دورية أكاديمية

Bio-inspired biorthogonal compartmental microparticles for tumor chemotherapy and photothermal therapy.

التفاصيل البيبلوغرافية
العنوان: Bio-inspired biorthogonal compartmental microparticles for tumor chemotherapy and photothermal therapy.
المؤلفون: Zhang Q; Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China.; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China., Kuang G; Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China.; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China., Wang L; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China., Fan L; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China., Zhou Y; Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China., Shang L; Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. luoranshang@fudan.edu.cn., Zhao Y; Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China. yjzhao@seu.edu.cn.; Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China. yjzhao@seu.edu.cn., Sun W; Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China. fame198288@126.com.
المصدر: Journal of nanobiotechnology [J Nanobiotechnology] 2024 Aug 20; Vol. 22 (1), pp. 498. Date of Electronic Publication: 2024 Aug 20.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: BioMed Central Country of Publication: England NLM ID: 101152208 Publication Model: Electronic Cited Medium: Internet ISSN: 1477-3155 (Electronic) Linking ISSN: 14773155 NLM ISO Abbreviation: J Nanobiotechnology Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : BioMed Central, 2003-
مواضيع طبية MeSH: Doxorubicin*/pharmacology , Doxorubicin*/chemistry , Photothermal Therapy*/methods , Prodrugs*/pharmacology , Prodrugs*/chemistry , Indocyanine Green*/chemistry , Indocyanine Green*/pharmacology , Drug Delivery Systems*/methods, Humans ; Animals ; Mice ; Cell Line, Tumor ; Neoplasms/therapy ; Neoplasms/drug therapy ; Cyclooctanes/chemistry ; Cyclooctanes/pharmacology ; Mice, Inbred BALB C ; Antineoplastic Agents/pharmacology ; Antineoplastic Agents/chemistry ; Female
مستخلص: Microcarrier is a promising drug delivery system demonstrating significant value in treating cancers. One of the main goals is to devise microcarriers with ingenious structures and functions to achieve better therapeutic efficacy in tumors. Here, inspired by the nucleus-cytoplasm structure of cells and the material exchange reaction between them, we develop a type of biorthogonal compartmental microparticles (BCMs) from microfluidics that can separately load and sequentially release cyclooctene-modified doxorubicin prodrug (TCO-DOX) and tetrazine-modified indocyanine green (Tz-ICG) for tumor therapy. The Tz-ICG works not only as an activator for TCO-DOX but also as a photothermal agent, allowing for the combination of bioorthogonal chemotherapy and photothermal therapy (PTT). Besides, the modification of DOX with cyclooctene significantly decreases the systemic toxicity of DOX. As a result, the developed BCMs demonstrate efficient in vitro tumor cell eradication and exhibit notable tumor growth inhibition with favorable safety. These findings illustrate that the formulated BCMs establish a platform for bioorthogonal prodrug activation and localized delivery, holding significant potential for cancer therapy and related applications.
(© 2024. The Author(s).)
References: Jaffray DA, Knaul F, Baumann M, et al. Harnessing progress in radiotherapy for global cancer control. Nature Cancer. 2023;4(9):1228–38. (PMID: 3774935510.1038/s43018-023-00619-7)
Huang C, Wang X, Wang Y, et al. Sirpα on tumor-associated myeloid cells restrains antitumor immunity in colorectal cancer independent of its interaction with CD47. Nature Cancer. 2024;5:500–16. (PMID: 3820024310.1038/s43018-023-00691-z)
Zhang Q, Kuang G, Wang L, et al. Tailoring drug delivery systems by microfluidics for tumor therapy. Mater Today. 2024;73:151–78. (PMID: 10.1016/j.mattod.2024.01.004)
Li J, Chen Z, Bai Y, et al. First-line sugemalimab with chemotherapy for advanced esophageal squamous cell carcinoma: a randomized phase 3 study. Nat Med. 2024;30:740–8. (PMID: 3830271510.1038/s41591-024-02797-y)
Kuboki Y, Fakih M, Strickler J, et al. Sotorasib with panitumumab in chemotherapy-refractory KRASG12C-mutated colorectal cancer: a phase 1b trial. Nat Med. 2024;30(1):265–70. (PMID: 381778531113513210.1038/s41591-023-02717-6)
Pomeroy AE, Schmidt EV, Sorger PK, et al. Drug independence and the curability of cancer by combination chemotherapy. Trends in cancer. 2022;8(11):915–29. (PMID: 35842290958860510.1016/j.trecan.2022.06.009)
Chabner BA, Roberts TG Jr. Chemotherapy and the war on cancer. Nat Rev Cancer. 2005;5(1):65–72. (PMID: 1563041610.1038/nrc1529)
Baryakova TH, Pogostin BH, Langer R, et al. Overcoming barriers to patient adherence: the case for developing innovative drug delivery systems. Nat Rev Drug Disc. 2023;22(5):387–409. (PMID: 10.1038/s41573-023-00670-0)
Mitchell MJ, Billingsley MM, Haley RM, et al. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Disc. 2021;20(2):101–24. (PMID: 10.1038/s41573-020-0090-8)
Gao D, Chen T, Chen S, et al. Targeting hypoxic tumors with hybrid nanobullets for oxygen-independent synergistic photothermal and thermodynamic therapy. Nano-Micro Lett. 2021;13(1):1–21. (PMID: 10.1007/s40820-021-00616-4)
Lan Z, Liu W-J, Yin W-W, et al. Biomimetic MDSCs membrane coated black phosphorus nanosheets system for photothermal therapy/photodynamic therapy synergized chemotherapy of cancer. J Nanobiotechnol. 2024;22(1):174. (PMID: 10.1186/s12951-024-02417-4)
Guo S, Gu D, Yang Y, et al. Near-infrared photodynamic and photothermal co-therapy based on organic small molecular dyes. J Nanobiotechnol. 2023;21(1):348. (PMID: 10.1186/s12951-023-02111-x)
Ouyang J, Zhang Z, Deng B, et al. Oral drug delivery platforms for biomedical applications. Mater Today. 2023;62:296–326. (PMID: 10.1016/j.mattod.2023.01.002)
Sun L, Liu H, Ye Y, et al. Smart nanoparticles for cancer therapy. Signal Transduct Target Ther. 2023;8(1):418. (PMID: 379192821062250210.1038/s41392-023-01642-x)
Feng C, Ouyang J, Tang Z, et al. Germanene-based theranostic materials for surgical adjuvant treatment: inhibiting tumor recurrence and wound infection. Matter. 2020;3(1):127–44. (PMID: 10.1016/j.matt.2020.04.022)
Luo M, Dorothy Winston D, Niu W, et al. Bioactive therapeutics-repair-enabled citrate-iron hydrogel scaffolds for efficient post-surgical skin cancer treatment. Chem Eng J. 2022;431: 133596. (PMID: 10.1016/j.cej.2021.133596)
Zhang H, Liu Y, Chen C, et al. Responsive drug-delivery microcarriers based on the silk fibroin inverse opal scaffolds for controllable drug release. Appl Mater Today. 2020;19: 100540. (PMID: 10.1016/j.apmt.2019.100540)
Shou X, Liu Y, Wu D, et al. Black phosphorus quantum dots doped multifunctional hydrogel particles for cancer immunotherapy. Chem Eng J. 2021;408: 127349. (PMID: 10.1016/j.cej.2020.127349)
Zhu T, Liang D, Zhang Q, et al. Curcumin-encapsulated fish gelatin-based microparticles from microfluidic electrospray for postoperative gastric cancer treatment. Int J Biol Macromol. 2023;254(Pt 1): 127763. (PMID: 37924901)
Zhang Q, Kuang G, Li W, et al. Stimuli-responsive gene delivery nanocarriers for cancer therapy. Nano-Micro Lett. 2023;15(1):44. (PMID: 10.1007/s40820-023-01018-4)
Li J, Zhu T, Jiang Y, et al. Microfluidic printed 3D bioactive scaffolds for postoperative treatment of gastric cancer. Mater Today Bio. 2024;24: 100911. (PMID: 3818864910.1016/j.mtbio.2023.100911)
Ji W, Zhang Y, Deng Y, et al. Nature-inspired nanocarriers for improving drug therapy of atherosclerosis. Regenerat Biomater. 2023;10:rbad069. (PMID: 10.1093/rb/rbad069)
Gan J, Huang D, Che J, et al. Biomimetic nanoparticles with cell-membrane camouflage for rheumatoid arthritis. Matter. 2024;7(3):794–825. (PMID: 10.1016/j.matt.2023.12.022)
Zhu H, Kong B, Che J, et al. Bioinspired nanogels as cell-free DNA trapping and scavenging organelles for rheumatoid arthritis treatment. Proc Natl Acad Sci. 2023;120(33): e2303385120. (PMID: 375492841043839310.1073/pnas.2303385120)
Scinto SL, Bilodeau DA, Hincapie R, et al. Bioorthogonal chemistry. Nature Rev Methods Primers. 2021;1(1):30. (PMID: 10.1038/s43586-021-00028-z)
Richter D, Lakis E, Piel J. Site-specific bioorthogonal protein labelling by tetrazine ligation using endogenous β-amino acid dienophiles. Nat Chem. 2023;15(10):1422–30. (PMID: 374005961053339810.1038/s41557-023-01252-8)
Zhang Q, Kuang G, Wang L, et al. Designing bioorthogonal reactions for biomedical applications. Research. 2023;6:0251. (PMID: 381070231072380110.34133/research.0251)
Huang C, Zhao C, Deng Q, et al. Hydrogen-bonded organic framework-based bioorthogonal catalysis prevents drug metabolic inactivation. Nat Catal. 2023;6(8):729–39. (PMID: 10.1038/s41929-023-00999-0)
Chen Z, Li H, Bian Y, et al. Bioorthogonal catalytic patch. Nat Nanotechnol. 2021;16(8):933–41. (PMID: 3397276010.1038/s41565-021-00910-7)
Oliveira B, Guo Z, Bernardes G. Inverse electron demand diels-alder reactions in chemical biology. Chem Soc Rev. 2017;46(16):4895–950. (PMID: 2866095710.1039/C7CS00184C)
Srinivasan S, Yee NA, Wu K, et al. SQ3370 activates cytotoxic drug via click chemistry at tumor and elicits sustained responses in injected & non-injected lesions. Adv Ther. 2021;4(3):2000243. (PMID: 10.1002/adtp.202000243)
Werther P, Yserentant K, Braun F, et al. Bio-orthogonal red and far-red fluorogenic probes for wash-free live-cell and super-resolution microscopy. ACS Cent Sci. 2021;7(9):1561–71. (PMID: 34584958846176610.1021/acscentsci.1c00703)
Rossin R, Versteegen RM, Wu J, et al. Chemically triggered drug release from an antibody-drug conjugate leads to potent antitumour activity in mice. Nat Commun. 2018;9(1):1484. (PMID: 29728559593573310.1038/s41467-018-03880-y)
Liu Y, Huang Q, Wang J, et al. Microfluidic generation of egg-derived protein microcarriers for 3D cell culture and drug delivery. Sci Bull. 2017;62(18):1283–90. (PMID: 10.1016/j.scib.2017.09.006)
Zhang Q, Wang X, Kuang G, et al. Pt(IV) prodrug initiated microparticles from microfluidics for tumor chemo-, photothermal and photodynamic combination therapy. Bioactive Mater. 2023;24:185–96. (PMID: 10.1016/j.bioactmat.2022.12.020)
Wang H, Zhao Z, Liu Y, et al. Biomimetic enzyme cascade reaction system in microfluidic electrospray microcapsules. Sci Adv. 2018;4(6):eaat2816. (PMID: 29922720600372810.1126/sciadv.aat2816)
Zhang Q, Kuang G, Wang H, et al. Multi-bioinspired MOF delivery systems from microfluidics for tumor multimodal therapy. Adv Sci. 2023;10(33):2303818. (PMID: 10.1002/advs.202303818)
Aleman J, Kilic T, Mille LS, et al. Microfluidic integration of regeneratable electrochemical affinity-based biosensors for continual monitoring of organ-on-a-chip devices. Nat Protoc. 2021;16(5):2564–93. (PMID: 3391125910.1038/s41596-021-00511-7)
Barry R, Ivanov D. Microfluidics in biotechnology. J Nanobiotechnol. 2004;2(1):2. (PMID: 10.1186/1477-3155-2-2)
Yang C, Yu Y, Shang L, et al. Flexible hemline-shaped microfibers for liquid transport. Nature Chem Eng. 2024;1(1):87–96. (PMID: 10.1038/s44286-023-00001-5)
Huang D, Wang J, Nie M, et al. Pollen-inspired adhesive multilobe microparticles from microfluidics for intestinal drug delivery. Adv Mater. 2023;35(28):2301192. (PMID: 10.1002/adma.202301192)
Zhi Y, Che J, Zhu H, et al. Glycyrrhetinic acid liposomes encapsulated microcapsules from microfluidic electrospray for inflammatory wound healing. Adv Func Mater. 2023;33(43):2304353. (PMID: 10.1002/adfm.202304353)
Li W, Zhang L, Ge X, et al. Microfluidic fabrication of microparticles for biomedical applications. Chem Soc Rev. 2018;47(15):5646–83. (PMID: 29999050614034410.1039/C7CS00263G)
Jiang Z, Shi H, Tang X, et al. Recent advances in droplet microfluidics for single-cell analysis. TrAC, Trends Anal Chem. 2023;159: 116932. (PMID: 10.1016/j.trac.2023.116932)
Kuang G, Zhang Q, Li W, et al. Biomimetic tertiary lymphoid structures with microporous annealed particle scaffolds for cancer postoperative therapy. ACS Nano. 2024;18(12):9176–86. (PMID: 3849760110.1021/acsnano.4c01180)
Cai L, Li N, Zhang Y, et al. Microfluidics-derived microcarrier systems for oral delivery. Biomed Technol. 2023;1:30–8. (PMID: 10.1016/j.bmt.2022.11.001)
Yang L, Liu Y, Sun L, et al. Biomass microcapsules with stem cell encapsulation for bone repair. Nano-Micro Lett. 2021;14(1):4. (PMID: 10.1007/s40820-021-00747-8)
Yao Q, Lin F, Fan X, et al. Synergistic enzymatic and bioorthogonal reactions for selective prodrug activation in living systems. Nat Commun. 2018;9(1):5032. (PMID: 30487642626199710.1038/s41467-018-07490-6)
Ma Y, Zhou Y, Long J, et al. A high-efficiency bioorthogonal tumor-membrane reactor for in situ selective and sustained prodrug activation. Angew Chem Int Ed. 2024;136(10): e202318372. (PMID: 10.1002/ange.202318372)
Yang L, Wang X, Yu Y, et al. Bio-inspired dual-adhesive particles from microfluidic electrospray for bone regeneration. Nano Res. 2023;16(4):5292–9. (PMID: 10.1007/s12274-022-5202-9)
Zhong J, Zhang Q, Kuang G, et al. Multicomponent microspheres with spatiotemporal drug release for post-surgical liver cancer treatment and liver regeneration. Chem Eng J. 2023;455: 140585. (PMID: 10.1016/j.cej.2022.140585)
Hou SS, Yang J, Lee JH, et al. Near-infrared fluorescence lifetime imaging of amyloid-β aggregates and tau fibrils through the intact skull of mice. Nature Biomed Eng. 2023;7(3):270–80. (PMID: 10.1038/s41551-023-01003-7)
Wang L, Chen P, Pan Y, et al. Injectable photocurable janus hydrogel delivering hiPSC cardiomyocyte-derived exosome for post–heart surgery adhesion reduction. Sci Adv. 2023;9(31):eadh1753. (PMID: 375407391040320410.1126/sciadv.adh1753)
معلومات مُعتمدة: 52103196 National Natural Science Foundation of China; 32201118 National Natural Science Foundation of China; T2225003 National Natural Science Foundation of China; WIUCASQD2023010 Wenzhou Institute UCAS startup fund; Y20240114 Wenzhou Municipal Basic Scientific Research Project; 2022YFA1105304 National Key Research and Development Program of China; 2021B1515120054 Basic and Applied Basic Research Foundation of Guangdong Province
فهرسة مساهمة: Keywords: Biorthogonal chemistry; Chemotherapy; Compartmental microparticle; Microfluidics; Photothermal therapy
المشرفين على المادة: 80168379AG (Doxorubicin)
0 (Prodrugs)
IX6J1063HV (Indocyanine Green)
0 (Cyclooctanes)
0 (Antineoplastic Agents)
تواريخ الأحداث: Date Created: 20240820 Date Completed: 20240821 Latest Revision: 20240820
رمز التحديث: 20240821
DOI: 10.1186/s12951-024-02778-w
PMID: 39164657
قاعدة البيانات: MEDLINE
الوصف
تدمد:1477-3155
DOI:10.1186/s12951-024-02778-w