دورية أكاديمية

Oral Bioavailability Enhancement of Poorly Soluble Drug by Amorphous Solid Dispersion Using Sucrose Acetate Isobutyrate.

التفاصيل البيبلوغرافية
العنوان: Oral Bioavailability Enhancement of Poorly Soluble Drug by Amorphous Solid Dispersion Using Sucrose Acetate Isobutyrate.
المؤلفون: Mohamed EM; Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, 310 Reynolds Medical Sciences Building, College Station, Texas, 77843-1114, U.S.A.; Department of Pharmaceutics, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt., Dharani S; Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, 310 Reynolds Medical Sciences Building, College Station, Texas, 77843-1114, U.S.A., Khuroo T; Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, 310 Reynolds Medical Sciences Building, College Station, Texas, 77843-1114, U.S.A., Nutan MTH; Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, Kingsville, Texas, 78363, U.S.A., Cook P; Eastman Chemical Company, Kingsport, Tennessee, 37662, U.S.A., Arunagiri R; Eastman Chemical Company, Kingsport, Tennessee, 37662, U.S.A., Khan MA; Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, 310 Reynolds Medical Sciences Building, College Station, Texas, 77843-1114, U.S.A., Rahman Z; Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, 310 Reynolds Medical Sciences Building, College Station, Texas, 77843-1114, U.S.A.. rahman@tamu.edu.
المصدر: AAPS PharmSciTech [AAPS PharmSciTech] 2024 Sep 05; Vol. 25 (7), pp. 202. Date of Electronic Publication: 2024 Sep 05.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 100960111 Publication Model: Electronic Cited Medium: Internet ISSN: 1530-9932 (Electronic) Linking ISSN: 15309932 NLM ISO Abbreviation: AAPS PharmSciTech Subsets: MEDLINE
أسماء مطبوعة: Publication: New York : Springer
Original Publication: Arlington, VA : American Association of Pharmaceutical Scientists, c2000-
مواضيع طبية MeSH: Biological Availability* , Solubility* , Sucrose*/analogs & derivatives , Sucrose*/chemistry , Excipients*/chemistry, Administration, Oral ; Animals ; Male ; Hypromellose Derivatives/chemistry ; Chemistry, Pharmaceutical/methods ; Drug Stability ; X-Ray Diffraction/methods
مستخلص: The focus of the present work was to develop amorphous solid dispersion (ASD) formulation of aprepitant (APT) using sucrose acetate isobutyrate (SAIB) excipient, evaluate for physicochemical attributes, stability, and bioavailability, and compared with hydroxypropyl methylcellulose (HPMC) based formulation. Various formulations of APT were prepared by solvent evaporation method and characterized for physiochemical and in-vivo performance attributes such as dissolution, drug phase, stability, and bioavailability. X-ray powder diffraction indicated crystalline drug conversion into amorphous phase. Dissolution varied as a function of drug:SAIB:excipient proportion. The dissolution was more than 80% in the optimized formulation (F10) and comparable to HPMC based formulation (F13). Stability of F10 and F13 formulations stored at 25 C/60% and 40°C/75% RH for three months were comparable. Both ASD formulations (F10 and F13) were bioequivalent as indicated by the pharmacokinetic parameters C max and AUC 0-∞ . C max and AUC 0-∞ of F10 and F13 formulations were 2.52 ± 0.39, and 2.74 ± 0.32 μg/ml, and 26.59 ± 0.39, and 24.79 ± 6.02 μg/ml.h, respectively. Furthermore, the bioavailability of ASD formulation was more than twofold of the formulation containing crystalline phase of the drug. In conclusion, stability and oral bioavailability of SAIB based ASD formulation is comparable to HPMC-based formulation of poorly soluble drugs.
(© 2024. The Author(s), under exclusive licence to American Association of Pharmaceutical Scientists.)
References: Emend ® FDA label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2003/21549_Emend_lbl.pdf . Accessed on May 15, 2024.
Kalvakuntla S, Deshpande M, Attari Z, Kunnatur BK. Preparation and Characterization of Nanosuspension of Aprepitant by H96 Process. Adv Pharm Bull. 2016;6(1):83–90. (PMID: 2712342210.15171/apb.2016.013)
Abouhussein DMN. Enhnaced transdermal permeation of BCS class IV aprepitant using binary ethosome: Optimization, characterization and ex vivo permeation. J Drug Del Sci Technol. 2021;61:20285.
Toziopoulou F, Malamatari M, Nikolakakis I, Kachrimanis K. Production of aprepitant nanocrystals by wet media milling and subsequent solidification. Int J Pharm. 2017;533(2):324–34. (PMID: 2825788510.1016/j.ijpharm.2017.02.065)
Abdellatif AAH, Alsowinea AF. Approved and marketed nanoparticles for disease targeting and applications in COVID-19. Nanotech Rev. 2021;10:1941–77. (PMID: 10.1515/ntrev-2021-0115)
EMEA – Scientific Discussion Emend, 2004. Accessed on May 15, 2024. https://www.ema.europa.eu/en/documents/scientific-discussion/emend-epar-scientific-discussion_en.pdf (europa.eu). Accessed on 18 Jan 2022.
Ren L, Zhou Y, Wei P, Li M, Chen G. Preparation and pharmacokinetic study of aprepitant-sulfobutyl ether-β-cyclodextrin complex. AAPS PharmSciTech. 2014;15(1):121–30. https://doi.org/10.1208/s12249-013-0044-0 . (PMID: 10.1208/s12249-013-0044-024166668)
Ridhurkar DN, Ansari KA, Kumar D, Kaul NS, Krishnamurthy T, Dhawan S, Pillai R. Inclusion complex of aprepitant with cyclodextrin: evaluation of physico-chemical and pharmacokinetic properties. Drug Dev Ind Pharm. 2013;39(11):1783–92. (PMID: 2324073010.3109/03639045.2012.737331)
Palmelund H, Eriksen JB, Bauer-Brandl A, Rantanen J, Löbmann K. Enabling formulations of aprepitant: in vitro and in vivo comparison of nanocrystalline, amorphous and deep eutectic solvent-based formulations. Int J Pharm X. 2021;3: 100083. (PMID: 34151250)
Kamboj S, Rana V. Formulation optimization of aprepitant microemulsion-loaded silicated corn fiber gum particles for enhanced bioavailability. Drug Dev Ind Pharm. 2016;42(8):1267–82. (PMID: 2659275410.3109/03639045.2015.1122611)
Liu J, Zou M, Piao H, Liu Y, Tang B, Gao Y, Ma N, Cheng G. Characterization and Pharmacokinetic Study of Aprepitant Solid Dispersions with Soluplus®. Molecules (Basel, Switzerland). 2015;20(6):11345–56. (PMID: 2610206810.3390/molecules200611345)
Punčochová K, Ewing AV, Gajdošová M, Pekárek T, Beránek J, Kazarian SG, Štěpánek F. The Combined Use of Imaging Approaches to Assess Drug Release from Multicomponent Solid Dispersions. Pharm Res. 2017;34(5):990–1001. (PMID: 2757357410.1007/s11095-016-2018-x)
Salem HF, Abdelhaleem Ali AM, Maher EM. Formulation and in-vitro evaluation of fast dissolving tablets containing a poorly soluble antipsychotic drug. Int J Drug Deliv. 2015;7:113–25.
Rumondor AC, Dhareshwar SS, Kesisoglou F. Amorphous solid dispersions or prodrugs: complementary strategies to increase drug absorption. J Pharm Sci. 2016;105(9):2498–508. (PMID: 2688631610.1016/j.xphs.2015.11.004)
Yu L. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev. 2001;48(1):27–42. (PMID: 1132547510.1016/S0169-409X(01)00098-9)
Vranić E. Amorphous pharmaceutical solids. Bosn J Basic Med Sci. 2004;4(3):35–9. (PMID: 1562901010.17305/bjbms.2004.3383)
Červinka C, Fulem M. Structure and Glass Transition Temperature of Amorphous Dispersions of Model Pharmaceuticals with Nucleobases from Molecular Dynamics. Pharmaceutics. 2021;13(8):1253. (PMID: 3445221410.3390/pharmaceutics13081253)
Hempel NJ, Knopp MM, Löbmann K, Berthelsen R. Studying the Impact of the Temperature and Sorbed Water during Microwave-Induced In Situ Amorphization: A Case Study of Celecoxib and Polyvinylpyrrolidone. Pharmaceutics. 2021;13(6):886. (PMID: 3420382810.3390/pharmaceutics13060886)
Meng F, Paul SK, Borde S, Chauhan H. Investigating crystallization tendency, miscibility, and molecular interactions of drug-polymer systems for the development of amorphous solid dispersions. Drug Dev Ind Pharm. 2021;47(4):579–608. (PMID: 3365165910.1080/03639045.2021.1892747)
Yang R, Mann AKP, Van Duong T, Ormes JD, Okoh GA, Hermans A, Taylor LS. Drug Release and Nanodroplet Formation from Amorphous Solid Dispersions: Insight into the Roles of Drug Physicochemical Properties and Polymer Selection. Mol Pharm. 2021;18(5):2066–81. (PMID: 3378410410.1021/acs.molpharmaceut.1c00055)
Baghel S, Cathcart H, O’Reilly NJ. Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs. J Pharm Sci. 2016;105(9):2527–44. (PMID: 2688631410.1016/j.xphs.2015.10.008)
Zhang J, Guo M, Luo M, Cai T. Advances in the development of amorphous solid dispersions: The role of polymeric carriers. Asian J Pharm Sci. 2023;18(4): 100834. (PMID: 3763580110.1016/j.ajps.2023.100834)
Danda LJA, Christinne Rocha de Medeiros Schver G, Lamartine Soares Sobrinho J, Lee PI, Felts de La Roca Soares M. Amorphous solid dispersions in high-swelling, low-substituted hydroxypropyl cellulose for enhancing the delivery of poorly soluble drugs. Int J Pharm. 2023;642:123122. https://doi.org/10.1016/j.ijpharm.2023.123122.
Yeo S, An J, Park C, Kim D, Lee J. Design and Characterization of Phosphatidylcholine-Based Solid Dispersions of Aprepitant for Enhanced Solubility and Dissolution. Pharmaceutics. 2020;12(5):407. https://doi.org/10.3390/pharmaceutics12050407 . (PMID: 10.3390/pharmaceutics1205040732365589)
Rahman Z, Siddiqui A, Gupta A, Khan MA. Regulatory considerations in development of amorphous solid dispersions. In: Amorphous Solid Dispersions-Regulatory Considerations in Development of Amorphous Solid Dispersions. Shah N, Sandhu H, Choi DS, Chokshi H, Malick WA, Editors. Springer. New York, USA; 2014. pp. 545–563. https://doi.org/10.1007/978-1-4939-1598-9_17.
McPhillips H, Craig DQ, Royall PG, Hill VL. Characterization of the glass transition of HPMC using modulated temperature differential scanning calorimetry. Int J Pharm. 1999;180(1):83–90. (PMID: 1008929510.1016/S0378-5173(98)00407-4)
Ito A, Watanabe T, Yada S, Hamaura T, Nakagami H, Higashi K, Moribe K, Yamamoto K. Prediction of recrystallization behavior of troglitazone/polyvinylpyrrolidone solid dispersion by solid-state NMR. Int J Pharm. 2010;383(1–2):18–23. (PMID: 1973281610.1016/j.ijpharm.2009.08.037)
Pandi P, Bulusu R, Kommineni N, Khan W, Singh M. Amorphous solid dispersions: An update for preparation, characterization, mechanism on bioavailability, stability, regulatory considerations, and marketed products. Int J Pharm. 2020;586: 119560. (PMID: 3256528510.1016/j.ijpharm.2020.119560)
Al-Shoubki AA, Teaima MH, Abdelmonem R, El-Nabarawi MA, Elhabal SF. Potential application of sucrose acetate isobutyrate, and glyceryl monooleate for nanonization and bioavailability enhancement of rivaroxaban tablets. Pharm Sci Adv. 2024;2: 100015. (PMID: 10.1016/j.pscia.2023.100015)
Alonzo DE, Zhang GG, Zhou D, Gao Y, Taylor LS. Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm Res. 2010;27(4):608–18. (PMID: 2015118110.1007/s11095-009-0021-1)
European Medicines Agency: Recall of Advagraf 0.5 mg capsule batches, October 29, 2011. Accessed on May 03, 2024. https://www.ema.europa.eu/en/news/european-medicines-agency-agrees-precautionary-recall-advagraf-05-mg-capsule-batches .
Li H, Xu Y, Tong Y, Dan Y, Zhou T, He J, Liu S, Zhu Y. Sucrose acetate isobutyrate as an in situ forming implant for sustained release of local anesthetics. Curr Drug Deliv. 2019;16(4):331–40. (PMID: 3045111110.2174/1567201816666181119112952)
Al-Shoubki AA, Teaima MH, Abdelmonem R, El-Nabarawi MA, Elhabal SF. Sucrose acetate isobutyrate (SAIB) and glyceryl monooleate (GMO) hybrid nanoparticles for bioavailability enhancement of rivaroxaban: an optimization study. Pharm Dev Technol. 2023;28(10):928–38. (PMID: 3787022210.1080/10837450.2023.2274944)
Dharani S, Barakh Ali SF, Afrooz H, Mohamed EM, Cook P, Khan MA, Rahman Z. Development of methamphetamine abuse-deterrent formulations using sucrose acetate isobutyrate. J Pharm Sci. 2020;109(3):1338–46. (PMID: 3186220410.1016/j.xphs.2019.12.003)
Mohamed EM, Dharani S, Nutan MTH, Cook P, Arunagiri R, Khan MA, Rahman Z. Application of Sucrose Acetate Isobutyrate in Development of Co-Amorphous Formulations of Tacrolimus for Bioavailability Enhancement. Pharmaceutics. 2023;15(5):1442. (PMID: 3724268310.3390/pharmaceutics15051442)
Chavan RB, Lodagekar A, Yadav B, Shastri NR. Amorphous solid dispersion of nisoldipine by solvent evaporation technique: Preparation, characterization, in vitro, in vivo evaluation, and scale up feasibility study. Drug Deliv Transl Res. 2020;10:903–18. (PMID: 3237817410.1007/s13346-020-00775-8)
Tran P, Pyo YC, Kim DH, Lee SE, Kim JK, Park JS. Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs. Pharmaceutics. 2019;11(3):132. (PMID: 3089389910.3390/pharmaceutics11030132)
ICH – Validation of analytical procedures Q2(R2), 2022. https://www.fda.gov/media/161201/download . Accessed on 15 May 2024.
Wu Y, Loper A, Landis E, Hettrick L, Novak L, Lynn K, Chen C, Thompson K, Higgins R, Batra U, Shelukar S, Kwei G, Storey D. The role of biopharmaceutics in the development of a clinical nanoparticle formulation of MK-0869: a Beagle dog model predicts improved bioavailability and diminished food effect on absorption in human. Int J Pharm. 2004;285(1–2):135–46. (PMID: 1548868610.1016/j.ijpharm.2004.08.001)
FDA guidance for industry – Bioanalytical method validation, 2018. https://www.fda.gov/media/70858/download . Accessed on 15 May 2024.
United States Pharmacopiea 43 - National Formulary 38 - Aprepitant capsules monograph. Rockville, Maryland; 2023. pp. 362.
Rahman Z, Bykadi S, Siddiqui A, Khan MA. Comparison of X-ray powder diffraction and solid-state nuclear magnetic resonance in estimating crystalline fraction of tacrolimus in sustained-release amorphous solid dispersion and development of discriminating dissolution method. J Pharm Sci. 2015;104(5):1777–86. (PMID: 2575382910.1002/jps.24400)
Mohamed EM, Dharani S, Nutan MTH, Cook P, Arunagiri R, Khan MA, Rahman Z. Application of sucrose acetate isobutyrate in development of co-amorphous formulations of tacrolimus for bioavailability enhancement. Pharmaceutics. 2023;15(5):1442. (PMID: 3724268310.3390/pharmaceutics15051442)
Sardana K, Khurana A, Panesar S, Singh A. An exploratory pilot analysis of the optimal pellet number in 100 mg of itraconazole capsule to maximize the surface area to satisfy the Noyes-Whitney equation. J Dermatolog Treat. 2021;32(7):788–94. (PMID: 3186804510.1080/09546634.2019.1708848)
FDA: Inactive ingredient search for approved drug products-sodium lauryl sulfate. https://www.accessdata.fda.gov/scripts/cder/iig/index.Cfm?event=BasicSearch.page . Accessed on 02 August 2024.
Hanafy NAN, El-Kemary M, Leporatti S. Micelles Structure Development as a Strategy to Improve Smart Cancer Therapy. Cancers (Basel). 2018;10(7):238. (PMID: 3003705210.3390/cancers10070238)
Zouai O, Thomas C, Pourcelot-Roubeau Y. Microcrystalline Cellulose: Investigation of porous structure of Avicel 102 from mercury porosimeter measurements. Drug Dev Ind Pharm. 1996;22:1253–7. (PMID: 10.3109/03639049609063246)
Shao X, Wang J, Liu Z, Hu N, Liu M, Xu Y. Preparation and characterization of porous microcrystalline cellulose from corncob. Ind Crops Prod. 2020;151: 112457. (PMID: 10.1016/j.indcrop.2020.112457)
Enggi CK, Sulistiawati S, Himawan A, Raihan M, Iskandar IW, Saputra RR, Permana AD. Application of Biomaterials in the Development of Hydrogel-Forming Microneedles Integrated with a Cyclodextrin Drug Reservoir for Improved Pharmacokinetic Profiles of Telmisartan. ACS Biomat Sci Eng. 2024;10:1554–76. (PMID: 10.1021/acsbiomaterials.3c01641)
Dharani S, Mohamed EM, Khuroo T, Rahman Z, Khan MA. Formulation Characterization and Pharmacokinetic Evaluation of Amorphous Solid Dispersions of Dasatinib. Pharmaceutics. 2022;14(11):2450. (PMID: 3643264110.3390/pharmaceutics14112450)
Stacey P, Clegg F, Rhyder G, Sammon C. Application of a fourier transform infrared (FTIR) principal component regression (PCR) chemometric method for the quantification of respirable crystalline silica (Quartz), kaolinite, and coal in coal mine dusts from Australia, UK, and South Africa. Ann Work Expo Health. 2022;66(6):781–93. (PMID: 3508807210.1093/annweh/wxab119)
Navari RM, Schwartzberg LS. Evolving role of neurokinin 1-receptor antagonists for chemotherapy-induced nausea and vomiting. Onco Targets Ther. 2018;11:6459–78. (PMID: 3032362210.2147/OTT.S158570)
Stoutenburg JP, Raftopoulos H. Antiemetic studies on the NK1 receptor antagonist aprepitant. J Natl Compr Canc Netw. 2004;2(5):491–7. (PMID: 1978025610.6004/jnccn.2004.0038)
FDA guidance for industry - Bioavailability and Bioequivalence Studies Submitted in NDAs or INDs — General Considerations, 2014. https://www.fda.gov/media/88254/download . Accessed on 15 May 2024.
FDA guidance for industry - Bioequivalence Studies with Pharmacokinetic Endpoints for Drugs Submitted Under an ANDA, 2021. https://www.fda.gov/media/87219/download . Accessed on 15 May 2024.
فهرسة مساهمة: Keywords: amorphous solid dispersion; aprepitants; pharmacokinetic; stability; sucrose acetate isobutyrate
المشرفين على المادة: 57-50-1 (Sucrose)
0 (Excipients)
H5KI1C3YTV (sucrose acetate isobutyrate)
3NXW29V3WO (Hypromellose Derivatives)
تواريخ الأحداث: Date Created: 20240905 Date Completed: 20240905 Latest Revision: 20240905
رمز التحديث: 20240906
DOI: 10.1208/s12249-024-02924-5
PMID: 39237685
قاعدة البيانات: MEDLINE
الوصف
تدمد:1530-9932
DOI:10.1208/s12249-024-02924-5