دورية أكاديمية

Direct Exfoliation of Nanoribbons from Bulk van der Waals Crystals.

التفاصيل البيبلوغرافية
العنوان: Direct Exfoliation of Nanoribbons from Bulk van der Waals Crystals.
المؤلفون: Saunders AP; Department of Chemistry, 337 Campus Drive, Stanford, CA, 94305, USA., Chen V; Department of Electrical Engineering, 476 Lomita Mall, Suite 102, Stanford, CA, 94305, USA., Wang J; Department of Applied Physics, 348 Via Pueblo Mall, Stanford, CA, 94305, USA.; SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA., Li Q; Department of Applied Physics, 348 Via Pueblo Mall, Stanford, CA, 94305, USA.; SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA., Johnson AC; Department of Materials Science and Engineering, Stanford, CA, 94305, USA., McKeown-Green AS; Department of Chemistry, 337 Campus Drive, Stanford, CA, 94305, USA., Zeng HJ; Department of Chemistry, 337 Campus Drive, Stanford, CA, 94305, USA., Mac TK; Department of Chemistry and Biochemistry, Utah State University, Logan, UT, 84322, USA., Trinh MT; Department of Chemistry and Biochemistry, Utah State University, Logan, UT, 84322, USA., Heinz TF; Department of Applied Physics, 348 Via Pueblo Mall, Stanford, CA, 94305, USA.; SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA., Pop E; Department of Electrical Engineering, 476 Lomita Mall, Suite 102, Stanford, CA, 94305, USA.; Department of Applied Physics, 348 Via Pueblo Mall, Stanford, CA, 94305, USA.; SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.; Department of Materials Science and Engineering, Stanford, CA, 94305, USA.; Precourt Institue for Energy, Stanford University, Stanford, CA, 94305, United States., Liu F; Department of Chemistry, 337 Campus Drive, Stanford, CA, 94305, USA.
المصدر: Small (Weinheim an der Bergstrasse, Germany) [Small] 2024 Aug 14, pp. e2403504. Date of Electronic Publication: 2024 Aug 14.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 101235338 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1613-6829 (Electronic) Linking ISSN: 16136810 NLM ISO Abbreviation: Small Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Weinheim, Germany : Wiley-VCH, c2005-
مستخلص: Confinement of monolayers into quasi-1D atomically thin nanoribbons could lead to novel quantum phenomena beyond those achieved in their bulk and monolayer counterparts. However, current experimental availability of nanoribbon species beyond graphene is limited to bottom-up synthesis or lithographic patterning. In this study, a versatile and direct approach is introduced to exfoliate bulk van der Waals crystals as nanoribbons. Akin to the Scotch tape exfoliation method for producing monolayers, this technique provides convenient access to a wide range of nanoribbons derived from their corresponding bulk crystals, including MoS 2 , WS 2 , MoSe 2 , WSe 2 , MoTe 2 , WTe 2 , ReS 2 , and hBN. The nanoribbons are predominantly monolayer, single-crystalline, parallel-aligned, flat, and exhibit high aspect ratios. The role of confinement, strain, and edge configuration of these nanoribbons is observed in their electrical, magnetic, and optical properties. This versatile exfoliation technique provides a universal route for producing a variety of nanoribbon materials and supports the study of their fundamental properties and potential applications.
(© 2024 Wiley‐VCH GmbH.)
References: K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
A. P. Alivisatos, Science 1996, 271, 933.
Y. Li, Z. Zhou, S. Zhang, Z. Chen, J. Am. Chem. Soc. 2008, 130, 16739.
X. Wu, X. Zhang, X. Wang, Z. Zeng, AIP Adv. 2016, 6, 45318.
F. Shayeganfa, A. Ramazani, H. Habibiyan, Sci. Rep. 2024, 14, 1581.
H. Zeng, C. Zhi, Z. Zhang, X. Wei, X. Wang, W. Guo, Y. Bando, D. Golberg, Nano Lett. 2010, 10, 5049.
A. Lopez‐Bezanilla, J. Huang, H. Terrones, B. G. Sumpter, Nano Lett. 2011, 11, 3267.
D. Davelou, G. Kopidakis, E. Kaxiras, I. N. Remediakis, Phys. Rev. B 2017, 96, 165436.
H. Zhang, X.‐B. Li, L.‐M. Liu, J. Appl. Phys. 2013, 114, 093710.
D. Kotekar‐Patil, J. Deng, S. L. Wong, C. S. Lau, K. E. J. Goh, Appl. Phys. Lett. 2019, 114, 13508.
H. Liu, J. Gu, P. D. Ye, IEEE Electron Device Lett. 2012, 33, 1273.
Y. Deng, C. Zhu, Y. Wang, X. Wang, X. Zhao, Y. Wu, B. Tang, R. Duan, K. Zhou, Z. Liu, Mater. Today 2022, 58, 8.
S. Chen, S. Kim, W. Chen, J. Yuan, R. Bashir, J. Lou, A. M. van der Zande, W. P. King, Nano Lett. 2019, 19, 2092.
J. Wu, H. Zhao, Y. Li, D. Ohlberg, W. Shi, W. Wu, H. Wang, P. Tan, Adv. Opt. Mater. 2016, 4, 756.
D. S. Fox, Y. Zhou, P. Maguire, A. Oneill, C. Ócoileaín, R. Gatensby, A. M. Glushenkov, T. Tao, G. S. Duesberg, I. V. Shvets, M. Abid, M. Abid, H. C. Wu, Y. Chen, J. N. Coleman, J. F. Donegan, H. Zhang, Nano Lett. 2015, 15, 5307.
M. C. Watts, L. Picco, F. S. Russell‐Pavier, P. L. Cullen, T. S. Miller, S. P. Bartuś, O. D. Payton, N. T. Skipper, V. Tileli, C. A. Howard, Nature 2019, 568, 216.
Z. Wang, X. Zhang, J. A. Hachtel, A. Apte, C. S. Tiwary, R. Vajtai, J. C. Idrobo, R. Ozturk, P. Ajayan, Nanoscale Horiz. 2019, 4, 689.
Y. Chen, P. Cui, X. Ren, C. Zhang, C. Jin, Z. Zhang, C.‐K. Shih, Nat. Commun. 2017, 8, 15135.
S. M. Poh, S. J. R. Tan, X. Zhao, Z. Chen, I. Abdelwahab, D. Fu, H. Xu, Y. Bao, W. Zhou, K. P. Loh, Adv. Mater. 2017, 29, 1605641.
Z. Wang, H. Li, Z. Liu, Z. Shi, J. Lu, K. Suenaga, S. K. Joung, T. Okazaki, Z. Gu, J. Zhou, Z. Gao, G. Li, S. Sanvito, E. Wang, S. Iijima, J. Am. Chem. Soc. 2010, 132, 13840.
T. Chowdhury, J. Kim, E. C. Sadler, C. Li, S. W. Lee, K. Jo, W. Xu, D. H. Gracias, N. V. Drichko, D. Jariwala, T. H. Brintlinger, T. Mueller, H.‐G. Park, T. J. Kempa, Nat. Nanotechnol. 2020, 15, 29.
E. C. Sadler, T. Chowdhury, R. Dziobek‐Garrett, C. Li, O. Ambrozaite, T. Mueller, T. J. Kempa, ACS Appl. Nano Mater. 2022, 5, 11423.
A. Aljarb, J.‐H. Fu, C.‐C. Hsu, C.‐P. Chuu, Y. Wan, M. Hakami, D. R. Naphade, E. Yengel, C.‐J. Lee, S. Brems, T.‐A. Chen, M.‐Y. Li, S.‐H. Bae, W.‐T. Hsu, Z. Cao, R. Albaridy, S. Lopatin, W.‐H. Chang, T. D. Anthopoulos, J. Kim, L.‐J. Li, V. Tung, Nat. Mater. 2020, 19, 1300.
P. Yang, D. Wang, X. Zhao, W. Quan, Q. Jiang, X. Li, B. Tang, J. Hu, L. Zhu, S. Pan, Y. Shi, Y. Huan, F. Cui, S. Qiao, Q. Chen, Z. Liu, X. Zou, Y. Zhang, Nat. Commun. 2022, 13, 3238.
F. Cheng, H. Xu, W. Xu, P. Zhou, J. Martin, K. P. Loh, Nano Lett. 2017, 17, 1116.
S. Li, Y. C. Lin, W. Zhao, J. Wu, Z. Wang, Z. Hu, Y. Shen, D. M. Tang, J. Wang, Q. Zhang, H. Zhu, L. Chu, W. Zhao, C. Liu, Z. Sun, T. Taniguchi, M. Osada, W. Chen, Q. H. Xu, A. T. S. Wee, K. Suenaga, F. Ding, G. Eda, Nat. Mater. 2018, 17, 535.
P. Walker, W. H. Tarn, CRC Handbook of Metal Etchants, CRC Press LLC, Boca Raton, Florida, 1991.
F. Liu, W. Wu, Y. Bai, S. H. Chae, Q. Li, J. Wang, J. Hone, X.‐Y. Zhu, Science 2020, 367, 903.
S. B. Desai, S. R. Madhvapathy, M. Amani, D. Kiriya, M. Hettick, M. Tosun, Y. Zhou, M. Dubey, J. W. Ager, D. Chrzan, A. Javey, Adv. Mater. 2016, 28, 4053.
M. Velický, G. E. Donnelly, W. R. Hendren, S. McFarland, D. Scullion, W. J. I. DeBenedetti, G. C. Correa, Y. Han, A. J. Wain, M. A. Hines, D. A. Muller, K. S. Novoselov, H. D. Abruña, R. M. Bowman, E. J. G. Santos, F. Huang, ACS Nano 2018, 12, 10463.
Y. Huang, Y.‐H. Pan, R. Yang, L.‐H. Bao, L. Meng, H.‐L. Luo, Y.‐Q. Cai, G.‐D. Liu, W.‐J. Zhao, Z. Zhou, L.‐M. Wu, Z.‐L. Zhu, M. Huang, L.‐W. Liu, L. Liu, P. Cheng, K.‐H. Wu, S.‐B. Tian, C.‐Z. Gu, Y.‐G. Shi, Y.‐F. Guo, Z. G. Cheng, J.‐P. Hu, L. Zhao, G.‐H. Yang, E. Sutter, P. Sutter, Y.‐L. Wang, W. Ji, X.‐J. Zhou, et al., Nat. Commun. 2020, 11, 2453.
R. Canton‐Vitoria, T. Hotta, M. Xue, S. Zhang, R. Kitaura, JACS Au 2022, 3, 775.
T. P. Darlington, C. Carmesin, M. Florian, E. Yanev, O. Ajayi, J. Ardelean, D. A. Rhodes, A. Ghiotto, A. Krayev, K. Watanabe, T. Taniguchi, J. W. Kysar, A. N. Pasupathy, J. C. Hone, F. Jahnke, N. J. Borys, P. J. Schuck, Nat. Nanotechnol. 2020, 15, 854.
A. M. Dadgar, D. Scullion, K. Kang, D. Esposito, E. H. Yang, I. P. Herman, M. A. Pimenta, E. J. G. Santos, A. N. Pasupathy, Chem. Mater. 2018, 30, 5148.
W. Fu, M. John, T. D. Maddumapatabandi, F. Bussolotti, Y. S. Yau, M. Lin, K. E. Johnson Goh, ACS Nano 2023, 17, 16348.
A. Ibarra, J. F. Fuentealba, J. Bico, B. Roman, F. Melo, Phys. Rev. Mater. 2021, 5, 25601.
Y. Martin, H. K. Wickramasinghe, Appl. Phys. Lett. 1987, 50, 1455.
D. Rugar, H. J. Mamin, P. Guethner, S. E. Lambert, J. E. Stern, I. McFadyen, T. Yogi, J. Appl. Phys. 1990, 68, 1169.
U. Hartmann, T. Göddenhenrich, C. Heiden, J. Magn. Magn. Mater. 1991, 101, 263.
T. Thomson, in Metallic Films for Electronic, Optical and Magnetic Applications (Eds.: K. Barmak, K. Coffey), Elsevier, Amsterdam, Netherlands 2014, pp. 454–546.
A. A. Koós, P. Vancsó, M. Szendrö, G. Dobrik, D. Antognini Silva, Z. I. Popov, P. B. Sorokin, L. Henrard, C. Hwang, L. P. Biró, L. Tapasztó, J. Phys. Chem. C 2019, 123, 24855.
N. Gao, Y. Guo, S. Zhou, Y. Bai, J. Zhao, J. Phys. Chem. C 2017, 121, 12261.
Z. Guguchia, A. Kerelsky, D. Edelberg, S. Banerjee, F. von Rohr, D. Scullion, M. Augustin, M. Scully, D. A. Rhodes, Z. Shermadini, H. Luetkens, A. Shengelaya, C. Baines, E. Morenzoni, A. Amato, J. C. Hone, R. Khasanov, S. J. L. Billinge, E. Santos, A. N. Pasupathy, Y. J. Uemura, Sci. Adv. 2018, 4, aat3672.
A. R. Botello‐Méndez, F. López‐Urías, M. Terrones, H. Terrones, Nanotechnology 2009, 20, 325703.
D. Gao, M. Si, J. Li, J. Zhang, Z. Zhang, Z. Yang, D. Xue, Nanoscale Res. Lett. 2013, 8, 129.
X. Mao, Y. Xu, Q. Xue, W. Wang, D. Gao, Nanoscale Res. Lett. 2013, 8, 430.
H. Li, X. Qi, J. Wu, Z. Zeng, J. Wei, H. Zhang, ACS Nano 2013, 7, 2842.
C. H. Lei, A. Das, M. Elliott, J. E. Macdonald, Nanotechnology 2004, 15, 627.
M. Gibertini, N. Marzari, Nano Lett. 2015, 15, 6229.
A. Behnam, A. S. Lyons, M. H. Bae, E. K. Chow, S. Islam, C. M. Neumann, E. Pop, Nano Lett. 2012, 12, 4424.
S. Fathipour, M. Remskar, A. Varlec, A. Ajoy, R. Yan, S. Vishwanath, S. Rouvimov, W. S. Hwang, H. G. Xing, D. Jena, A. Seabaugh, Appl. Phys. Lett. 2015, 106, 022114.
C. J. McClellan, E. Yalon, K. K. H. Smithe, S. V. Suryavanshi, E. Pop, ACS Nano 2021, 15, 1587.
J. Benedict, R. Anderson, S. J. Klepeis, MRS Proc. 1991, 254, 121.
R. Jiang, M. Li, Y. Yao, J. Guan, H. Lu, Front. Mater. Sci. 2019, 13, 107.
B. Huang, G. Clark, E. Navarro‐Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. i. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo‐Herrero, X. Xu, Nature 2017, 546, 270.
K. Sato, Jpn. J. Appl. Phys. 1981, 20, 2403.
C. D. English, G. Shine, V. E. Dorgan, K. C. Saraswat, E. Pop, Nano Lett. 2016, 16, 3824.
Z. Cheng, C.‐S. Pang, P. Wang, S. T. Le, Y. Wu, D. Shahrjerdi, I. Radu, M. C. Lemme, L.‐M. Peng, X. Duan, Z. Chen, J. Appenzeller, S. J. Koester, E. Pop, A. D. Franklin, C. A. Richter, Nat. Electron. 2022, 5, 416.
معلومات مُعتمدة: Stanford University Department of Chemistry; Department of Energy; Office of Basic Energy Sciences; Division of Materials Sciences and Engineering; John Stauffer Graduate Fellowship; Stanford SystemX Alliance and from SUPREME, a Semiconductor Research Corporation (SRC) Center; DGE-2146755 National Science Foundation Graduate Research Fellowship Program; ECCS-2026822 National Science Foundation; GBMF9462 Gordon and Betty Moore Foundation; HR00112390108 Defense Sciences Office, DARPA; N00014-23-1-2567 Office of Naval Research
فهرسة مساهمة: Keywords: 2D materials; doping; exfoliation methods; scanning probe microscopy
تواريخ الأحداث: Date Created: 20240814 Latest Revision: 20240814
رمز التحديث: 20240814
DOI: 10.1002/smll.202403504
PMID: 39140377
قاعدة البيانات: MEDLINE
الوصف
تدمد:1613-6829
DOI:10.1002/smll.202403504