دورية أكاديمية

Novel Honeycomb Nanoclay Frameworks With Hemostatic and Antibacterial Properties.

التفاصيل البيبلوغرافية
العنوان: Novel Honeycomb Nanoclay Frameworks With Hemostatic and Antibacterial Properties.
المؤلفون: Cambronel M; Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Clermont-Ferrand, France., Wongkamhaeng K; Division of Prosthodontics, Faculty of Dentistry, Thammasat University, Khlong Luang, Thailand., Blavignac C; Centre Imagerie Cellulaire Santé, UCA PARTNER, UFR de Médecine, Clermont-Ferrand, France., Forestier C; Université Clermont Auvergne, CNRS, LMGE, Clermont-Ferrand, France., Nedelec JM; Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Clermont-Ferrand, France., Denry I; Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Clermont-Ferrand, France.; Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, Iowa, USA.
المصدر: Journal of biomedical materials research. Part B, Applied biomaterials [J Biomed Mater Res B Appl Biomater] 2024 Sep; Vol. 112 (9), pp. e35477.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: John Wiley & Sons Country of Publication: United States NLM ID: 101234238 Publication Model: Print Cited Medium: Internet ISSN: 1552-4981 (Electronic) Linking ISSN: 15524973 NLM ISO Abbreviation: J Biomed Mater Res B Appl Biomater Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Hoboken, NJ : John Wiley & Sons, c2003-
مواضيع طبية MeSH: Anti-Bacterial Agents*/pharmacology , Anti-Bacterial Agents*/chemistry , Silver*/chemistry , Silver*/pharmacology , Hemostatics*/pharmacology , Hemostatics*/chemistry , Staphylococcus aureus*/drug effects , Staphylococcus aureus*/growth & development , Pseudomonas aeruginosa*/drug effects , Metal Nanoparticles*/chemistry , Clay*/chemistry, Humans ; Hemostasis/drug effects
مستخلص: Our laboratory recently developed a new class of high surface area, honeycomb Nanoclay Microsphere Framework absorbents (NMFs) that prompt rapid hemostasis. In the present work, we propose a novel approach to develop antibacterial Topical Hemostatic Agents (THAs) by anchoring silver nanoparticles (AgNPs) onto NMFs. This combination was obtained by a chemical co-reduction approach, followed by freeze-processing, and was shown to ensure stability and on-site delivery of AgNPs, without altering the hemostatic properties of NMFs. Silver-loaded NMFs showed no change in their unique architecture and led to a 55% increase in clot strength, compared to standard control plasma or commercially available THA, and a significant decrease in mean fibrin fiber diameter. Silver nanoparticles were successfully released when solubilized and prevented the growth of both Pseudomonas aeruginosa and Staphylococcus aureus at concentrations of 22 and 30 ppm of silver released, respectively. Overall, cell mortality was between 9.1 ± 5.1% and 6.3 ± 3.2%, depending on AgNP concentration, confirming a low cytotoxicity. Silver-loaded nanoclay microsphere frameworks appear to constitute promising candidates as topical hemostatic agents for secondary management of hemostasis when infection control is needed.
(© 2024 The Author(s). Journal of Biomedical Materials Research Part B: Applied Biomaterials published by Wiley Periodicals LLC.)
References: P. Alexander, S. Visagan, R. Issa, V. R. Gorantla, and S. E. Thomas, “Current Trends in the Duration of Anticoagulant Therapy for Venous Thromboembolism: A Systematic Review,” Cureus Journal of Medical Science 13, no. 10 (2021): 1–15.
N. Ruangchainicom, B. Mahardawi, and W. Sakdejayont, “Topical Hemostatic Agents From an Oral‐Surgery Perspective,” Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology 33, no. 3 (2021): 249–255.
P. J. Vezeau, “Topical Hemostatic Agents What the Oral and Maxillofacial Surgeon Needs to Know,” Oral and Maxillofacial Surgery Clinics of North America 28, no. 4 (2016): 523–532.
S. S. Y. Mohamed, A. Gambino, M. Banchero, et al., “Tranexamic Acid‐Loaded Mesoporous Silica Microspheres as a Hemostatic Material,” Materials Today Communications 34 (2023): 1–7.
N. Howe and B. Cherpelis, “Obtaining Rapid and Effective Hemostasis Part I. Update and Review of Topical Hemostatic Agents,” Journal of the American Academy of Dermatology 69, no. 5 (2013): 1–17.
E. Rezabeigi, C. Schmitt, A. H. Henni, A. N. Barkun, and S. N. Nazhat, “In Vitro Evaluation of Real‐Time Viscoelastic and Coagulation Properties of Various Classes of Topical Hemostatic Agents Using a Novel Contactless Nondestructive Technology,” ACS Applied Materials & Interfaces 14, no. 14 (2022): 16047–16061.
L. Huang, G. L. Liu, A. D. Kaye, and H. Liu, “Advances in Topical Hemostatic Agent Therapies: A Comprehensive Update,” Advances in Therapy 37, no. 10 (2020): 4132–4148.
E. Mohamed, L. A. Coupland, P. J. Crispin, A. Fitzgerald, D. R. Nisbet, and T. Tsuzuki, “Non‐Oxidized Cellulose Nanofibers as a Topical Hemostat: In Vitro Thromboelastometry Studies of Structure vs Function,” Carbohydrate Polymers 265 (2021): 1–9.
L. Szymanski, K. Golaszewska, J. Malkowska, et al., “Safety and Performance of Hemostatic Powders,” Journal of Medical Devices 16 (2023): 133–144.
J. K. Wright, J. Kalns, E. A. Wolf, et al., “Thermal Injury Resulting From Application of a Granular Mineral Hemostatic Agent,” Journal of Trauma 57, no. 2 (2004): 224–230.
P. Fathi, M. Sikorski, K. Christodoulides, et al., “Zeolite‐Loaded Alginate‐Chitosan Hydrogel Beads as a Topical Hemostat,” Journal of Biomedical Materials Research Part B: Applied Biomaterials 106, no. 5 (2018): 1662–1671.
S. Biswas, B. K. Bhunia, G. Janani, and B. B. Mandal, “Silk Fibroin Based Formulations as Potential Hemostatic Agents,” ACS Biomaterials Science & Engineering 8, no. 6 (2022): 2654–2663.
S. G. Wang, Y. L. Wu, R. Guo, et al., “Laponite Nanodisks as an Efficient Platform for Doxorubicin Delivery to Cancer Cells,” Langmuir 29, no. 16 (2013): 5030–5036.
G. R. Peraro, E. H. Donzelli, P. F. Oliveira, et al., “Aminofunctionalized LAPONITE® as a Versatile Hybrid Material for Chlorhexidine Digluconate Incorporation: Cytotoxicity and Antimicrobial Activities,” Applied Clay Science 195 (2020): 1–13.
M. Roozbahani, M. Kharaziha, and R. Emadi, “pH Sensitive Dexamethasone Encapsulated Laponite Nanoplatelets: Release Mechanism and Cytotoxicity,” International Journal of Pharmaceutics 518, no. 1–2 (2017): 312–319.
G. Kiaee, N. Dimitrakakis, S. Sharifzadeh, et al., “Laponite‐Based Nanomaterials for Drug Delivery,” Advanced Healthcare Materials 11, no. 7 (2022): 1–21.
I. Denry, J. M. Nedelec, and J. A. Holloway, “Tranexamic Acid‐Loaded Hemostatic Nanoclay Microsphere Frameworks,” Journal of Biomedical Materials Research Part B: Applied Biomaterials 110, no. 2 (2022): 422–430.
M. M. Lezhnina, M. Bentlage, and U. H. Kynast, “Nanoclays: Two‐Dimensional Shuttles for Rare Earth Complexes in Aqueous Solution,” Optical Materials 33, no. 10 (2011): 1471–1475.
D. W. Thompson and J. T. Butterworth, “The Nature of Laponite and Its Aqueous Dispersions,” Journal of Colloid and Interface Science 151, no. 1 (1992): 236–243.
W. R. Li, X. B. Xie, Q. S. Shi, H. Y. Zeng, Y. S. Ou‐Yang, and Y. B. Chen, “Antibacterial Activity and Mechanism of Silver Nanoparticles on Escherichia coli,” Applied Microbiology and Biotechnology 85, no. 4 (2010): 1115–1122.
J. R. Morones, J. L. Elechiguerra, A. Camacho, et al., “The Bactericidal Effect of Silver Nanoparticles,” Nanotechnology 16, no. 10 (2005): 2346–2353.
I. Sondi and B. Salopek‐Sondi, “Silver Nanoparticles as Antimicrobial Agent: A Case Study on E‐Coli as a Model for Gram‐Negative Bacteria,” Journal of Colloid and Interface Science 275, no. 1 (2004): 177–182.
X. T. Yan, B. He, L. H. Liu, et al., “Antibacterial Mechanism of Silver Nanoparticles in Pseudomonas aeruginosa: Proteomics Approach,” Metallomics 10, no. 4 (2018): 557–564.
T. C. Dakal, A. Kumar, R. S. Majumdar, and V. Yadav, “Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles,” Frontiers in Microbiology 7 (2016): 1–17.
S. H. Tang and J. Zheng, “Antibacterial Activity of Silver Nanoparticles: Structural Effects,” Advanced Healthcare Materials 7, no. 13 (2018): 1–10.
K. Wongkamhaeng, J. N. Wang, J. A. Banas, et al., “Antimicrobial Efficacy of Platinum‐Doped Silver Nanoparticles,” Journal of Biomedical Materials Research Part B: Applied Biomaterials 108, no. 8 (2020): 3393–3401.
A. Van Hoonacker and P. Englebienne, “Revisiting Silver Nanoparticle Chemical Synthesis and Stability by Optical Spectroscopy,” Current Nanoscience 2, no. 4 (2006): 359–371.
S. Iravani, H. Korbekandi, S. V. Mirmohammadi, and B. Zolfaghari, “Synthesis of Silver Nanoparticles: Chemical, Physical and Biological Methods,” Results in Pharma Sciences 9, no. 6 (2014): 385–406.
B. K. Shrestha and A. J. Haes, “Improving Surface Enhanced Raman Signal Reproducibility Using Gold‐Coated Silver Nanospheres Encapsulated in Silica Membranes,” Journal of Optics 17, no. 11 (2015): 1–10.
M. D. Abramoff, P. J. Magelhaes, and S. J. Ram, “Image Processing With ImageJ,” Journal of Biophotonics 11, no. 7 (2004): 36–42.
D. R. Black, D. Windover, A. Henins, D. Gil, J. Filliben, and J. P. Cline, “Certification of NIST Standard Reference Material 640d,” Powder Diffraction 25, no. 2 (2010): 187–190.
D. Paramelle, A. Sadovoy, S. Gorelik, P. Free, J. Hobley, and D. G. Fernig, “A Rapid Method to Estimate the Concentration of Citrate Capped Silver Nanoparticles From UV‐Visible Light Spectra,” Analyst 139, no. 19 (2014): 4855–4861.
P. V. AshaRani, G. L. K. Mun, M. P. Hande, and S. Valiyaveettil, “Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells,” ACS Nano 3, no. 2 (2009): 279–290.
B. Skóra, U. Krajewska, A. Nowak, A. Dziedzic, A. Barylyak, and M. Kus‐Liskiewicz, “Noncytotoxic Silver Nanoparticles as a New Antimicrobial Strategy,” Scientific Reports 11, no. 1 (2021): 1–13.
M. Szymonowicz, A. Rusak, M. Pajaczkowska, et al., “Assessment of Cytotoxic and Antimicrobial Activity of Selected Gingival Haemostatic Agents—In Vitro Study,” Acta of Bioengineering and Biomechanics 22, no. 3 (2020): 185–198.
S. Gurunathan, M. Qasim, C. Park, et al., “Cytotoxicity and Transcriptomic Analysis of Silver Nanoparticles in Mouse Embryonic Fibroblast Cells,” International Journal of Molecular Sciences 19, no. 11 (2018): 1–23.
J. F. Trickovic, M. Momcilovic, G. Joksic, et al., “Laser Ablated Citrate‐Stabilized Silver Nanoparticles Display Size and Concentration Dependant Biological Effects,” Nanomaterials and Nanotechnology 2023 (2023): 1–10.
C. V. Vivas, J. A. dos Santos, Y. B. Barreto, et al., “Biochemical Response of Human Endothelial and Fibroblast Cells to Silver Nanoparticles,” BioNanoScience 13 (2023): 1–30.
W. Conover, Practical Nonparametric Statistics (Hoboken: John Wiley, 1980).
G. A. Valencia, M. Djabourov, F. Carn, and P. J. A. Sobral, “Novel Insights on Swelling and Dehydration of Laponite,” Colloid and Interface Science Communications 23 (2018): 1–5.
P. C. Lombardo, A. L. Poli, L. F. Castro, J. R. Perussi, and C. C. Schmitt, “Photochemical Deposition of Silver Nanoparticles on Clays and Exploring Their Antibacterial Activity,” ACS Applied Materials & Interfaces 8, no. 33 (2016): 21640–21647.
F. Mascarenhas‐Melo, D. Peixoto, C. Aleixo, et al., “Nanoclays for Wound Management Applications,” Drug Delivery and Translational Research 13, no. 4 (2023): 924–945.
S. Pourshahrestani, E. Zeimaran, I. Djordjevic, N. A. Kadri, and M. R. Towler, “Inorganic Hemostats: The State‐Of‐The‐Art and Recent Advances,” Materials Science and Engineering: C 58 (2016): 1255–1268.
Y. Asaad, D. Nemcovsky‐Amar, J. Sznitman, P. H. Mangin, and N. Korin, “A Double‐Edged Sword: The Complex Interplay Between Engineered Nanoparticles and Platelets,” Bioengineering & Translational Medicine 9 (2024): e10669.
A. L. Guildford, T. Poletti, L. H. Osbourne, A. Di Cerbo, A. M. Gatti, and M. Santin, “Nanoparticles of a Different Source Induce Different Patterns of Activation in Key Biochemical and Cellular Components of the Host Response,” Journal of the Royal Society Interface 6, no. 41 (2009): 1213–1221.
E. A. Jun, K. M. Lim, K. Kim, et al., “Silver Nanoparticles Enhance Thrombus Formation Through Increased Platelet Aggregation and Procoagulant Activity,” Nanotoxicology 5, no. 2 (2011): 157–167.
S. Shrivastava, T. Bera, S. K. Singh, G. Singh, P. Ramachandrarao, and D. Dash, “Characterization of Antiplatelet Properties of Silver Nanopartides,” ACS Nano 3, no. 6 (2009): 1357–1364.
S. Shrivastava, S. K. Singh, A. Mukhopadhyay, A. S. K. Sinha, R. K. Mandal, and D. Dash, “Negative Regulation of Fibrin Polymerization and Clot Formation by Nanoparticles of Silver,” Colloids and Surfaces 82, no. 1 (2011): 241–246.
H. Huang, W. J. Lai, M. H. Cui, et al., “An Evaluation of Blood Compatibility of Silver Nanoparticles,” Scientific Reports 6 (2016): 25518.
J. Gessmann, D. Seybold, F. Ayami, et al., “Peripheral Blood Plasma Clot as a Local Antimicrobial Drug Delivery Matrix,” Tissue Engineering. Part A 24, no. 9–10 (2018): 809–818.
J. H. Wu and T. Ngai, “In‐Vitro Fibrin Assembly: From the Bulk to the Interface,” Current Opinion in Colloid & Interface Science 63 (2023): 1–14.
L. W. Chan, N. J. White, and S. H. Pun, “A Fibrin Cross‐Linking Polymer Enhances Clot Formation Similar to Factor Concentrates and Tranexamic Acid in an in Vitro Model of Coagulopathy,” ACS Biomaterials Science & Engineering 2, no. 3 (2016): 403–408.
M. E. Carr and B. M. Alving, “Effect of Fibrin Structure on Plasmin‐Mediated Dissolution of Plasma Clots,” Blood Coagulation & Fibrinolysis 6, no. 6 (1995): 567–573.
D. S. Ipe, P. T. S. Kumar, R. M. Love, and S. M. Hamlet, “Silver Nanoparticles at Biocompatible Dosage Synergistically Increases Bacterial Susceptibility to Antibiotics,” Frontiers in Microbiology 11 (2020): 01074.
M. A. Radzig, V. A. Nadtochenko, O. A. Koksharova, J. Kiwi, V. A. Lipasova, and I. A. Khmel, “Antibacterial Effects of Silver Nanoparticles on Gram‐Negative Bacteria: Influence on the Growth and Biofilms Formation, Mechanisms of Action,” Colloids and Surfaces B: Biointerfaces 102 (2013): 300–306.
S. J. Lia, Y. P. Zhang, X. H. Pan, et al., “Antibacterial Activity and Mechanism of Silver Nanoparticles Against Multidrug‐Resistant Pseudomonas aeruginosa,” International Journal of Nanomedicine 14 (2019): 1469–1487.
B. Girase, D. Depan, J. S. Shah, W. Xu, and R. D. K. Misra, “Silver‐Clay Nanohybrid Structure for Effective and Diffusion‐Controlled Antimicrobial Activity,” Materials Science and Engineering: C 31, no. 8 (2011): 1759–1766.
S. M. Magaña, P. Quintana, D. H. Aguilar, et al., “Antibacterial Activity of Montmorillonites Modified With Silver,” Journal of Molecular Catalysis A: Chemical 281, no. 1–2 (2008): 192–199.
H. F. G. Mejia, K. H. Seitz, M. Valdes, A. Uheida, R. A. Procaccini, and S. A. Pellice, “Antibacterial Performance of Hybrid Nanocomposite Coatings Containing Clay and Silver Nanoparticles,” Colloids and Surfaces 628 (2021): 1–9.
H. L. Su, C. C. Chou, D. J. Hung, et al., “The Disruption of Bacterial Membrane Integrity Through ROS Generation Induced by Nanohybrids of Silver and Clay,” Biomaterials 30, no. 30 (2009): 5979–5987.
S. M. Häffner, L. Nyström, K. L. Browning, et al., “Interaction of Laponite With Membrane Components‐Consequences for Bacterial Aggregation and Infection Confinement,” ACS Applied Materials & Interfaces 11, no. 17 (2019): 15389–15400.
K. Rawat, S. Agarwal, A. Tyagi, A. K. Verma, and H. B. Bohidar, “Aspect Ratio Dependent Cytotoxicity and Antimicrobial Properties of Nanoclay,” Applied Biochemistry and Biotechnology 174, no. 3 (2014): 936–944.
M. Ghadiri, W. Chrzanowski, and R. Rohanizadeh, “Antibiotic Eluting Clay Mineral (Laponite((R))) for Wound Healing Application: An in Vitro Study,” Journal of Materials Science: Materials in Medicine 25, no. 11 (2014): 2513–2526.
V. D. M. Gonzaga, A. L. Poli, J. S. Gabriel, et al., “Chitosan‐Laponite Nanocomposite Scaffolds for Wound Dressing Application,” Journal of Biomedical Materials Research Part B: Applied Biomaterials 108, no. 4 (2020): 1388–1397.
Y. G. Jiang, J. J. Huang, X. W. Wu, Y. H. Ren, Z. A. Li, and J. A. Ren, “Controlled Release of Silver Ions From AgNPs Using a Hydrogel Based on Konjac Glucomannan and Chitosan for Infected Wounds,” International Journal of Biological Macromolecules 149 (2020): 148–157.
M. Mohseni, A. Shamloo, Z. Aghababaie, et al., “A Comparative Study of Wound Dressings Loaded With Silver Sulfadiazine and Silver Nanoparticles: In Vitro and in Vivo Evaluation,” International Journal of Pharmaceutics 564 (2019): 350–358.
C. H. Chang, Y. H. Lee, Z. H. Liao, M. H. C. Chen, F. C. Peng, and J. J. Lin, “Composition of Nanoclay Supported Silver Nanoparticles in Furtherance of Mitigating Cytotoxicity and Genotoxicity,” PLoS One 16, no. 2 (2021): 1–15.
معلومات مُعتمدة: United States DE NIDCR NIH HHS
فهرسة مساهمة: Keywords: Laponite nanoclay; antibacterial action; cytotoxicity; topical hemostatic agent
المشرفين على المادة: 0 (Anti-Bacterial Agents)
3M4G523W1G (Silver)
0 (Hemostatics)
T1FAD4SS2M (Clay)
تواريخ الأحداث: Date Created: 20240830 Date Completed: 20240830 Latest Revision: 20240830
رمز التحديث: 20240902
DOI: 10.1002/jbm.b.35477
PMID: 39213159
قاعدة البيانات: MEDLINE
الوصف
تدمد:1552-4981
DOI:10.1002/jbm.b.35477