دورية أكاديمية

Reducing sample size by clustering: A way to make risk assessment feasible for large groups of organic compounds?

التفاصيل البيبلوغرافية
العنوان: Reducing sample size by clustering: A way to make risk assessment feasible for large groups of organic compounds?
المؤلفون: Hoondert RPJ; KWR Water Research, Groningenhaven 7, Nieuwegein 3433 PE, The Netherlands., Wols BA; KWR Water Research, Groningenhaven 7, Nieuwegein 3433 PE, The Netherlands; Wetsus, Oostergoweg 9, Leeuwarden 8911 MA, The Netherlands., Bäuerlein PS; KWR Water Research, Groningenhaven 7, Nieuwegein 3433 PE, The Netherlands E-mail: patrick.bauerlein@kwrwater.nl.
المصدر: Journal of water and health [J Water Health] 2024 Aug; Vol. 22 (8), pp. 1527-1540. Date of Electronic Publication: 2024 Jul 04.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: IWA Pub Country of Publication: England NLM ID: 101185420 Publication Model: Print-Electronic Cited Medium: Print ISSN: 1477-8920 (Print) Linking ISSN: 14778920 NLM ISO Abbreviation: J Water Health Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London ; Avenel, NJ : IWA Pub., c2003-
مواضيع طبية MeSH: Water Pollutants, Chemical*/analysis , Water Pollutants, Chemical*/chemistry , Drinking Water*/chemistry , Drinking Water*/analysis, Risk Assessment/methods ; Cluster Analysis ; Humans ; Organic Chemicals/chemistry ; Sample Size
مستخلص: This research addresses the presence of substances of very high concern (SVHCs) confronting the drinking water sector. Responding adequately to the potential hazards by SVHCs, knowledge of emission pathways, toxicity, presence in drinking water sources, and removability during water production is crucial. As this information cannot be received for each compound individually, we employed a detailed clustering approach based on chemical properties and structures of SVHCs from lists with over 1,000 compounds. Through this process, 915 substances were divided into 51 clusters. We tested this clustering in risk assessment. To assess the risks, we developed toxicity prediction models utilizing random forests and multiple linear regression. These models were applied to make toxicity predictions for the list of compounds. This study shows that clustering is a viable approach to reducing sample size. In addition, the toxicity models provide insights into the potential human health risks. This research contributes to more informed decision-making and improved risk assessment in the drinking water sector, aiding in the protection of human health and the environment. This principle is generally applicable. If in a group a suitable representative is found, data from experiments with this compound can be used to gauge the behaviour of chemicals in this group.
Competing Interests: The authors declare there is no conflict.
(© 2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY-NC-ND 4.0), which permits copying and redistribution for non-commercial purposes with no derivatives, provided the original work is properly cited (http://creativecommons.org/licenses/by-nc-nd/4.0/).)
References: Bajusz D., Rácz A. & Héberger K. 2015 Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? Journal of Cheminformatics 7 (1), 20.
Bäuerlein P. S., Emke E., Tromp P., Hofman J. A. M. H., Carboni A., Schooneman F., De Voogt P. & Van Wezel A. P. 2017 Is there evidence for man-made nanoparticles in the Dutch environment? Science of the Total Environment 576, 273–283.
Bäuerlein P. S., Hofman-Caris R. C. H. M., Pieke E. N. & Ter Laak T. L. 2022 Fate of microplastics in the drinking water production. Water Research 221, 118790.
Bäuerlein P. S., Pieke E. N., Oesterholt F., Ter Laak T. & Kools S. A. E. 2023 Microplastic discharge from a wastewater treatment plant: Long term monitoring to compare two analytical techniques, LDIR and optical microscopy while also assessing the removal efficiency of a bubble curtain. Water Science and Technology 87, 39–56.
Bettis J. L. 2019 An introduction to (Q) SAR with respect to regulatory submissions. In: Integrated Safety and Risk Assessment for Medical Devices and Combination Products (In: Gad, S. C., ed.) . Springer, Raleigh.
Davey C. J. E., Kraak M. H. S., Praetorius A., Ter Laak T. L. & Van Wezel A. P. 2022 Occurrence, hazard, and risk of psychopharmaceuticals and illicit drugs in European surface waters. Water Research 222, 118878.
European Union 2000 Water Framework Directive (2000/60/EC). European Union, Brussels.
European Union 2019 Regulation (EU) 2019/1021 of the European Parliament and of the Council of 20 June 2019 on persistent organic pollutants (recast). European Union, Brussels.
Groothuis F. A., Heringa M. B., Nicol B., Hermens J. L. M., Blaauboer B. J. & Kramer N. I. 2015 Dose metric considerations in in vitro assays to improve quantitative in vitro–in vivo dose extrapolations. Toxicology 332, 30–40. (PMID: 23978460)
Hair J. F., Ringle C. M. & Sarstedt M. 2013 Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. Long Range Planning 46, 1–12.
Hale S. E., Arp H. P. H., Schliebner I. & Neumann M. 2020 Persistent, mobile and toxic (PMT) and very persistent and very mobile (vPvM) substances pose an equivalent level of concern to persistent, bioaccumulative and toxic (PBT) and very persistent and very bioaccumulative (vPvB) substances under REACH. Environmental Sciences Europe 32, 155.
Holmberg R., Wedebye E. B., Nikolov N. G. & Tyle K. H. 2018 How Many vPvM/PMT Substances Have Been Registered Under REACH? — vPvM/PMT Screening by Using the Danish QSAR Database. Danmarks Tekniske Universitet (DTU), Kongens Lyngby.
Kim S., Thiessen P. A., Cheng T., Yu B. & Bolton E. E. 2018 An update on PUG-REST: RESTful interface for programmatic access to PubChem. Nucleic Acids Research 46, W563–W570. (PMID: PMC603092029718389)
Kim S., Chen J., Cheng T., Gindulyte A., He J., He S., Li Q., Shoemaker B. A., Thiessen P. A., Yu B., Zaslavsky L., Zhang J. & Bolton E. E. 2022 Pubchem 2023 update. Nucleic Acids Research 51, D1373–D1380. (PMID: PMC9825602)
Kools S. A. E., Roskam G. D., Verheul M. R. A. & Pieters B. J. 2013 MRI contrast media, Magnetic Resonance Imaging (MRI) contrast media in het aquatisch milieu, Vereniging van rivierwaterbedrijven. RIWA Rijn.
Lambert F. N., Vivian D. N., Raimondo S., Tebes-Stevens C. T. & Barron M. G. 2022 Relationships between aquatic toxicity, chemical hydrophobicity, and mode of action: Log Kow revisited. Archives of Environmental Contamination and Toxicology. 83 (4), 326–338.
Næs T. & Mevik B. H. 2001 Understanding the collinearity problem in regression and discriminant analysis. Journal of Chemometrics: A Journal of the Chemometrics Society 15, 413–426.
OSPAR 2017 Assessment Document of Land-Based Inputs of Microplastics in the Marine Environment. OSPAR, London.
Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R. & Dubourg V. 2011 Scikit-learn: Machine learning in Python. The Journal of Machine Learning Research 12, 2825–2830.
RDKIT. RDKit: Open-Source Cheminformatics. Available from: https://www.rdkit.org [Online]. [Accessed].
Rigdon E. 2014 Rethinking partial least squares path modeling: Breaking chains and forging ahead. Long Range Planning 47, 161–167.
Rijn R. 2023 Jaarrapport 2022 (In: Stroomberg, G., ed.). Riwa Rijn, Nieuwegein.
RIVM 2024 Zeer Zorgwekkende Stoffen [Online]. Rivm. Available from: https://rvs.rivm.nl/onderwerpen/zeer-zorgwekkende-stoffen (accessed 9 November 2023).
Sarstedt M., Ringle C. M. & Hair J. F. 2021 Partial least squares structural equation modeling. In: Handbook of Market Research (Homburg, C., Klarmann, M. & Vomberg, A. eds), Springer, Cham.
Schulte C., Tietjen L., Bambauer A. & Fleischer A. 2012 Five years REACH – lessons learned and first experiences. I. An authorities’ view. Environmental Sciences Europe 24, 31.
Sjerps R. M. A., Brunner A. M., Fujita Y., Bajema B., De Jonge M., Bäuerlein P. S., De Munk J., Schriks M. & Van Wezel A. 2021 Clustering and prioritization to design a risk-based monitoring program in groundwater sources for drinking water. Environmental Sciences Europe 33, 32.
USEPA 2012 Estimation Programs Interface Suite™ for Microsoft ® Windows, v 4.11 United States Environmental Protection Agency, Washington, DC.
Wassenaar P. N. H., Rorije E., Vijver M. G. & Peijnenburg W. J. G. M. 2021 Evaluating chemical similarity as a measure to identify potential substances of very high concern. Regulatory Toxicology and Pharmacology 119, 104834. (PMID: 33227364)
Wassenaar P. N. H., Rorije E., Vijver M. G. & Peijnenburg W. J. G. M. 2022 ZZS similarity tool: The online tool for similarity screening to identify chemicals of potential concern. Journal of Computational Chemistry 43, 1042–1052. (PMID: PMC932253635403727)
Yang, H., Lou, C., Li, W., Liu, G. & Tang, Y. 2020 Computational approaches to identify structural alerts and their applications in environmental toxicology and drug discovery. Chemical Research in Toxicology 33 (6), 1312–1322.
معلومات مُعتمدة: Joint Research Programme of KWR, the water utilities and Vewin
فهرسة مساهمة: Keywords: SVHC; clustering; drinking water; prediction; toxicity
المشرفين على المادة: 0 (Water Pollutants, Chemical)
0 (Drinking Water)
0 (Organic Chemicals)
تواريخ الأحداث: Date Created: 20240830 Date Completed: 20240830 Latest Revision: 20240830
رمز التحديث: 20240902
DOI: 10.2166/wh.2024.127
PMID: 39212285
قاعدة البيانات: MEDLINE
الوصف
تدمد:1477-8920
DOI:10.2166/wh.2024.127