دورية أكاديمية

Potential of metal recovery from printed circuit boards in Brazil.

التفاصيل البيبلوغرافية
العنوان: Potential of metal recovery from printed circuit boards in Brazil.
المؤلفون: Oliveira Neto JF; Universidade Federal de Pernambuco, Centro de Tecnologia e Geociências, Cidade Universitária, Recife, PE, 50670901, Brazil. josefrancisco.oliveiraneto@ufpe.br., Cavalcante JNG; Universidade Federal de Pernambuco, Centro de Tecnologia e Geociências, Cidade Universitária, Recife, PE, 50670901, Brazil., Silva MM; Universidade Federal de Pernambuco, Centro de Tecnologia e Geociências, Cidade Universitária, Recife, PE, 50670901, Brazil., Machado Santos S; Universidade Federal de Pernambuco, Centro de Tecnologia e Geociências, Cidade Universitária, Recife, PE, 50670901, Brazil., Florencio L; Universidade Federal de Pernambuco, Centro de Tecnologia e Geociências, Cidade Universitária, Recife, PE, 50670901, Brazil.
المصدر: Environmental science and pollution research international [Environ Sci Pollut Res Int] 2024 Aug; Vol. 31 (39), pp. 51702-51718. Date of Electronic Publication: 2024 Aug 09.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
أسماء مطبوعة: Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
مواضيع طبية MeSH: Electronic Waste* , Metals*, Brazil ; Recycling
مستخلص: In this study, the generation of domestic waste electrical and electronic equipment (WEEE) and waste printed circuit board (WPCB) were estimated, from 2015 to 2030. Based on the number of EEE put on the Brazilian market, the possession rate in the Brazilian households and obsolescence amounts of five EEE types were estimated using time series. The results show that, between 2015 and 2030, the quantity of WEEE generated per year will increase from 131.87 kt to 195.22 kt. In this period, WPCB generation will stay around 10% of WEEE generation. Additionally, this study shows that the urban mining potential of the materials recoverable from WPCB can be an important revenue source, with environmental benefits deriving from energy savings and a reduction in CO2 emissions. The results of this study provide a quantitative basis that may help decision makers develop strategic policies for WEEE management, considering material circularity.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Abbondanza MNM, Souza RG (2019) Estimating the generation of household e-waste in municipalities using primary data from surveys: A case study of Sao Jose dos Campos, Brazil. Waste Manag 85:374–384. https://doi.org/10.1016/j.wasman.2018.12.040. (PMID: 10.1016/j.wasman.2018.12.040)
ABINEE (2021) Panorama Econômico e Desempenho Setorial 2020. https://www.abinee.org.br/arquivos/decon/panorama/2020/.
ABINEE (2022) Panorama Econômico e Desempenho Setorial 2021. https://www.abinee.org.br/arquivos/decon/panorama/2021/.
Alavi N, Shirmardi M, Babaei A, Takdastan A, Bagheri N (2015) Waste electrical and electronic equipment (WEEE) estimation: A case study of Ahvaz City, Iran. J Air Waste Manag Assoc 65:298–305. https://doi.org/10.1080/10962247.2014.976297. (PMID: 10.1080/10962247.2014.976297)
Albuquerque CA, Mello CHP, de Gomes JHF, Santos VC, Zara JV (2020) E-waste in the world today: An overview of problems and a proposal for improvement in Brazil. Environ Qual Manag 29:63–72. https://doi.org/10.1002/tqem.21682. (PMID: 10.1002/tqem.21682)
Alves R, Ferreira KLA, Lima RS, Moraes FTF (2021) An Action Research Study for Elaborating and Implementing an Electronic Waste Collection Program in Brazil. Syst Pract Action Res 34:91–108. https://doi.org/10.1007/s11213-019-09509-5. (PMID: 10.1007/s11213-019-09509-5)
Araújo MG, Magrini A, Mahler CF, Bilitewski B (2012) A model for estimation of potential generation of waste electrical and electronic equipment in Brazil. Waste Manag 32:335–342. https://doi.org/10.1016/j.wasman.2011.09.020. (PMID: 10.1016/j.wasman.2011.09.020)
Araujo DRR, de Oliveira JD, Selva VF, Silva MM, Santos SM (2017) Generation of domestic waste electrical and electronic equipment on Fernando de Noronha Island: qualitative and quantitative aspects. Environ Sci Pollut Res 24:19703–19713. https://doi.org/10.1007/s11356-017-9648-3. (PMID: 10.1007/s11356-017-9648-3)
Ardi R, Leisten R (2016) Assessing the role of informal sector in WEEE management systems: A System Dynamics approach. Waste Manag 57:3–16. https://doi.org/10.1016/j.wasman.2015.11.038. (PMID: 10.1016/j.wasman.2015.11.038)
Awasthi AK, Li J (2017) An overview of the potential of eco-friendly hybrid strategy for metal recycling from WEEE. Resour Conserv Recycl 126:228–239. https://doi.org/10.1016/j.resconrec.2017.07.014. (PMID: 10.1016/j.resconrec.2017.07.014)
Awasthi AK, Zeng X, Li J (2016) Integrated bioleaching of copper metal from waste printed circuit board—a comprehensive review of approaches and challenges. Environ Sci Pollut Res 23:21141–21156. https://doi.org/10.1007/s11356-016-7529-9. (PMID: 10.1007/s11356-016-7529-9)
Azevedo LP, da Silva Araújo FG, Lagarinhos CAF, Tenório JAS, Espinosa DCR (2017) E-waste management and sustainability: a case study in Brazil. Environ Sci Pollut Res 24:25221–25232. https://doi.org/10.1007/s11356-017-0099-7. (PMID: 10.1007/s11356-017-0099-7)
Babbitt C, Althaf S, Chen R (2017) Sustainable materials management for the evolving consumer technology ecosystem. Summary report of phase, 1. Available at: https://www.semanticscholar.org/paper/Sustainable-Materials-Management-for-the-Evolving-2-Babbitt-Althaf/622720f9abe6345602b0d49075409f47de9a7527.
Baldé CP, Wang F, Kuehr R, Huisman J (2015) The global e-waste monitor–2014. United Nations University, IAS–SCYCLE, Bonn, Germany. Available at: https://ewastemonitor.info/monitors/.
Baldé CP, Forti V, Gray V, Kuehr R, Stegmann P (2017) The Global E-waste Monitor – 2017. United Nations University (UNU), International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn/Geneva/Vienna. Available at: https://ewastemonitor.info/monitors/.
Baniasadi M, Graves JE, Ray DA, De Silva AL, Renshaw D, Farnaud S (2021) Closed-Loop Recycling of Copper from Waste Printed Circuit Boards Using Bioleaching and Electrowinning Processes. Waste Biomass Valor 12:3125–3136. https://doi.org/10.1007/s12649-020-01128-9. (PMID: 10.1007/s12649-020-01128-9)
Brasil (2010) Lei na 12.305, de 2 de agosto de 2010. Diário Of. da União 2. Available at: https://doi.org/10.1007/s13398-014-0173-7.2 . Accessed 21 September 2022.
Brasil (2019) ACORDO SETORIAL PARA IMPLANTAÇÃO DE SISTEMA DE LOGÍSTICA REVERSA DE PRODUTOS ELETROELETRÔNICOS DE USO DOMÉSTICO E SEUS COMPONENTES. Ministério do Meio Ambiente. Available at: https://www.mma.gov.br/images/AcordoSetorial/AcordoSetorial-Eletroeletrônicos.pdf . Accessed 21 september 2022.
Brasil (2020) DECRETO No 10.240, DE 12 DE FEVEREIRO DE 2020 - Regulamenta o inciso VI do caput do art. 33 e o art. 56 da Lei no 12.305, de 2 de agosto de 2010, e complementa o Decreto no 9.177, de 23 de outubro de 2017, quanto à implementação de sistema de logística reversa. Available at: https://www.planalto.gov.br/ccivil&#95;03/&#95;ato2019-2022/2020/decreto/d10240.htm.
Brasil (2021) Fundo Nacional de Desenvolvimento da Educação. Disponível em: https://www.fnde.gov.br/index.php/programas/proinfo/eixos-de-atuacao/tablets . Accessed on 10 October 2022.
Brito CFM, Maciel JM (2022) A Onça e o Dragão: Políticas do Modelo Chinês de Produção na Amazônia. Dados 66:e20210022. https://doi.org/10.1590/dados.2023.66.3.293. (PMID: 10.1590/dados.2023.66.3.293)
Cayumil R, Khanna R, Rajarao R, Mukherjee PS, Sahajwalla V (2016) Concentration of precious metals during their recovery from electronic waste. Waste Manag 57:121–130. https://doi.org/10.1016/j.wasman.2015.12.004. (PMID: 10.1016/j.wasman.2015.12.004)
Cesaro A, Marra A, Kuchta K, Belgıorno V, Van Hullebusch ED (2018) WEEE management in a circular economy perspective: An overview. Glob Nest J 20:743–750. https://doi.org/10.30955/GNJ.002623. (PMID: 10.30955/GNJ.002623)
CETIC (2021) TIC Domicílios 2021: Pesquisa sobre o uso das tecnologias de informação e comunicação nos domicílios brasileiros. Available at: https://cetic.br/pt/pesquisa/domicilios/ . Accessed on 10 October 2022.
Chen L, He J, Zhu L, Yao Q, Sun Y, Guo C, Chen H, Yang B (2023) Efficient recovery of valuable metals from waste printed circuit boards via ultrasound-enhanced flotation. Process Saf Environ Prot 169:869–878. https://doi.org/10.1016/j.psep.2022.11.046. (PMID: 10.1016/j.psep.2022.11.046)
Chi X, Streicher-Porte M, Wang MYL, Reuter MA (2011) Informal electronic waste recycling: A sector review with special focus on China. Waste Manag 31:731–742. https://doi.org/10.1016/j.wasman.2010.11.006. (PMID: 10.1016/j.wasman.2010.11.006)
Cucchiella F, D’Adamo I, Lenny Koh SC, Rosa P (2015) Recycling of WEEEs: an economic assessment of present and future e-waste streams. Renew Sust Energy Rev 51:263–272. https://doi.org/10.1016/j.rser.2015.06.010.
Cucchiella F, D’Adamo I, Lenny Koh SC, Rosa P (2016) A profitability assessment of European recycling processes treating printed circuit boards from waste electrical and electronic equipments. Renew Sustain Energy Rev 64:749–760. https://doi.org/10.1016/j.rser.2016.06.057. (PMID: 10.1016/j.rser.2016.06.057)
de Oliveira CR, Bernardes AM, Gerbase AE (2012) Collection and recycling of electronic scrap: A worldwide overview and comparison with the Brazilian situation. Waste Manag 32:1592–1610. https://doi.org/10.1016/j.wasman.2012.04.003. (PMID: 10.1016/j.wasman.2012.04.003)
de Oliveira Neto JF, Silva MM, Florencio L, Miranda R, Santos SM (2021) Quantification and characterization of waste electrical and electronic equipment disposal: a case study from BRAZIL. Environ Eng Manag J 20(9):1555–1567. https://doi.org/10.30638/eemj.2021.144.
Demajorovic J, Augusto EEF, Souza MTS (2016) Reverse Logistics of E-Waste in Developing Countries: Challenges and Prospects for the Brazilian Model. Ambient Soc 19:117–136. https://doi.org/10.1590/1809-4422ASOC141545V1922016. (PMID: 10.1590/1809-4422ASOC141545V1922016)
Dias P, Machado A, Huda N, Bernardes AM (2018) Waste electric and electronic equipment (WEEE) management: A study on the Brazilian recycling routes. J Clean Prod 174:7–16. https://doi.org/10.1016/j.jclepro.2017.10.219. (PMID: 10.1016/j.jclepro.2017.10.219)
Duan H, Hou K, Li J, Zhu X (2011) Examining the technology acceptance for dismantling of waste printed circuit boards in light of recycling and environmental concerns. J Environ Manag 92:392–399. https://doi.org/10.1016/j.jenvman.2010.10.057. (PMID: 10.1016/j.jenvman.2010.10.057)
Eletros (2021) O setor eletroeletrônico e o 2ª semestre. Available at: https://eletros.org.br/conectados-6a-edicao-2021/ . Accessed on 15 October 2022.
Eletros (2022) Alta do dólar produção dos eletrodomésticos e eletrônicos no país. Available at: https://eletros.org.br/alta-do-dolar-producao-dos-eletrodomesticos-e-eletronicos-no-pais/ . Accessed on 06 December 2022.
Estrada-Ruiz RH, Flores-Campos R, Gámez-Altamirano HA, Velarde-Sánchez EJ (2016) Separation of the metallic and non-metallic fraction from printed circuit boards employing green technology. J Hazard Mater 311:91–99. https://doi.org/10.1016/j.jhazmat.2016.02.061. (PMID: 10.1016/j.jhazmat.2016.02.061)
EU (2012) Directive 2012/19/EU on waste electrical and electronic equipment. European Parliament and of the Council. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32012L0019.
Forti V, Baldé CP, Kuehr R (2018) E-waste Statistics: Guidelines on Classifcations, Reporting and Indicators, second edition. United Nations University, ViE – SCYCLE, Bonn, Germany. Available at: https://ewastemonitor.info/monitors/.
Forti V, Baldé CP, Kuehr R, Be G (2020) The Global E-waste Monitor 2020 - Quantities, flows, and circular economy potencial. United Nations University (UNU)/United Nations Institute for Training and Research (UNITAR) – co-hosted SCYCLE Programme, International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn/Geneva/Rotterdam. Available at: https://ewastemonitor.info/monitors/.
Franco RGF, Lange LC (2011) Estimativa fluxo REEE em BH. Eng Sanit e Ambient 16:73–82. https://doi.org/10.1590/S1413-41522011000100011. (PMID: 10.1590/S1413-41522011000100011)
GFK (2019) Crescimento deverá ser de apenas 4% em relação ao ano passado. Available at: https://www.gfk.com/press/black-friday-devera-ser-morna-este-ano . Accessed on 15 October 2022.
Ghosh B, Ghosh MK, Parhi P, Mukherjee PS, Mishra BK (2015) Waste Printed Circuit Boards recycling: an extensive assessment of current status. J Clean Prod 94:5–19. https://doi.org/10.1016/j.jclepro.2015.02.024. (PMID: 10.1016/j.jclepro.2015.02.024)
Golev A, Schmeda-Lopez DR, Smart SK, Corder GD, McFarland EW (2016) Where next on e-waste in Australia? Waste Manag 58:348–358. https://doi.org/10.1016/j.wasman.2016.09.025. (PMID: 10.1016/j.wasman.2016.09.025)
Grimes S, Donaldson J, Gomez GC (2008) Report on the environmental benefits of recycling. Commissioned by the Bureau of International Recycling. Available at: https://www.mgg-recycling.com/wp-content/uploads/2013/06/BIR&#95;CO2&#95;report.pdf.
Guo S, He J, Zhu L, Chen H, Zhou K, Xu J, Chen Z (2022) Recovery of metallic copper from waste printed circuit boards via H3NO3S-NaCl-H2O2 leaching system. J Clean Prod 357:131732. https://doi.org/10.1016/j.jclepro.2022.131732. (PMID: 10.1016/j.jclepro.2022.131732)
Hadi P, Gao P, Barford JP, McKay G (2013) Novel application of the nonmetallic fraction of the recycled printed circuit boards as a toxic heavy metal adsorbent. J Hazard Mater 252–253:166–170. https://doi.org/10.1016/j.jhazmat.2013.02.037. (PMID: 10.1016/j.jhazmat.2013.02.037)
Hadi P, Xu M, Lin CSK, Hui C-W, McKay G (2015) Waste printed circuit board recycling techniques and product utilization. J Hazard Mater 283:234–243. https://doi.org/10.1016/j.jhazmat.2014.09.032. (PMID: 10.1016/j.jhazmat.2014.09.032)
Hao J, Wang Y, Wu Y, Guo F (2020) Metal recovery from waste printed circuit boards: A review for current status and perspectives. Resour Conserv Recycl 157:104787. https://doi.org/10.1016/j.resconrec.2020.104787. (PMID: 10.1016/j.resconrec.2020.104787)
IBGE (2020) Acesso à Internet e à televisão e posse de telefone móvel celular para uso pessoal 2019. Available at: https://biblioteca.ibge.gov.br/biblioteca-catalogo.html . Accessed on 10 October 2022.
Ikhlayel M (2016) Differences of methods to estimate generation of waste electrical and electronic equipment for developing countries: Jordan as a case study. Resour Conserv Recycl 108:134–139. https://doi.org/10.1016/j.resconrec.2016.01.015. (PMID: 10.1016/j.resconrec.2016.01.015)
Ilankoon IMSK, Ghorbani Y, Chong MN, Herath G, Moyo T, Petersen J (2018) E-waste in the international context – A review of trade flows, regulations, hazards, waste management strategies and technologies for value recovery. Waste Manag 82:258–275. https://doi.org/10.1016/j.wasman.2018.10.018. (PMID: 10.1016/j.wasman.2018.10.018)
IPC (2023) Promoting silicon to systems manufacturing an IPC report on eu industrial policy. Available at: https://emails.ipc.org/links/IPC-Promoting-Silicon-Systems-Manufacturing.pdf . Accessed on 06 May 2024.
Isildar A, Rene ER, van Hullebusch ED, Lens PNL (2018) Electronic waste as a secondary source of critical metals: Management and recovery technologies. Resour Conserv Recycl 135:296–312. https://doi.org/10.1016/j.resconrec.2017.07.031. (PMID: 10.1016/j.resconrec.2017.07.031)
Islam A, Ahmed T, Awual MR, Rahman A, Sultana M, Aziz AA, Monir MU, Teo SH, Hasan M (2020) Advances in sustainable approaches to recover metals from e-waste-A review. J Clean Prod 244:118815. https://doi.org/10.1016/j.jclepro.2019.118815. (PMID: 10.1016/j.jclepro.2019.118815)
Islam MT, Huda N (2019) E-waste in Australia: Generation estimation and untapped material recovery and revenue potential. J Clean Prod 237. https://doi.org/10.1016/j.jclepro.2019.117787.
Kasper AC, Berselli GBT, Freitas BD, Tenório JAS, Bernardes AM, Veit HM (2011) Printed wiring boards for mobile phones: Characterization and recycling of copper. Waste Manag 31:2536–2545. https://doi.org/10.1016/j.wasman.2011.08.013. (PMID: 10.1016/j.wasman.2011.08.013)
Kaya M (2016) Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes. Waste Manag 57:64–90. https://doi.org/10.1016/j.wasman.2016.08.004. (PMID: 10.1016/j.wasman.2016.08.004)
Kaya M (2019) Electronic waste and printed circuit board recycling technologies. Chapter 2: Printed Circuit Boards (PCBs). Springer, Berlin. (PMID: 10.1007/978-3-030-26593-9)
Koehler A, Snyder R, Ord K (2001) Forecasting Models and Prediction Intervals for the Multiplicative Holt-Winters Method. Int J Forecast 17(2):269–286. (PMID: 10.1016/S0169-2070(01)00081-4)
Kumar A, Holuszko M, Espinosa DCR (2017) E-waste: An overview on generation, collection, legislation and recycling practices. Resour Conserv Recycl 122:32–42. https://doi.org/10.1016/j.resconrec.2017.01.018. (PMID: 10.1016/j.resconrec.2017.01.018)
Lau WK-Y, Chung S-S, Zhang C (2013) A material flow analysis on current electrical and electronic waste disposal from Hong Kong households. Waste Manag 33:714–721. https://doi.org/10.1016/j.wasman.2012.09.007. (PMID: 10.1016/j.wasman.2012.09.007)
Li B, Yang J, Lu B, Song X (2015) Estimation of retired mobile phones generation in China: a comparative study on methodology. Waste Manag 35:247–254. https://doi.org/10.1016/j.wasman.2014.09.008. (PMID: 10.1016/j.wasman.2014.09.008)
Lopes dos Santos K (2021) The recycling of e-waste in the Industrialised Global South: the case of Sao Paulo Macrometropolis. Int J Urban Sustain Dev 13:56–69. https://doi.org/10.1080/19463138.2020.1790373. (PMID: 10.1080/19463138.2020.1790373)
Makridakis S, WheelWright S, Hyndman R (1998) Forecasting Methods and Applications, 3rd edn. John Wiley & Sons, New York.
Meirelles FDS (2021) Uso da TI-Tecnologia de Informação nas Empresas. Pesquisa Anual do FGVcia. FGV-EAESP: Centro de Tecnologia de Informação Aplicada. Available at: https://eaesp.fgv.br/sites/eaesp.fgv.br/files/u68/fgvcia2021pesti-relatorio.pdf . Accessed on 06 December 2022.
Neto JC, Silva MM, Santos SM (2016) A time series model for estimating the generation of lead acid battery scrap. Clean Technol Environ Policy 18:1931–1943. https://doi.org/10.1007/s10098-016-1121-3. (PMID: 10.1007/s10098-016-1121-3)
NIC (2022) Computador, notebook, tablet ou smartphone: qual dispositivo é mais funcional?. Available at: https://www.nic.br/noticia/na-midia/computador-notebook-tablet-ou-smartphone-qual-dispositivo-e-mais-funcional/ . Accessed on 06 December 2022.
Ogunseitan OA, Schoenung JM, Lincoln J, Nguyen BH, Strauss K, Frost K, Schwartz E, He H, Ibrahim M (2022) Biobased materials for sustainable printed circuit boards. Nat Rev Mater 7(10):749–750. https://doi.org/10.1038/s41578-022-00485-2.
Oliveira Neto GC, de Jesus Cardoso Correia A, Schroeder AM (2017) Economic and environmental assessment of recycling and reuse of electronic waste: Multiple case studies in Brazil and Switzerland. Resour Conserv Recycl 127:42–55. https://doi.org/10.1016/j.resconrec.2017.08.011. (PMID: 10.1016/j.resconrec.2017.08.011)
Oliveira Neto JF, Silva MM, Machado Santos S (2019) A Mini-Review of E-Waste Management in Brazil: Perspectives and Challenges. Clean Soil Air Water 47:1–10. https://doi.org/10.1002/clen.201900152. (PMID: 10.1002/clen.201900152)
Parajuly K, Habib K, Liu G (2017) Waste electrical and electronic equipment (WEEE) in Denmark: Flows, quantities and management. Resour Conserv Recycl 123:85–92. https://doi.org/10.1016/j.resconrec.2016.08.004. (PMID: 10.1016/j.resconrec.2016.08.004)
Ping Z, Liu X, Tao Q, Ma Y, Wang Y, Li Z, Wang J, Cao Z, Hao Y, Qian G (2019) Mechanism of Dissolving Tin Solders from Waste Printed Circuit Board Assemblies by Cyclic Fluoboric Acid Composite System. Environ Eng Sci 36:903–911. https://doi.org/10.1089/ees.2018.0308. (PMID: 10.1089/ees.2018.0308)
Rankin WJ (2011) Minerals, metals and sustainability: meeting future material needs, 1st edn. CSIRO publishing, Clayton South (Australia). https://doi.org/10.1071/9780643097278.
Robinson BH (2009) E-waste: An assessment of global production and environmental impacts. Sci Total Environ 408:183–191. https://doi.org/10.1016/j.scitotenv.2009.09.044. (PMID: 10.1016/j.scitotenv.2009.09.044)
Rodrigues AC, Gunther WMR, Boscov MEG (2015) Estimativa da geração de resíduos de equipamentos elétricos e eletrônicos de origem domiciliar: proposição de método e aplicação ao município de São Paulo, São Paulo, Brasil. Eng Sanit e Ambient 20:437–447. https://doi.org/10.1590/s1413-41522015020000133701. (PMID: 10.1590/s1413-41522015020000133701)
Satyro WC, Sacomano JB, Contador JC, Telles R (2018) Planned obsolescence or planned resource depletion? A sustainable approach. J Clean Prod 195:744–752. https://doi.org/10.1016/j.jclepro.2018.05.222. (PMID: 10.1016/j.jclepro.2018.05.222)
Sethurajan M, van Hullebusch ED, Fontana D, Akcil A, Deveci H, Batinic B, Leal JP, Gasche TA, Ali Kucuker M, Kuchta K, Neto IFF, Soares HMVM, Chmielarz A (2019) Recent advances on hydrometallurgical recovery of critical and precious elements from end-of-life electronic wastes - a review. Crit Rev Environ Sci Technol 49:212–275. https://doi.org/10.1080/10643389.2018.1540760. (PMID: 10.1080/10643389.2018.1540760)
Shi S-X, Jiang S-Q, Nie C-C, Li B, Chang H-H, Zhu X-N (2022) Innovative method for removing bromine in waste printed circuit boards: Ultrafine milling and porous media loaded debromination agent. Adv Powder Technol 33:103662. https://doi.org/10.1016/j.apt.2022.103662. (PMID: 10.1016/j.apt.2022.103662)
Souza RG, Clímaco JCN, Santanna AP, Rocha TB, do Bastos Valle RdeA, Quelhas OLG (2016) Sustainability assessment and prioritisation of e-waste management options in Brazil. Waste Manag 57:46–56. https://doi.org/10.1016/j.wasman.2016.01.034. (PMID: 10.1016/j.wasman.2016.01.034)
Souza RG (2020) E-waste situation and current practices in Brazil. In: Handbook of Electronic Waste Management. Elsevier, pp 377–396. https://doi.org/10.1016/B978-0-12-817030-4.00009-7.
Sthiannopkao S, Wong MH (2013) Handling e-waste in developed and developing countries: Initiatives, practices, and consequences. Sci Total Environ 463–464:1147–1153. https://doi.org/10.1016/j.scitotenv.2012.06.088. (PMID: 10.1016/j.scitotenv.2012.06.088)
Tran HP, Schaubroeck T, Nguyen DQ, Ha VH, Huynh TH, Dewulf J (2018) Material flow analysis for management of waste TVs from households in urban areas of Vietnam. Resour Conserv Recycl 139:78–89. https://doi.org/10.1016/j.resconrec.2018.07.031. (PMID: 10.1016/j.resconrec.2018.07.031)
Wagner M, Balde CP, Luda di Cortemiglia V, Nnorom I, Kuehr R, Iattoni G (2022) Regional e-waste monitor for latin America: results for the 13 countries participating in project UNIDO-GEF 5554. Available at: https://ewastemonitor.info/monitors/.
Wang R, Xu Z (2014) Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): A review. Waste Manag 34:1455–1469. https://doi.org/10.1016/j.wasman.2014.03.004. (PMID: 10.1016/j.wasman.2014.03.004)
Wang F, Huisman J, Stevels A, Baldé CP (2013) Enhancing e-waste estimates: Improving data quality by multivariate Input-Output Analysis. Waste Manag 33:2397–2407. https://doi.org/10.1016/j.wasman.2013.07.005. (PMID: 10.1016/j.wasman.2013.07.005)
Wang M, You X, Li X, Liu G (2018) Watch more, waste more? A stock-driven dynamic material flow analysis of metals and plastics in TV sets in China. J Clean Prod 187:730–739. https://doi.org/10.1016/j.jclepro.2018.03.243. (PMID: 10.1016/j.jclepro.2018.03.243)
Wu Z, Yuan W, Li J, Wang X, Liu L, Wang J (2017) A critical review on the recycling of copper and precious metals from waste printed circuit boards using hydrometallurgy. Front Environ Sci Eng 11:8. https://doi.org/10.1007/s11783-017-0995-6. (PMID: 10.1007/s11783-017-0995-6)
Yamamoto H, Murakami S (2022) Which consumer psychological factors influence the lifetime of consumer electronic products? A case study of personal computers in Japan. Waste Manag 144:233–245. https://doi.org/10.1016/j.wasman.2022.03.030. (PMID: 10.1016/j.wasman.2022.03.030)
Yao Y, He J, Yang B, Zhao Y, Zhu L (2023) Study on particle characteristics and metal distribution of waste printed circuit boards based on a shear crusher. Powder Technol 415:118103. https://doi.org/10.1016/j.powtec.2022.118103. (PMID: 10.1016/j.powtec.2022.118103)
Yousef S, Tatariants M, Bendikiene R, Kriūkienė R, Denafas G (2020) A new industrial technology for closing the loop of full-size waste motherboards using chemical-ultrasonic-mechanical treatment. Process Saf Environ Prot 140:367–379. https://doi.org/10.1016/j.psep.2020.04.002. (PMID: 10.1016/j.psep.2020.04.002)
Zeng X, Gong R, Chen W-Q, Li J (2016) Uncovering the Recycling Potential of “new” WEEE in China. Environ Sci Technol 50:1347–1358. https://doi.org/10.1021/acs.est.5b05446. (PMID: 10.1021/acs.est.5b05446)
Zeng X, Mathews JAJA, Li J (2018) Urban Mining of E-Waste is Becoming More Cost-Effective Than Virgin Mining. Environ Sci Technol 52:4835–4841. https://doi.org/10.1021/acs.est.7b04909. (PMID: 10.1021/acs.est.7b04909)
Zeng X, Xiao T, Xu G, Albalghiti E, Shan G, Li J (2022) Comparing the costs and benefits of virgin and urban mining. J Manag Sci Eng 7:98–106. https://doi.org/10.1016/j.jmse.2021.05.002. (PMID: 10.1016/j.jmse.2021.05.002)
فهرسة مساهمة: Keywords: Circular economy; Material flow analysis; Urban mining; WEEE
المشرفين على المادة: 0 (Metals)
تواريخ الأحداث: Date Created: 20240809 Date Completed: 20240905 Latest Revision: 20240919
رمز التحديث: 20240919
DOI: 10.1007/s11356-024-34515-z
PMID: 39120816
قاعدة البيانات: MEDLINE
الوصف
تدمد:1614-7499
DOI:10.1007/s11356-024-34515-z