.1016/j.micpath.2022.10595636572195)
Wang, X., Jia, Y., Ren, J., Huo, N., Liu, H., Xiao, S., Wang, X., & Yang, Z. (2019). Newcastle Disease Virus Nonstructural V Protein Upregulates SOCS3 Expression to Facilitate Viral Replication Depending on the MEK/ERK Pathway [Original Research]. Frontiers in Cellular and Infection Microbiology, 9. https://doi.org/10.3389/fcimb.2019.00317.
Wang, X., Jia, Y., Ren, J., Liu, H., Adam, F. E. A., Wang, X., & Yang, Z. (2019). Insights into the chicken bursa of fabricius response to Newcastle disease virus at 48 and 72 hours post-infection through RNA-seq. Veterinary Microbiology, 236. https://doi.org/10.1016/j.vetmic.2019.108389 .
Yang X, Arslan M, Liu X, Song H, Du M, Li Y, Zhang Z (2020) IFN-γ establishes interferon-stimulated gene-mediated antiviral state against Newcastle disease virus in chicken fibroblasts. Acta Biochim Biophys Sin 52(3):268–280. https://doi.org/10.1093/abbs/gmz158. (PMID: 10.1093/abbs/gmz15832047904)
Zhan Y, Yu S, Yang S, Qiu X, Meng C, Tan L, Song C, Liao Y, Liu W, Sun Y, Ding C (2020) Newcastle Disease virus infection activates PI3K/Akt/mTOR and p38 MAPK/Mnk1 pathways to benefit viral mRNA translation via interaction of the viral NP protein and host eIF4E. PLoS Pathog 16(6):e1008610. https://doi.org/10.1371/journal.ppat.1008610. (PMID: 10.1371/journal.ppat.1008610326033777326156)
Zhang J, Sze DM, Yung BY, Tang P, Chen WJ, Chan KH, Leung PH (2016) Distinct expression of interferon-induced protein with tetratricopeptide repeats (IFIT) 1/2/3 and other antiviral genes between subsets of dendritic cells induced by dengue virus 2 infection. Immunology 148(4):363–376. https://doi.org/10.1111/imm.12615. (PMID: 10.1111/imm.12615271359154948034)
معلومات مُعتمدة: C0007 NIAB; BT/PR40163/BTIS/137/31/2021 BIC, DoBT, AU
تواريخ الأحداث: Date Created: 20240808 Date Completed: 20240808 Latest Revision: 20240912
رمز التحديث: 20240912
DOI: 10.1007/s00705-024-06100-9
PMID: 39117748
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-8798
DOI:10.1007/s00705-024-06100-9