دورية أكاديمية

Irisin promotes hair growth and hair cycle transition by activating the GSK-3β/β-catenin pathway.

التفاصيل البيبلوغرافية
العنوان: Irisin promotes hair growth and hair cycle transition by activating the GSK-3β/β-catenin pathway.
المؤلفون: Kim Y; Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea., Lee JM; Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea.; Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea., Jang YN; Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea., Park AY; Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea., Kim SY; Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea.; Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea., Kim BJ; Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea.; Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea., Lee JO; Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea.
المصدر: Experimental dermatology [Exp Dermatol] 2024 Aug; Vol. 33 (8), pp. e15155.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Munksgaard Country of Publication: Denmark NLM ID: 9301549 Publication Model: Print Cited Medium: Internet ISSN: 1600-0625 (Electronic) Linking ISSN: 09066705 NLM ISO Abbreviation: Exp Dermatol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Copenhagen : Munksgaard, c1992-
مواضيع طبية MeSH: Fibronectins*/metabolism , Glycogen Synthase Kinase 3 beta*/metabolism , Wnt Signaling Pathway* , Hair*/growth & development , beta Catenin*/metabolism , Hair Follicle*/growth & development , Hair Follicle*/metabolism , Mice, Inbred C57BL*, Animals ; Humans ; Mice ; Lymphoid Enhancer-Binding Factor 1/metabolism ; Cell Proliferation ; Wnt-5a Protein/metabolism ; Wnt Proteins/metabolism ; Male ; Female ; Proto-Oncogene Proteins
مستخلص: Hair loss affects men and women of all ages. Myokines, which are mainly secreted by skeletal muscles during exercise, have numerous health benefits. VEGF, IGF-1, FGF and irisin are reprehensive myokines. Although VEGF, IGF-1 and FGF are positively associated with hair growth, few studies have researched the effects of irisin on hair growth. Here, we investigated whether irisin promotes hair growth using in vitro, ex vivo and in vivo patch assays, as well as mouse models. We show that irisin increases proliferation, alkaline phosphatase (ALP) activity and mitochondrial membrane potential in human dermal papilla cells (hDPCs). Irisin activated the Wnt/β-catenin signalling pathway, thereby upregulating Wnt5a, Wnt10b and LEF-1, which play an important role in hair growth. Moreover, irisin enhanced human hair shaft elongation. In vivo, patch assays revealed that irisin promotes the generation of new hair follicles, accelerates entry into the anagen phase, and significantly increases hair growth in C57BL/6 mice. However, XAV939, a Wnt/β-catenin signalling inhibitor, suppressed the irisin-mediated increase in hair shaft and hair growth. These results indicate that irisin increases hair growth via the Wnt/β-catenin pathway and highlight its therapeutic potential in hair loss treatment.
(© 2024 The Author(s). Experimental Dermatology published by John Wiley & Sons Ltd.)
References: Davis D, Callender V. Review of quality of life studies in women with alopecia. Int J Women's Dermatol. 2018;4(1):18‐22.
Semalty M, Semalty A, Joshi GP, Rawat MSM. Hair growth and rejuvenation: an overview. J Dermatolog Treat. 2011;22(3):123‐132.
Salim S, Kamalasanan K. Controlled drug delivery for alopecia: a review. J Control Release. 2020;325:84‐99.
Ji S, Zhu Z, Sun X, Fu X. Functional hair follicle regeneration: an updated review. Signal Transduct Target Ther. 2021;6(1):66.
Madaan A, Verma R, Singh AT, Jaggi M. Review of hair follicle dermal papilla cells as in vitro screening model for hair growth. Int J Cosmet Sci. 2018;40(5):429‐450.
Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell. 2001;104(2):233‐245.
Choi BY. Targeting Wnt/β‐catenin pathway for developing therapies for hair loss. Int J Mol Sci. 2020;21(14):4915.
Enshell‐Seijffers D, Lindon C, Kashiwagi M, Morgan BA. β‐Catenin activity in the dermal papilla regulates morphogenesis and regeneration of hair. Dev Cell. 2010;18(4):633‐642.
Moon HY, van Praag H. On the run for hippocampal plasticity. Cold Spring Harb Perspect Med. 2018;8(4):1‐30.
Qi C, Song X, Wang H, Yan Y, Liu B. The role of exercise‐induced myokines in promoting angiogenesis. Front Physiol. 2022;13:981577.
Yano K, Brown LF, Detmar M. Control of hair growth and follicle size by VEGF‐mediated angiogenesis. J Clin Invest. 2001;107(4):409‐417.
Li J, Yang Z, Li Z, Gu L, Wang Y, Sung C. Exogenous IGF‐1 promotes hair growth by stimulating cell proliferation and down regulating TGF‐beta1 in C57BL/6 mice in vivo. Growth Hormon IGF Res. 2014;24(2–3):89‐94. doi:10.1016/j.ghir.2014.03.004.
Lin WH, Xiang LJ, Shi HX, et al. Fibroblast growth factors stimulate hair growth through beta‐catenin and Shh expression in C57BL/6 mice. Biomed Res Int. 2015;2015:730139. doi:10.1155/2015/730139.
Liu X, Zhang P, Zhang X, et al. Fgf21 knockout mice generated using CRISPR/Cas9 reveal genetic alterations that may affect hair growth. Gene. 2020;733:144242.
Perakakis N, Triantafyllou GA, Fernández‐Real JM, et al. Physiology and role of irisin in glucose homeostasis. Nat Rev Endocrinol. 2017;13(6):324‐337.
Mazur‐Bialy AI, Bilski J, Wojcik D, et al. Beneficial effect of voluntary exercise on experimental colitis in mice fed a high‐fat diet: the role of irisin, adiponectin and proinflammatory biomarkers. Nutrients. 2017;9(4):410.
Ma C, Ding H, Deng Y, Liu H, Xiong X, Yang Y. Irisin: a new code uncover the relationship of skeletal muscle and cardiovascular health during exercise. Front Physiol. 2021;12:620608.
Liao Q, Qu S, Tang LX, et al. Irisin exerts a therapeutic effect against myocardial infarction via promoting angiogenesis. Acta Pharmacol Sin. 2019;40(10):1314‐1321. doi:10.1038/s41401-019-0230-z.
Zerlotin R, Oranger A, Pignataro P, et al. Irisin and secondary osteoporosis in humans. Int J Mol Sci. 2022;23:1‐10. doi:10.3390/ijms23020690.
Provatopoulou X, Georgiou GP, Kalogera E, et al. Serum irisin levels are lower in patients with breast cancer: association with disease diagnosis and tumor characteristics. BMC Cancer. 2015;15:898. doi:10.1186/s12885-015-1898-1.
Choi YK, Kang JI, Hyun JW, et al. Myristoleic acid promotes Anagen Signaling by autophagy through activating Wnt/beta‐catenin and ERK pathways in dermal papilla cells. Biomol Ther (Seoul). 2021;29(2):211‐219. doi:10.4062/biomolther.2020.169.
Liu S, Du F, Li X, et al. Effects and underlying mechanisms of irisin on the proliferation and apoptosis of pancreatic β cells. PLoS One. 2017;12(4):e0175498.
Bennett NK, Nguyen MK, Darch MA, et al. Defining the ATPome reveals cross‐optimization of metabolic pathways. Nat Commun. 2020;11(1):4319.
Iida M, Ihara S, Matsuzaki T. Hair cycle‐dependent changes of alkaline phosphatase activity in the mesenchyme and epithelium in mouse vibrissal follicles. Develop Growth Differ. 2007;49(3):185‐195.
Taghiabadi E, Nilforoushzadeh MA, Aghdami N. Maintaining hair inductivity in human dermal papilla cells: a review of effective methods. Skin Pharmacol Physiol. 2020;33(5):280‐292.
Whiting DA. Possible mechanisms of miniaturization during androgenetic alopecia or pattern hair loss. J Am Acad Dermatol. 2001;45(3):S81‐S86.
Park M, Jang S, Chung JH, Kwon O, Jo SJ. Inhibition of class I HDACs preserves hair follicle inductivity in postnatal dermal cells. Sci Rep. 2021;11(1):24056.
Orasan MS, Roman II, Coneac A, Muresan A, Orasan RI. Hair loss and regeneration performed on animal models. Clujul Medical. 2016;89(3):327‐334.
Centner C, Wiegel P, Gollhofer A, König D. Effects of blood flow restriction training on muscular strength and hypertrophy in older individuals: a systematic review and meta‐analysis. Sports Med. 2019;49:95‐108.
Choi J, Jun M, Lee S, Oh S‐S, Lee W‐S. The association between exercise and androgenetic alopecia: a survey‐based study. Ann Dermatol. 2017;29(4):513‐516.
Parker L, McGuckin TA, Leicht AS. Influence of exercise intensity on systemic oxidative stress and antioxidant capacity. Clin Physiol Funct Imaging. 2014;34(5):377‐383.
Hoffmann C, Weigert C. Skeletal muscle as an endocrine organ: the role of myokines in exercise adaptations. Cold Spring Harb Perspect Med. 2017;7(11):a029793.
Arhire LI, Mihalache L, Covasa M. Irisin: a hope in understanding and managing obesity and metabolic syndrome. Front Endocrinol. 2019;10:524.
Zhang Y, Xie C, Wang H, et al. Irisin exerts dual effects on browning and adipogenesis of human white adipocytes. Am J Physiol‐Endocrinol Metab. 2016;311(2):E530‐E541.
Sullivan MA, Forbes JM. Glucose and glycogen in the diabetic kidney: heroes or villains? EBio Med. 2019;47:590‐597.
Vidali S, Knuever J, Lerchner J, et al. Hypothalamic–pituitary–thyroid axis hormones stimulate mitochondrial function and biogenesis in human hair follicles. J Invest Dermatol. 2014;134(1):33‐42.
Williams R, Philpott MP, Kealey T. Metabolism of freshly isolated human hair follicles capable of hair elongation: a glutaminolytic, aerobic glycolytic tissue. J Invest Dermatol. 1993;100(6):834‐840.
Li F, Liu H, Wu X, et al. Copper modulates mitochondrial oxidative phosphorylation to enhance dermal papilla cells proliferation in rex rabbits. Int J Mol Sci. 2022;23(11):6209.
Boström P, Wu J, Jedrychowski MP, et al. A PGC1‐α‐dependent myokine that drives brown‐fat‐like development of white fat and thermogenesis. Nature. 2012;481(7382):463‐468.
Scarpulla RC. Metabolic control of mitochondrial biogenesis through the PGC‐1 family regulatory network. Biochim Biophys Acta. 2011;1813(7):1269‐1278.
Mao M‐Q, Jing J, Miao Y‐J, Lv Z‐F. Epithelial‐mesenchymal interaction in hair regeneration and skin wound healing. Front Med. 2022;9:863786.
Li W, Man X‐Y, Li C‐M, et al. VEGF induces proliferation of human hair follicle dermal papilla cells through VEGFR‐2‐mediated activation of ERK. Exp Cell Res. 2012;318(14):1633‐1640.
Houschyar KS, Borrelli MR, Tapking C, et al. Molecular mechanisms of hair growth and regeneration: current understanding and novel paradigms. Dermatology. 2020;236(4):271‐280.
Korta P, Pocheć E, Mazur‐Biały A. Irisin as a multifunctional protein: implications for health and certain diseases. Medicina. 2019;55(8):485.
Kim H, Wrann CD, Jedrychowski M, et al. Irisin mediates effects on bone and fat via αV integrin receptors. Cell. 2018;175(7):1756‐1768.
معلومات مُعتمدة: National Research Foundation of Korea (NRF)
فهرسة مساهمة: Keywords: Irisin; Wnt/β‐catenin; hair loss; human dermal papilla cells; myokine
المشرفين على المادة: 0 (Fibronectins)
0 (FNDC5 protein, human)
EC 2.7.11.1 (Glycogen Synthase Kinase 3 beta)
0 (beta Catenin)
0 (Lymphoid Enhancer-Binding Factor 1)
0 (WNT10B protein, human)
0 (Wnt-5a Protein)
0 (LEF1 protein, human)
0 (Wnt Proteins)
0 (FNDC5 protein, mouse)
0 (Wnt10b protein, mouse)
EC 2.7.11.1 (GSK3B protein, human)
0 (CTNNB1 protein, human)
0 (Proto-Oncogene Proteins)
تواريخ الأحداث: Date Created: 20240812 Date Completed: 20240812 Latest Revision: 20240812
رمز التحديث: 20240813
DOI: 10.1111/exd.15155
PMID: 39133009
قاعدة البيانات: MEDLINE
الوصف
تدمد:1600-0625
DOI:10.1111/exd.15155