دورية أكاديمية

24-epibrassinolide enhances drought tolerance in grapevine (Vitis vinifera L.) by regulating carbon and nitrogen metabolism.

التفاصيل البيبلوغرافية
العنوان: 24-epibrassinolide enhances drought tolerance in grapevine (Vitis vinifera L.) by regulating carbon and nitrogen metabolism.
المؤلفون: Zeng G; College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China., Wan Z; College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China., Xie R; College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China., Lei B; School of Food Science and Technology, Shihezi University, Shihezi, 832061, Xinjiang, China., Li C; College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China., Gao F; School of Food Science and Technology, Shihezi University, Shihezi, 832061, Xinjiang, China., Zhang Z; College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China. zhangzhw60@nwsuaf.edu.cn.; Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, 712100, Shaanxi, China. zhangzhw60@nwsuaf.edu.cn., Xi Z; College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China. xizhumei@nwafu.edu.cn.; Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, 712100, Shaanxi, China. xizhumei@nwafu.edu.cn.
المصدر: Plant cell reports [Plant Cell Rep] 2024 Aug 19; Vol. 43 (9), pp. 219. Date of Electronic Publication: 2024 Aug 19.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9880970 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-203X (Electronic) Linking ISSN: 07217714 NLM ISO Abbreviation: Plant Cell Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin ; New York : Springer, 1981-
مواضيع طبية MeSH: Brassinosteroids*/metabolism , Brassinosteroids*/pharmacology , Drought Resistance* , Photosynthesis*/drug effects , Steroids, Heterocyclic*/metabolism , Steroids, Heterocyclic*/pharmacology , Vitis*/drug effects , Vitis*/metabolism , Vitis*/physiology, Antioxidants/metabolism ; Antioxidants/pharmacology ; Carbon/metabolism ; Glucosyltransferases/metabolism ; Glutamate-Ammonia Ligase/metabolism ; Hydrogen Peroxide/metabolism ; Lipid Peroxidation/drug effects ; Nitrate Reductase/metabolism ; Nitrogen/metabolism ; Oxidative Stress/drug effects ; Plant Growth Regulators/metabolism ; Plant Growth Regulators/pharmacology ; Plant Proteins/metabolism ; Plant Proteins/genetics ; Stress, Physiological/drug effects
مستخلص: Key Message: Exogenous application of 24-epibrassinolide can alleviate oxidative damage, improve photosynthetic capacity, and regulate carbon and nitrogen assimilation, thus improving the tolerance of grapevine (Vitis vinifera L.) to drought stress. Brassinosteroids (BRs) are a group of plant steroid hormones in plants and are involved in regulating plant tolerance to drought stress. This study aimed to investigate the regulation effects of BRs on the carbon and nitrogen metabolism in grapevine under drought stress. The results indicated that drought stress led to the accumulation of superoxide radicals and hydrogen peroxide and an increase in lipid peroxidation. A reduction in oxidative damage was observed in EBR-pretreated plants, which was probably due to the improved antioxidant concentration. Moreover, exogenous EBR improved the photosynthetic capacity and sucrose phosphate synthase activity, and decreased the sucrose synthase, acid invertase, and neutral invertase, resulting in improved sucrose (190%) and starch (17%) concentrations. Furthermore, EBR pretreatment strengthened nitrate reduction and ammonium assimilation. A 57% increase in nitrate reductase activity and a 13% increase in glutamine synthetase activity were observed in EBR pretreated grapevines. Meanwhile, EBR pretreated plants accumulated a greater amount of proline, which contributed to osmotic adjustment and ROS scavenging. In summary, exogenous EBR enhanced drought tolerance in grapevines by alleviating oxidative damage and regulating carbon and nitrogen metabolism.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Ahammed GJ, Li X, Wang HJ, Zhou Z, Chen Y (2020) SlWRKY81 reduces drought tolerance by attenuating proline biosynthesis in tomato. Sci Hortic 170:109444. https://doi.org/10.1016/j.scienta.2020.109444. (PMID: 10.1016/j.scienta.2020.109444)
Ahanger MA, Siddique KHM, Ahmad P (2021) Understanding drought tolerance in plants. Physio Plantarum 172:286–288. https://doi.org/10.1111/ppl.13442. (PMID: 10.1111/ppl.13442)
Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymo 113:548–555. https://doi.org/10.1016/s0076-6879(85)13073-9. (PMID: 10.1016/s0076-6879(85)13073-9)
Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Betavulgaris Plant Physiol 24:1–15. https://doi.org/10.1104/pp.24.1.1. (PMID: 10.1104/pp.24.1.1)
Avalbaev A, Bezrukova M, Allagulova C, Lubyanova A, Kudoyarova G, Fedorova K, Maslennikova D, Yuldashev R, Shakirova F (2020) Wheat germ agglutinin is involved in the protective action of 24-epibrassinolide on the roots of wheat seedlings under drought conditions. Plant Physiol Biochem 146:420–427. https://doi.org/10.1016/j.plaphy.2019.11.038. (PMID: 10.1016/j.plaphy.2019.11.03831805496)
Baslam M, Mitsui T, Sueyoshi K, Ohyama T (2021) Recent advances in carbon and nitrogen metabolism in C3 plants. In J Mol Sci 22:318. https://doi.org/10.3390/ijms22010318. (PMID: 10.3390/ijms22010318)
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Ana Bioche 72:248–254. https://doi.org/10.1006/abio.1976.9999. (PMID: 10.1006/abio.1976.9999)
Cataldo DA, Maroon M, Schrader E, Young L (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sc Plant Anal 6:71–80. https://doi.org/10.1080/00103627509366547. (PMID: 10.1080/00103627509366547)
Chen EY, Zhang XY, Yang ZR, Zhang CJ, Wang XQ, Ge XY, Li FG (2019) BR deficiency causes increased sensitivity to drought and yield penalty in cotton. BMC Plant Bio 19:220. https://doi.org/10.1186/s12870-019-1832-9. (PMID: 10.1186/s12870-019-1832-9311381866537406)
Chen YH, Wang YL, Chen HZ, Xiang J, Zhang YK, Wang ZG, Zhu DF, Zhang YP (2023) Brassinosteroids mediate endogenous phytohormone metabolism to alleviate high temperature injury at panicle initiation stage in rice. Rice Sci 30(1):70–86. https://doi.org/10.1016/j.rsci.2022.05.005. (PMID: 10.1016/j.rsci.2022.05.005)
Erdal S (2019) Melatonin promotes plant growth by maintaining integration and coordination between carbon and nitrogen metabolisms. Plant Cell Rep 38:1001–1012. https://doi.org/10.1007/s00299-019-02423-z. (PMID: 10.1007/s00299-019-02423-z31069499)
Furlan AL, Bianucci E, Giordano W, Castro S, Becker D (2020) Proline metabolic dynamics and implications in drought tolerance of peanut. Plant Physiol Bioch 151:556–578. https://doi.org/10.1016/j.plaphy.2020.04.010. (PMID: 10.1016/j.plaphy.2020.04.010)
Gambetta GA, Herrera JC, Dayer S, Feng QS, Hochberg U, Castellarin SD (2020) The physiology of drought stress in grapevine: towards an integrative definition of drought tolerance. J Exp Bot 71:4658–4676. https://doi.org/10.1093/jxb/eraa245. (PMID: 10.1093/jxb/eraa245324337357410189)
Gao J (2006) Experimental Guidance for Plant Physiology. Higher education press, Beijing.
Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Bioch 48:909–930. https://doi.org/10.1016/j.plaphy.2010.08.016. (PMID: 10.1016/j.plaphy.2010.08.016)
Gupta P, Srivastava S, Seth CS (2017) 24-Epibrassinolide and sodium nitroprusside alleviate the salinity stress in Brassica juncea L. cv. Varuna through cross talk among proline, nitrogen metabolism and abscisic acid. Plant Soil 411:483–498. https://doi.org/10.1007/s11104-016-3043-6. (PMID: 10.1007/s11104-016-3043-6)
Hansen J, Moller I (1975) Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone. Anal Biochem 68:87–94. https://doi.org/10.1016/0003-2697(75)90682-x. (PMID: 10.1016/0003-2697(75)90682-x1190454)
Hao Z, Cang J, Xu Z (2004) Plant Physiology Experiment. Harbin Industrial University Press, Harbin.
He Q, Hu W, Li YX, Zhu HH, Zou J, Wang YH, Meng YL, Che B, Zhao WQ, Wang SS, Zhou ZG (2022) Prolonged drought affects the interaction of carbon and nitrogen metabolism in root and shoot of cotton. Environ Exp Bot 197:104839. https://doi.org/10.1016/j.envexpbot.2022.104839. (PMID: 10.1016/j.envexpbot.2022.104839)
Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. https://doi.org/10.1016/0003-9861(68)90654-1. (PMID: 10.1016/0003-9861(68)90654-15655425)
Heinemann B, Hildebrandt TM (2021) The role of amino acid metabolism in signaling and metabolic adaptation to stress-induced energy deficiency in plants. J Exp Bot 72:4634–4645. https://doi.org/10.1093/jxb/erab182. (PMID: 10.1093/jxb/erab18233993299)
Hennion N, Durand M, Vriet C, Doidy J, Maurousset L, Lemoine R, Pourtau N (2019) Sugars en route to the roots. Transport, metabolism and storage within plant roots and towards microorganisms of the rhizosphere. Physiol Plant 165:44–57. https://doi.org/10.1111/ppl.12751. (PMID: 10.1111/ppl.1275129704246)
Hildebrandt TM (2018) Synthesis versus degradation: directions of amino acid metabolism during Arabidopsis abiotic stress response. Plant Mol Biol 98:121–135. https://doi.org/10.1007/s11103-018-0767-0. (PMID: 10.1007/s11103-018-0767-030143990)
Huang T, Jander G (2017) Abscisic acid-regulated protein degradation causes osmotic stress-induced accumulation of branchedchain amino acids in Arabidopsis thaliana. Planta 246:737–747. https://doi.org/10.1007/s00425-017-2727-3. (PMID: 10.1007/s00425-017-2727-328668976)
Huang LL, Li MJ, Zhou K, Sun TT, Hu LY, Li CY, Ma FW (2018) Uptake and metabolism of ammonium and nitrate in response to drought stress in Malus prunifolia. Plant Physiol Biochem 127:185–193. https://doi.org/10.1016/j.plaphy.2018.03.031. (PMID: 10.1016/j.plaphy.2018.03.03129609174)
Kampfenkel K, Vanmontagu M, Inze D (1995) Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal Biochem 225:165–167. https://doi.org/10.1006/abio.1995.1127. (PMID: 10.1006/abio.1995.11277778771)
Li QF, Lu J, Yu JW, Zhang CQ, He JX, Liu QQ (2018) The brassinosteroid-regulated transcription factors BZR1/BES1 function as a coordinator in multisignal-regulated plant growth. BBA-Gene Regul Mech 1861:561–571. https://doi.org/10.1016/j.bbagrm.2018.04.003. (PMID: 10.1016/j.bbagrm.2018.04.003)
Li LQ, Deng MS, Lyu CC, Zhang J, Peng J, Cai CC, Yang SM, Lu LM, Ni S, Liu F, Zheng SL, Yu LP, Wang XY (2020) Quantitative phosphoproteomics analysis reveals that protein modification and sugar metabolism contribute to sprouting in potato after BR treatment. Food Chem 325:126875. https://doi.org/10.1016/j.foodchem.2020.126875. (PMID: 10.1016/j.foodchem.2020.12687532387993)
Liang X, Zhang L, Natarajan SK, Becker DF (2013) Proline mechanisms of stress survival. Antioxid Redox Sign 19(9):998–1011. https://doi.org/10.1089/ars.2012.5074. (PMID: 10.1089/ars.2012.5074)
Liang BW, Ma CQ, Zhang ZJ, Wei ZW, Gao TT, Zhao Q, Ma FW, Li C (2018) Long-term exogenous application of melatonin improves nutrient uptake fluxes in apple plants under moderate drought stress. Environ Exp Bot 155:650–661. https://doi.org/10.1016/j.envexpbot.2018.08.016. (PMID: 10.1016/j.envexpbot.2018.08.016)
Liu XJ, Hu B, Chu CC (2022a) Nitrogen assimilation in plants: current status and future prospects. J Genet Genomics 49:394–440. https://doi.org/10.1016/j.jgg.2021.12.006. (PMID: 10.1016/j.jgg.2021.12.00634973427)
Liu Y, Qi ZY, Wei JS, Yu JQ, Xia XJ (2022b) Brassinosteroids promote starch synthesis and the implication in low-light stress tolerance in Solanum lycopersicum. Environ Exp Bot 201:104990. https://doi.org/10.1016/j.envexpbot.2022.104990. (PMID: 10.1016/j.envexpbot.2022.104990)
Livak KJ, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 -CT method. Methods 25:402–408. (PMID: 10.1006/meth.2001.126211846609)
Lone WA, Majeed N, Yaqoob U, John R (2022) Exogenous brassinosteroid and jasmonic acid improve drought tolerance in Brassica rapa L. genotypes by modulating osmolytes, antioxidants and photosynthetic system. Plant Cell Rep 41:603–617. https://doi.org/10.1007/s00299-021-02763-9. (PMID: 10.1007/s00299-021-02763-9)
Lu ZM, Wang XL, Cao MM, Li YY, Su JL, Gao H (2019) Effect of 24-epibrassinolide on sugar metabolism and delaying postharvest senescence of kiwifruit during ambient storage. Sci Hortic 253:1–7. https://doi.org/10.1016/j.scienta.2019.04.028. (PMID: 10.1016/j.scienta.2019.04.028)
MacNeill GJ, Mehrpouyan S, Minow MAA, Patterson JA, Tetlow IJ, Emes MJ (2017) Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation. J Exp Bot 68(16):4433–4453. https://doi.org/10.1093/jxb/erx291. (PMID: 10.1093/jxb/erx29128981786)
Manghwar H, Hussain A, Ali Q, Liu F (2022) Brassinosteroids (BRs) role in plant development and coping with different stresses. Int J Mol Sci 23:1012. https://doi.org/10.3390/ijms23031012. (PMID: 10.3390/ijms23031012351629368835148)
McIntyre GI (1997) The role of nitrate in the osmotic and nutritional control of plant development. Aust J Plant Physiol 24:103–118. https://doi.org/10.1071/PP96064. (PMID: 10.1071/PP96064)
Mukarram M, Choudhary S, Kurjak D, Kurjak A, Khan MMA (2021) Drought: sensing, signalling, effects and tolerance in higher plants. Physiol Plantarum 172:1291–1300. https://doi.org/10.1111/ppl.13423. (PMID: 10.1111/ppl.13423)
O’Brien JA, Vega A, Bouguyon E, Krouk G, Gojon A, Coruzzi G, Gutiérrez R (2016) Nitrate transport, sensing, and responses in plants. Mol Plant 9:837–856. https://doi.org/10.1016/j.molp.2016.05.004. (PMID: 10.1016/j.molp.2016.05.00427212387)
Ozturk M, Unal BT, Garcia-Caparros P, Khursheed A, Gul A, Hasanuzzaman M (2020) Osmoregulation and its actions during the drought stress in plants. Physiol Plantarum 172:1321–1335. https://doi.org/10.1111/ppl.13297. (PMID: 10.1111/ppl.13297)
Pandey K, Kumar RS, Prasad P, Sushma PV, Trivedi PK, Shirke PA (2022) Synchronised interaction of carbon and nitrogen provides drought tolerance in Cyamopsis tetragonoloba. Environ Exp Bot 199:104899. https://doi.org/10.1016/j.envexpbot.2022.104899. (PMID: 10.1016/j.envexpbot.2022.104899)
Patterson BD, Macrae EA, Ferguson IB (1984) Estimation of hydrogen peroxide in plant extracts using titanium (IV). Anal Biochem 139:487–492. https://doi.org/10.1016/0003-2697(84)90039-3. (PMID: 10.1016/0003-2697(84)90039-36476384)
Ruan YL (2012) Signaling role of sucrose metabolism in development. Mol Plant 5:763–765. https://doi.org/10.1093/mp/sss046. (PMID: 10.1093/mp/sss04622532605)
Ren JH, Xie T, Wang YL, Li HB, Liu TT, Zhang SQ, Yin LN, Wang SW, Deng XP, Ke QB (2021) Coordinated regulation of carbon and nitrogen assimilation confers drought tolerance in maize (Zea mays L.). Environ Exp Bot 176:104086. https://doi.org/10.1016/j.envexpbot.2020.104086. (PMID: 10.1016/j.envexpbot.2020.104086)
Schluter U, Kopke D, Altmann T, Mussig C (2002) Analysis of carbohydrate metabolism of CPD antisense plants and the brassinosteroid-deficient cbb1 mutant. Plant Cell Environ 25:783–791. https://doi.org/10.1046/j.1365-3040.2002.00860.x. (PMID: 10.1046/j.1365-3040.2002.00860.x)
Shu S, Tang YY, Yuan YH, Sun J, Zhong M, Guo SR (2016) The role of 24-epibrassinolide in the regulation of photosynthetic characteristics and nitrogen metabolism of tomato seedlings under a combined low temperature and weak light stress. Plant Physiol Biochem 107:344–353. https://doi.org/10.1016/j.plaphy.2016.06.021. (PMID: 10.1016/j.plaphy.2016.06.02127362298)
Talaat NB (2020) 24-epibrassinolide and spermine combined treatment sustains maize (Zea mays L.) drought tolerance by improving photosynthetic efficiency and altering phytohormones profile. J Soil Sci Plant Nut 20:516–529. https://doi.org/10.1007/s42729-019-00138-4. (PMID: 10.1007/s42729-019-00138-4)
Thalmann M, Santelia D (2017) Starch as a determinant of plant fitness under abiotic stress. New Phytol 214:943–951. https://doi.org/10.1111/nph.14491. (PMID: 10.1111/nph.1449128277621)
Wang AG, Luo GH (1990) Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants. Plant Physiol Commun 6:55–57.
Wang T, Li MJ, Yang JZ, Li M, Zhang ZQ, Gao HL, Wang C, Tian H (2023) Brassinosteroid transcription factor BES1 modulates nitrate deficiency by promoting NRT2.1 and NRT2.2 transcription in Arabidopsis. Plant J 114:1443–1457. https://doi.org/10.1111/tpj.16203. (PMID: 10.1111/tpj.1620336948884)
Xia H, Liu XL, Wang YM, Lin ZY, Dengn HH, Wang J, Lin LJ, Deng QX, Lv XL, XuLiang KF (2022) 24-Epibrassinolide and nitric oxide combined to improve the drought tolerance in kiwifruit seedlings by proline pathway and nitrogen metabolism. Sci Hortic 297:110929. https://doi.org/10.1016/j.scienta.2022.110929. (PMID: 10.1016/j.scienta.2022.110929)
Yadav RK, Analin B, Panda MK, Ranjan A, Singh AP (2023) Brassinosteroids-regulated nitrogen metabolism fine-tunes growth physiology and low nitrogen response in tomato. Environ Exp Bot 216:105528. https://doi.org/10.1016/j.envexpbot.2023.105528. (PMID: 10.1016/j.envexpbot.2023.105528)
Yang S, Yuan DP, Zhang Y, Sun Q, Xuan YH (2021) BZR1 regulates brassinosteroid-mediated activation of AMT1; 2 in rice. Front Plant Sci 12:665883. https://doi.org/10.3389/fpls.2021.665883. (PMID: 10.3389/fpls.2021.665883342208898247761)
Yao TS, Xie RJ, Zhou CY, Wu XX, Li DD (2023) Roles of Brossinosteroids signaling in biotic and abiotic stresses. J Agric Food Chem 71:7947–7960. https://doi.org/10.1021/acs.jafc.2c07493. (PMID: 10.1021/acs.jafc.2c0749337195270)
Yin XW, Tang MJ, Xia XJ, Yu JQ (2023) BRASSINAZOLE RESISTANT 1 mediates Brassinosteroid-induced Calvin cycle to promote photosynthesis in tomato. Front Plant Sci 12:811948. https://doi.org/10.3389/fpls.2021.811948. (PMID: 10.3389/fpls.2021.811948351264348810641)
Zegaoui Z, Planchais S, Cabassa C, Djebbar R, Belbachir OA, Carol P (2017) Variation in relative water content, proline accumulation and stress gene expression in two cowpea landraces under drought. J Plant Physiol 218:26–34. https://doi.org/10.1016/j.jplph.2017.07.009. (PMID: 10.1016/j.jplph.2017.07.00928763706)
Zeng GH, Gao FF, Li C, Li DD, Xi ZM (2022) Characterization of 24-epibrassinolide-mediated modulation of the drought stress responses: morphophysiology, antioxidant metabolism and hormones in grapevine (Vitis vinifera L.). Plant Physiol Bioch. https://doi.org/10.1016/j.plaphy.2022.05.019. (PMID: 10.1016/j.plaphy.2022.05.019)
Zhang YH, Xiao YZ, Zhang YG, Dong Y, Liu YQ, Liu L, Wan SQ, He JY, Yu YB (2022) Accumulation of galactinol and ABA is involved in exogenous EBR induced drought tolerance in tea plants. J Agric Food Chem 70:13391–13403. https://doi.org/10.1021/acs.jafc.2c04892. (PMID: 10.1021/acs.jafc.2c0489236218024)
Zhang SY, Cao KF, Wei YY, Jiang S, Ye JF, Xu F Chen Y (2023) PpBZR1, a BES/BZR transcription factor, enhances cold stress tolerance by suppressing sucrose degradation in peach fruit. Plant Physiol Bioc 202:107972. https://doi.org/10.1016/j.plaphy.2023.107972. (PMID: 10.1016/j.plaphy.2023.107972)
Zhao GW, Xu HL, Zhang PJ, Su XY, Zhao HJ (2017) Effects of 2,4-epibrassinolide on photosynthesis and Rubisco activase gene expression in Triticum aestivum L. seedlings under a combination of drought and heat stress. Plant Growth Regul 81:377–384. https://doi.org/10.1007/s10725-016-0214-7. (PMID: 10.1007/s10725-016-0214-7)
معلومات مُعتمدة: No. CARS-29-zp-6 China Agriculture Research System for Grape; No. 2019YFD1000102-11 the National Key Research and Development Program of China
فهرسة مساهمة: Keywords: Brassinosteroids; Carbohydrates; Drought stress; Grapevine; Nitrogen assimilation
المشرفين على المادة: 0 (Antioxidants)
Y9IQ1L53OX (brassinolide)
0 (Brassinosteroids)
7440-44-0 (Carbon)
EC 2.4.1.- (Glucosyltransferases)
EC 6.3.1.2 (Glutamate-Ammonia Ligase)
BBX060AN9V (Hydrogen Peroxide)
EC 1.7.99.4 (Nitrate Reductase)
N762921K75 (Nitrogen)
0 (Plant Growth Regulators)
0 (Plant Proteins)
0 (Steroids, Heterocyclic)
EC 2.4.1.14 (sucrose-phosphate synthase)
تواريخ الأحداث: Date Created: 20240818 Date Completed: 20240818 Latest Revision: 20240912
رمز التحديث: 20240913
DOI: 10.1007/s00299-024-03283-y
PMID: 39155298
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-203X
DOI:10.1007/s00299-024-03283-y