دورية أكاديمية

Controls on authigenic mineralization in experimental Ediacara-style preservation.

التفاصيل البيبلوغرافية
العنوان: Controls on authigenic mineralization in experimental Ediacara-style preservation.
المؤلفون: Slagter S; Department of Earth & Planetary Sciences, Yale University, New Haven, Connecticut, USA.; Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile., Konhauser KO; Department of Earth & Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada., Briggs DEG; Department of Earth & Planetary Sciences, Yale University, New Haven, Connecticut, USA., Tarhan LG; Department of Earth & Planetary Sciences, Yale University, New Haven, Connecticut, USA.
المصدر: Geobiology [Geobiology] 2024 Jul-Aug; Vol. 22 (4), pp. e12615.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 101185472 Publication Model: Print Cited Medium: Internet ISSN: 1472-4669 (Electronic) Linking ISSN: 14724669 NLM ISO Abbreviation: Geobiology Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford, UK : Wiley, 2003-
مواضيع طبية MeSH: Geologic Sediments*/chemistry , Fossils* , Cyanobacteria*/metabolism, Animals ; Invertebrates ; Microalgae ; Seawater/chemistry ; Silicon Dioxide/chemistry ; Ferric Compounds/metabolism
مستخلص: The earliest evidence of complex macroscopic life on Earth is preserved in Ediacaran-aged siliciclastic deposits as three-dimensional casts and molds, known as Ediacara-style preservation. The mechanisms that led to this extraordinary preservation of soft-bodied organisms in fine- to medium-grained sandstones have been extensively debated. Ediacara-style fossilization is recorded in a variety of sedimentary facies characterized by clean quartzose sandstones (as in the eponymous Ediacara Member) as well as less compositionally mature, clay-rich sandstones and heterolithic siliciclastic deposits. To investigate this preservational process, we conducted experiments using different mineral substrates (quartzose sand, kaolinite, and iron oxides), a variety of soft-bodied organisms (microalgae, cyanobacteria, marine invertebrates), and a range of estimates for Ediacaran seawater dissolved silica (DSi) levels (0.5-2.0 mM). These experiments collectively yielded extensive amorphous silica and authigenic clay coatings on the surfaces of organisms and in intergranular pore spaces surrounding organic substrates. This was accompanied by a progressive drawdown of the DSi concentration of the experimental solutions. These results provide evidence that soft tissues can be rapidly preserved by silicate minerals precipitated under variable substrate compositions and a wide range of predicted scenarios for Ediacaran seawater DSi concentrations. These observations suggest plausible mechanisms explaining how interactions between sediments, organic substrates, and seawater DSi played a significant role in the fossilization of the first complex ecosystems on Earth.
(© 2024 John Wiley & Sons Ltd.)
References: Anderson, E. P., Schiffbauer, J. D., & Xiao, S. (2011). Taphonomic study of Ediacaran organic‐walled fossils confirms the importance of clay minerals and pyrite in Burgess Shale‐type preservation. Geology, 39, 643–646.
Anderson, R. P., Tosca, N. J., Cinque, G., Frogley, M. D., Lekkas, I., Akey, A., Hughes, G. M., Bergmann, K. D., Knoll, A. H., & Briggs, D. E. G. (2020). Aluminosilicate haloes preserve complex life approximately 800 million years ago. Interface Focus, 10, 20200011.
Anderson, R. P., Tosca, N. J., Saupe, E. E., Wade, J., & Briggs, D. E. G. (2021). Early formation and taphonomic significance of kaolinite associated with Burgess Shale fossils. Geology, 49, 355–359.
Anderson, R. P., Woltz, C. R., Tosca, N. J., Porter, S. M., & Briggs, D. E. G. (2023). Fossilisation processes and our reading of animal antiquity. Trends in Ecology & Evolution, 38, 1060–1071.
Bartley, J. K. (1996). Actualistic taphonomy of cyanobacteria: Implications for the Precambrian fossil record. Palaios, 11, 571–586.
Bennett, P., & Siegel, D. (1987). Increased solubility of quartz in water due to complexing by organic compounds. Nature, 326, 684–686.
Benning, L. G., Phoenix, V. R., Yee, N., & Tobin, M. J. (2004). Molecular characterization of cyanobacterial silicification using synchrotron infrared micro‐spectroscopy. Geochimica et Cosmochimica Acta, 68, 729–741.
Bobrovskiy, I., Krasnova, A., Ivantsov, A., Serezhnikova, E. L., & Brocks, J. J. (2019). Simple sediment rheology explains the Ediacara Biota preservation. Nature Ecology and Evolution, 3, 582–598.
Briggs, D. E. G. (2003). The role of decay and mineralization in the preservation of soft‐bodied fossils. Annual Review of Earth and Planetary Sciences, 31(1), 275–301.
Briggs, D. E. G., & Kear, A. J. (1993). Fossilization of soft tissue in the laboratory. Science, 259, 1439–1442.
Brocks, J. (2018). The transition from a cyanobacterial to algal world and the emergence of animals. Emerging Topics in Life Sciences, 2, 181–190.
Bykova, N., Gill, B. C., Grazhdankin, D., Rogov, V., & Xiao, S. (2017). A geochemical study of the Ediacaran discoidal fossil Aspidella preserved in limestones: Implications for its taphonomy and paleoecology. Geobiology, 5, 572–587.
Cai, Y., Schiffbauer, J. D., Hua, H., & Xiao, S. (2012). Preservational modes in the Ediacaran Gaojiashan Lagerstätte: Pyritization, aluminosilicification and carbonaceous compression. Palaeogeography, Palaeoclimatology, Palaeoecology, 326–328, 109–117.
Cai, Y. P., Hua, H., Xiao, S. H., Schiffbauer, J. D., & Li, P. (2010). Biostratinomy of the late Ediacaran pyritized Gaojiashan Lagerstätte from southern Shaanxi, South China: Importance of event deposit. Palaios, 25, 487–506.
Callow, R. H. T., & Brasier, M. D. (2009). Remarkable preservation of microbial mats in Neoproterozoic siliciclastic settings: Implications for Ediacaran taphonomic models. Earth‐Science Reviews, 96, 207–219.
Chang, S., Zhanga, L., Clausenc, S., & Fenga, Q. (2020). Source of silica and silicification of the lowermost Cambrian Yanjiahe Formation in the Three Gorges area, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 548, 109697.
Chen, Z., Zhou, C., Xiao, S., Wang, W., Guan, C., Hua, H., & Yuan, X. (2014). New Ediacara fossils preserved in marine limestone and their ecological implications. Scientific Reports, 4, 4180.
Conley, D. J., Frings, P. J., Fontorbe, G., Clymans, W., Stadmark, J., Hendry, K. R., Marron, A. O., & De La Rocha, C. L. (2017). Biosilicification drives a decline of dissolved Si in the oceans through geologic time. Frontiers in Marine Science, 4, 397.
Cuadros, J. (2017). Clay minerals interaction with microorganism: A review. Clay Minerals, 52, 235–261.
Darroch, S. A. F., Laflamme, M., Schiffbauer, J. D., & Briggs, D. E. G. (2012). Experimental formation of a microbial death mask. Palaios, 27, 293–303.
Droser, M. L., Gehling, J. G., Tarhan, L. G., Evans, S. D., Hall, C. M. S., Hughes, I. V., Hughes, E. B., Dzaugis, M. E., Dzaugis, M. P., Dzaugis, P. W., & Rice, D. (2019). Piecing together the puzzle of the Ediacara Biota: Excavation and reconstruction at the Ediacara National Heritage site Nilpena (South Australia). Palaeogeography, Palaeoclimatology, Palaeoecology, 513, 132–145.
Droser, M. L., Tarhan, L. G., Evans, S. D., Surprenant, R. L., & Gehling, J. G. (2020). Biostratinomy of the Ediacara Member (Rawnsley Quartzite, South Australia): Implications for depositional environments, ecology and biology of Ediacara organisms. Interface Focus, 10, 20190100.
Duteil, T., Bourillot, R., Gregoire, B., Virolle, M., Brigaud, B., Nouet, J., Braissant, O., Portier, É., Féniès, H., Patrier, P., Gontier, E., Svahn, I., & Visscher, P. (2020). Experimental formation of clay‐coated sand grains using diatom biofilm exopolymers. Geology, 48, 1012–1017.
Ferris, F. G., Fyfe, W. S., & Beveridge, T. J. (1988). Metallic ion binding by Bacillus subtilis: Implications for the fossilization of microorganisms. Geology, 16, 149–152.
Fiore, S., Dumontet, S., Huertas, F. J., & Pasquale, V. (2011). Bacteria‐induced crystallization of kaolinite. Applied Clay Science, 53, 566–571.
Fischer, W. W., & Knoll, A. H. (2009). An iron shuttle for deepwater silica in Late Archean and early Paleoproterozoic iron formation. Geological Society of America Bulletin, 121, 222–235.
Gabbott, S. E. (1998). Taphonomy of the Ordovician Soom Shale Lagerstätte: An example of soft tissue preservation in clay minerals. Palaeontology, 41, 631–667.
Gao, P., Li, S., Lash, G. G., He, Z., Xiao, X., Zhang, D., & Hao, Y. (2020). Silicification and Si cycling in a silica‐rich ocean during the Ediacaran‐Cambrian transition. Chemical Geology, 552, 119787.
Gehling, J. G. (1999). Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios, 14, 40–57.
Gehling, J. G., & Droser, M. L. (2013). How well do fossil assemblages of the Ediacara Biota tell time? Geology, 41, 447–450.
Gehling, J. G., Narbonne, G. M., & Anderson, M. M. (2000). The first named Ediacaran body fossil, Aspidella terranovica. Palaeontology, 43, 427–456.
Gibson, B. M., Schiffbauer, J. D., & Darroch, S. A. F. (2018). Ediacaran‐style decay experiments using mollusks and sea anemones. Palaios, 33, 185–203.
Gibson, B. M., Schiffbauer, J. D., Wallace, A. F., & Darroch, S. A. F. (2023). The role of iron in the formation of Ediacaran ‘death masks’. Geobiology, 21, 421–434.
Grenne, T., & Slack, J. F. (2003). Paleozoic and Mesozoic silica‐rich seawater: Evidence from hematitic chert (jasper) deposits. Geology, 31(4), 319–322.
Halevy, I., Alesker, M., Schuster, E., Popovitz‐Biro, R., & Feldman, Y. (2017). A key role for green rust in the Precambrian oceans and the genesis of iron formations. Nature Geoscience, 10, 135–139.
Halevy, I., & Bachan, A. (2017). The geologic history of seawater pH. Science, 355, 1069–1071.
Hall, J. G., Smith, E. F., Tamura, N., Fakra, S. C., & Bosak, T. (2020). Preservation of erniettomorph fossils in clay‐rich siliciclastic deposits from the Ediacaran Wood Canyon Formation, Nevada. Interface Focus, 10, 20200012.
Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1–9.
Han, S., Löhr, S. C., Abbott, A. N., Baldermann, A., Voigt, M., & Yu, B. (2022). Authigenic clay mineral evidence for restricted, evaporitic conditions during the emergence of the Ediacaran Doushantuo Biota. Communications Earth & Environment, 3, 165.
Handley, K. M., Turner, S. J., Campbell, K. A., & Mountain, B. W. (2008). Silicifying biofilm exopolymers on a hot‐spring microstromatolite: Templating nanometer‐thick laminae. Astrobiology, 8, 747–770.
Isson, T. T., & Planavsky, N. J. (2018). Reverse weathering as a long‐term stabilizer of marine pH and planetary climate. Nature, 560(7719), 471–475.
Jacquemot, P., Viennet, J. C., Bernard, S., Le Guillou, C., Rigaud, B., Delbes, L., Georgelin, T., & Jaber, M. (2019). The degradation of organic compounds impacts the crystallization of clay minerals and vice versa. Scientific Reports, 9, 20251.
Kalderon‐Asael, B., Katchinoff, J. A. R., Planavsky, N. J., Hood, A. S., Dellinger, M., Bellefroid, E. J., Jones, D. S., Hofmann, A., Ossa, F. O., Macdonald, F. A., Wang, C., Isson, T. T., Murphy, J. G., Higgins, J. A., West, A. J., Wallace, M. W., Asael, D., & Pogge von Strandmann, P. A. E. (2021). A lithium‐isotope perspective on the evolution of carbon and silicon cycles. Nature, 595, 394–398.
Kidder, D. L., & Erwin, D. H. (2001). Secular Distribution of Biogenic Silica through the Phanerozoic: Comparison of Silica‐Replaced Fossils and Bedded Cherts at the Series Level. The Journal of Geology, 109(4), 509–522.
Knoll, A. H., & Golubic, S. (1979). Anatomy and taphonomy of a Precambrian algal stromatolite. Precambrian Research, 10, 115–151.
Knoll, A. H., & Kotrc, B. (2015). Protistan skeletons: A geologic history of evolution and constraint. In C. Hamm (Ed.), Evolution of lightweight structures. Biologically‐Inspired Systems (vol. 6, pp. 1–16). Springer.
Konhauser, K. O. (1998). Diversity of bacterial iron mineralization. Earth‐Science Reviews, 43, 91–121.
Konhauser, K. O., Fisher, Q. J., Fyfe, W. S., Longstaffe, F. J., & Powell, M. A. (1998). Authigenic mineralization and detrital clay binding by freshwater biofilms: The Brahmani River, India. Geomicrobiology Journal, 15, 209–222.
Konhauser, K. O., Jones, B., Phoenix, V. R., Ferris, G., & Renaut, R. W. (2004). The microbial role in hot spring silicification. Ambio, 33, 552–558.
Konhauser, K. O., Phoenix, V. R., Bottrell, S. H., Adams, D. G., & Head, I. M. (2001). Microbial‐silica interactions in Icelandic hot spring sinter: Possible analogues for some Precambrian siliceous stromatolites. Sedimentology, 48, 415–433.
Konhauser, K. O., & Urrutia, M. M. (1999). Bacterial clay authigenesis: A common biogeochemical process. Chemical Geology, 161, 399–413.
Kuno, T., Nonoyama, T., Hirao, K., & Kato, K. (2011). Influence of the charge relay effect on the silanol condensation reaction as a model for silica biomineralization. Langmuir, 27, 13154–13158.
Laflamme, M., Schiffbauer, J. D., Narbonne, G. M., & Briggs, D. E. G. (2011). Microbial biofilms and the preservation of the Ediacara Biota. Lethaia, 44, 203–213.
Lalonde, S. V., Konhauser, K. O., Reysenbach, A. L., & Ferris, F. G. (2005). The experimental silicification of Aquificales and their role in hot spring sinter formation. Geobiology, 3, 41–52.
Leo, R. F., & Barghoorn, E. S. (1976). Silicification of wood. Botanical Museum Leaflets, Harvard University, 25, 1–47.
Liu, A. G. (2016). Framboidal pyrite shroud confirms the ‘death mask’ model for moldic preservation of Ediacaran soft‐bodied organisms. Palaios, 31, 259–274.
Liu, A. G., McMahon, S., Matthews, J. J., Still, J. W., & Brasier, A. T. (2019). Petrological evidence supports the death mask model for the preservation of Ediacaran soft‐bodied organisms in South Australia. Geology, 47, 215–218.
MacGabhann, B. A., Schiffbauer, J. D., Hagadorn, J. W., Van Roy, P., Lynch, E. P., Morrison, L., & Murray, J. (2019). Resolution of the earliest metazoan record: Differential taphonomy of Ediacaran and Paleozoic fossil molds and casts. Palaeogeography, Palaeoclimatology, Palaeoecology, 513, 146–165.
Maliva, R. G., Knoll, A. H., & Siever, R. (1989). Secular change in chert distribution: A reflection of evolving biological participation in the silica cycle. Palaios, 4, 519–532.
Manning‐Berg, A. R., & Kah, L. C. (2017). Proterozoic microbial mats and their constraints on environments of silicification. Geobiology, 15, 469–483.
Manning‐Berg, A. R., Wood, R. S., Williford, K. H., Czaja, A. D., & Kah, L. C. (2019). The taphonomy of Proterozoic microbial mats and implications for early diagenetic silicification. Geosciences, 9, 40.
Mapstone, N. B., & McIlroy, D. (2006). Ediacaran fossil preservation: Taphonomy and diagenesis of a discoid biota from the Amadeus Basin, Central Australia. Precambrian Research, 149, 126–148.
Martin, D., Briggs, D. E. G., & Parkes, R. J. (2004). Experimental attachment of sediment particles to invertebrate eggs and the preservation of soft‐bodied fossils. Journal of the Geological Society of London, 161, 735–738.
McMahon, S., Anderson, R. P., Saupe, E. E., & Briggs, D. E. G. (2016). Experimental evidence that clay inhibits bacterial decomposers: Implications for preservation of organic fossils. Geology, 44, 867–870.
McMahon, S., Tarhan, L. G., & Briggs, D. E. G. (2017). Decay of the sea anemone Metridium (Actiniaria): Implications for the preservation of cnidarian polyps and other soft‐bodied diploblast‐grade animals. Palaios, 32, 388–395.
Mera, M. U., & Beveridge, T. J. (1993). Mechanism of silicate binding to the bacterial cell wall in Bacillus subtilis. Journal of Bacteriology, 175, 1936–1945.
Meyer, M., Elliott, D., Schiffbauer, J. D., Hall, M., Hoffman, K. H., Schenider, G., Vickers‐Rich, P., & Xiao, S. (2014). Taphonomy of the Ediacaran fossil Pteridinium simplex preserved three‐dimensionally in mass flow deposits, Nama Group, Namibia. Journal of Paleontology, 88, 240–252.
Moczydłowska, M., Kear, B., Snitting, D., Liu, L., Lazor, P., & Majka, J. (2021). Ediacaran metazoan fossils with siliceous skeletons from the Digermulen Peninsula of Arctic Norway. Journal of Paleontology, 95(3), 440–475.
Moore, K. R., Daye, M., Gong, J., Williford, K., Konhauser, K., & Bosak, T. (2022). A review of microbial‐environmental interactions recorded in Proterozoic carbonate‐hosted chert. Geobiology, 21, 3–27.
Moore, K. R., Gong, J., Pajusalu, M., Skoog, E. J., Xu, M., Feliz Soto, T., Sojo, V., Matreux, T., Baldes, M. J., Braun, D., Williford, K., & Bosak, T. (2021). A new model for silicification of cyanobacteria in Proterozoic tidal flats. Geobiology, 19, 438–449.
Moore, K. R., Pajusalu, M., Gong, J., Sojo, V., Matreux, T., Braun, D., & Bosak, T. (2020). Biologically mediated silicification of marine cyanobacteria and implications for the Proterozoic fossil record. Geology, 48, 862–866.
Mullin, J. B., & Riley, J. P. (1955). The colorimetric determination of silicate with special reference to sea and natural waters. Analytica Chimica Acta, 12, 162–176.
Naimark, E., Kalinina, M., Shokurov, A., Boeva, N., Markov, A., & Zaytseva, L. (2016). Decaying in different clays: Implications for soft‐tissue preservation. Palaeontology, 59, 583–595.
Narbonne, G. M. (2005). The Ediacara Biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth and Planetary Sciences, 33, 421–442.
Narbonne, G. M., Laflamme, M., Trusler, P. W., Dalrymple, R., & Greentree, C. (2014). Deep‐water Ediacaran fossils from northwestern Canada. Taphonomy, ecology, and evolution. Journal of Paleontology, 88(2), 207–223.
Newman, S. A., Daye, M., Fakra, S. C., Marcus, M. A., Pajusalu, M., Pruss, S. A., Smith, E. F., & Bosak, T. (2019). Experimental preservation of muscle tissue in quartz sand and kaolinite. Palaios, 34, 437–451.
Newman, S. A., Klepac‐Ceraj, V., Mariotti, G., Pruss, S. B., Watson, N., & Bosak, T. (2017). Experimental fossilization of mat‐forming cyanobacteria in coarse‐grained siliciclastic sediments. Geobiology, 15, 484–498.
Newman, S. A., Mariotti, G., Pruss, S., & Bosak, T. (2016). Insights into cyanobacterial fossilization in Ediacaran siliciclastic environments. Geology, 44, 579–582.
Orr, P. (2014). Late Proterozoic‐early Phanerozoic ‘taphonomic windows’: The environmental and temporal distribution of recurrent modes of exceptional preservation. The Paleontological Society Papers, 20, 289–313.
Osburn, M. R., Owens, J., Bergmann, K. D., Lyons, T. W., & Grotzinger, J. P. (2015). Dynamic changes in sulfate sulfur isotopes preceding the Ediacaran Shuram Excursion. Geochimica et Cosmochimica Acta, 170, 204–224.
Phoenix, V. R., Adams, D. G., & Konhauser, K. O. (2000). Cyanobacterial viability during hydrothermal biomineralisation. Chemical Geology, 169, 329–338.
Phoenix, V. R., Martinez, R. E., Konhauser, K. O., & Ferris, F. G. (2002). Characterization and implications of the cell surface reactivity of Calothrix sp. strain KC97. Applied and Environmental Microbiology, 68, 4827–4834.
Playter, T. L., Konhauser, K. O., Hodgson, C. A., Owttrim, G., Mloszewska, A., Sutherland, B., Bekker, A., Zonneveld, J.‐P., Pemberton, S. G., & Gingras, M. K. (2017). Microbe‐clay interactions as a mechanism for the preservation of organic matter and trace metal biosignatures in black shales. Chemical Geology, 459, 75–90.
Racki, G., & Cordey, F. (2000). Radiolarian palaeoecology and radiolarites: Is the present the key to the past? Earth Science Reviews, 52, 83–120.
Raiswell, R., & Berner, R. A. (1985). Pyrite formation in euxinic and semi‐euxinic sediments. American Journal of Science, 285, 710–724.
Raiswell, R., Whaler, K., Dean, S., Coleman, M. L., & Briggs, D. E. G. (1993). A simple three‐dimensional model of diffusion‐with‐precipitation applied to localised pyrite formation in framboids, fossils and detrital iron minerals. Marine Geology, 113, 1–2.
Renaut, R. W., & Jones, B. (2000). Microbial precipitates around continental hot springs and geysers. In R. E. Riding & S. M. Awramik (Eds.), Microbial sediments (pp. 187–195). Springer Berlin.
Retallack, G. J. (2022). Ferruginous biofilm preservation of Ediacaran fossils. Gondwana Research, 110, 73–89.
Saleh, F., Antcliffe, J. B., Lefebvre, B., Pittet, B., Laibl, L., Peris, P. F., Lustri, L., Gueriau, P., & Daley, A. C. (2020). Taphonomic bias in exceptionally preserved biotas. Earth and Planetary Science Letters, 529, 115873.
Schiffbauer, J. D., Selly, T., Jacquet, S. M., Merz, R. A., Nelson, L. L., Strange, M. A., Cai, Y., & Smith, E. F. (2020). Discovery of bilaterian‐type through‐guts in cloudinomorphs from the terminal Ediacaran Period. Nature communications, 11, 205.
Schultze‐Lam, S., Ferris, F. G., Konhauser, K. O., & Wiese, R. G. (2011). In situ silicification of an Icelandic hot spring microbial mat: Implications for microfossil formation. Canadian Journal of Earth Sciences, 32, 2021–2026.
Shore, A. J., Wood, R. A., Butler, I. B., Zhuravlev, A., McMahon, S., Curtis, A., & Bowyer, F. T. (2021). Ediacaran metazoan reveals lophotrochozoan affinity and deepens root of Cambrian Explosion. Science Advances, 7, eabf2933.
Siever, R. (1992). The silica cycle in the Precambrian. Geochimica et Cosmochimica Acta, 56, 3265–3272.
Siever, R., & Woodford, N. (1973). Sorption of silica by clay minerals. Geochimica et Cosmochimica Acta, 37, 1851–1880.
Slagter, S., Hao, W., Planavsky, N. J., Konhauser, K. O., & Tarhan, L. G. (2022). Biofilms as agents of Ediacara‐style fossilization. Scientific Reports, 12, 8631.
Slagter, S., Tarhan, L. G., Blum, T. B., Droser, M. L., & Valley, J. W. (2024). Silica cementation history of the Ediacara Member (Rawnsley Quartzite, South Australia): Insights from petrographic and in situ oxygen isotopic microanalyses. Precambrian Research, 402, 107288.
Slagter, S., Tarhan, L. G., Hao, W., Planavsky, N. J., & Konhauser, K. O. (2021). Experimental evidence supports early silica cementation of the Ediacara Biota. Geology, 49, 51–55.
Sperling, E. A., Robinson, J. M., Pisani, D., & Peterson, K. J. (2010). Where's the glass? Biomarkers, molecular clocks, and microRNAs suggest a 200‐Myr missing Precambrian fossil record of siliceous sponge spicules. Geobiology, 8, 24–36.
Tang, T., Kisslinger, K., & Lee, C. (2014). Silicate deposition during decomposition of cyanobacteria may promote export of picophytoplankton to the deep ocean. Nature Communications, 5, 4143.
Tarhan, L. G., Droser, M. L., & Gehling, J. G. (2015). Depositional and preservational environments of the Ediacara Member, Rawnsley Quartzite (South Australia): Assessment of paleoenvironmental proxies and the timing of ‘ferruginization’. Palaeogeography Palaeoclimatology Palaeoecology, 434, 4–13.
Tarhan, L. G., Droser, M. L., Gehling, J. G., & Dzaugis, M. P. (2017). Microbial mat sandwiches and other anactualistic sedimentary features of the Ediacara Member (Rawnsley Quartzite, South Australia): Implications for interpretation of the Ediacaran sedimentary record. Palaios, 32, 181–194.
Tarhan, L. G., Hood, A. v. S., Droser, M. L., Gehling, J. G., & Briggs, D. E. G. (2016). Exceptional preservation of soft‐bodied Ediacara Biota promoted by silica‐rich oceans. Geology, 44, 951–954.
Tarhan, L. G., Hood, A. V. S., Droser, M. L., Gehling, J. G., Briggs, D. E. G., Gaines, R. R., Robbins, L. J., & Planavsky, N. J. (2019). Petrological evidence supports the death mask model for the preservation of Ediacaran soft bodied organisms in South Australia. Geology, 47(8), e473.
Tarhan, L. G., Planavsky, N. J., Wang, X., Bellefroid, E. J., Droser, M. L., & Gehling, J. G. (2018). The late‐stage “ferruginization” of the Ediacara Member (Rawnsley Quartzite, South Australia): Insights from uranium isotopes. Geobiology, 16, 35–48.
Toporski, J. K. W., Steele, A., Westall, F., Thomas‐Keprta, K. L., & McKay, D. S. (2002). The simulated silicification of bacteria—New clues to the modes and timing of bacterial preservation and implications for the search for extraterrestrial microfossils. Astrobiology, 2, 1–26.
Tosca, N. J., Guggenheim, S., & Pufahl, P. K. (2016). An authigenic origin for Precambrian greenalite: Implications for iron formation and the chemistry of ancient seawater. GSA Bulletin, 128, 511–530.
Tostevin, R., Snow, J. T., Zhang, Q., Tosca, N. J., & Rickaby, R. E. M. (2021). The influence of elevated SiO2(aq) on intracellular silica uptake and microbial metabolism. Geobiology, 19, 421–433.
Trower, E. J., & Fischer, W. W. (2019). Precambrian Si isotope mass balance, weathering, and the significance of the authigenic clay silica sink. Sedimentary Geology, 384, 1–11.
Trower, E. J., Strauss, J. V., Sperling, E. A., & Fischer, W. W. (2021). Isotopic analyses of Ordovician Silurian siliceous skeletons indicate silica‐depleted Paleozoic oceans. Geobiology, 19, 460–472.
Wacey, D., Saunders, M., Roberts, M., Menon, S., Green, L., Kong, C., Culwick, T., Strother, P., & Brasier, M. D. (2014). Enhanced cellular preservation by clay minerals in 1 billion‐year‐old lakes. Scientific Reports, 4, 5841.
Wade, M. (1968). Preservation of soft‐bodied animals in Precambrian sandstones at Ediacara, South Australia. Lethaia, 1, 238–267.
Westall, F., Boni, L., & Guerzoni, E. (1995). The experimental silicification of microorganisms. Palaeontology, 38, 495–528.
Wilby, P. R., Kenchington, C. G., & Wilby, R. L. (2015). Role of low intensity environmental disturbance in structuring the earliest (Ediacaran) macrobenthic tiered communities. Palaeogeography, Palaeoclimatology, Palaeoecology, 434, 14–27.
Wilson, L. A., & Butterfield, N. J. (2014). Sediment effects on the preservation of Burgess Shale‐type compression fossils. Palaios, 29, 145–154.
Woltz, C. R., Anderson, R. P., Tosca, N. J., & Porter, S. M. (2023). The role of clay minerals in the preservation of Precambrian organic‐walled microfossils. Geobiology, 21, 708–724.
Xiao, S., Droser, M., Gehling, J. G., Hughes, I. V., Wan, B., Chen, Z., & Yuan, X. (2013). Affirming life aquatic for the Ediacara Biota in China and Australia. Geology, 41(10), 1095–1098.
Ye, Y., Frings, P. J., von Blanckenburg, F., & Feng, Q. (2021). Silicon isotopes reveal a decline in oceanic dissolved silicon driven by biosilicification: A prerequisite for the Cambrian Explosion? Earth and Planetary Science Letters, 566, 116959.
Yee, N., Phoenix, V. R., Konhauser, K. O., Benning, L. G., & Ferris, F. G. (2003). The effect of cyanobacteria on silica precipitation at neutral pH: Implications for bacterial silicification in geothermal hot springs. Chemical Geology, 199, 83–90.
Zumberge, J. A., Rocher, D., & Love, G. D. (2020). Free and kerogen‐bound biomarkers from late Tonian sedimentary rocks record abundant eukaryotes in mid‐Neoproterozoic marine communities. Geobiology, 18, 326–347.
معلومات مُعتمدة: Natural Sciences and Engineering Research Council of Canada; American Chemical Society Petroleum Research Fund; Institute for Biospheric Studies, Yale University; United States NASA NASA
فهرسة مساهمة: Keywords: Ediacara Biota; clays; experiments; fossilization; silica cycling
المشرفين على المادة: 7631-86-9 (Silicon Dioxide)
0 (Ferric Compounds)
1K09F3G675 (ferric oxide)
تواريخ الأحداث: Date Created: 20240816 Date Completed: 20240816 Latest Revision: 20240816
رمز التحديث: 20240816
DOI: 10.1111/gbi.12615
PMID: 39149974
قاعدة البيانات: MEDLINE
الوصف
تدمد:1472-4669
DOI:10.1111/gbi.12615