دورية أكاديمية

A Review on Recent Development of Phenothiazine-Based Chromogenic and Fluorogenic Sensors for the Detection of Cations, Anions, and Neutral Analytes.

التفاصيل البيبلوغرافية
العنوان: A Review on Recent Development of Phenothiazine-Based Chromogenic and Fluorogenic Sensors for the Detection of Cations, Anions, and Neutral Analytes.
المؤلفون: Ilakiyalakshmi M; Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India., Dhanasekaran K; Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India., Napoleon AA; Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India. aanapoleon@vit.ac.in.
المصدر: Topics in current chemistry (Cham) [Top Curr Chem (Cham)] 2024 Sep 05; Vol. 382 (3), pp. 29. Date of Electronic Publication: 2024 Sep 05.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Switzerland NLM ID: 101691301 Publication Model: Electronic Cited Medium: Internet ISSN: 2364-8961 (Electronic) Linking ISSN: 23648961 NLM ISO Abbreviation: Top Curr Chem (Cham) Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Cham : Springer, [2016]-
مواضيع طبية MeSH: Phenothiazines*/chemistry , Fluorescent Dyes*/chemistry , Anions*/analysis , Anions*/chemistry , Cations*/analysis , Cations*/chemistry, Colorimetry ; Fluorescence Resonance Energy Transfer
مستخلص: This review provides an in-depth examination of recent progress in the development of chemosensors, with a particular emphasis on colorimetric and fluorescent probes. It systematically explores various sensing mechanisms, including metal-to-ligand charge transfer (MLCT), ligand-to-metal charge transfer (LMCT), photoinduced electron transfer (PET), intramolecular charge transfer (ICT), and fluorescence resonance energy transfer (FRET), and elucidates the mechanism of action for cation and anion chemosensors. Special attention is given to phenothiazine-based fluorescence probes, highlighting their exceptional sensitivity and rapid detection abilities for a broad spectrum of analytes, including cations, anions, and small molecules. Phenothiazine chemosensors have emerged as versatile tools widely employed in a multitude of applications, spanning environmental and biomedical fields. Furthermore, it addresses existing challenges and offers insights into future research directions, aiming to facilitate the continued advancement of phenothiazine-based fluorescent probes.
(© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
References: Adeva-Andany MM, Carneiro-Freire N, Donapetry-García C et al (2014) The importance of the ionic product for water to understand the physiology of the acid-base balance in humans. Biomed Res Int. https://doi.org/10.1155/2014/695281. (PMID: 10.1155/2014/695281248771304022011)
He F, Tang Y, Wang S et al (2005) Fluorescent amplifying recognition for DNA G-quadruplex folding with a cationic conjugated polymer: a platform for homogeneous potassium detection. J Am Chem Soc 127:12343–12346. https://doi.org/10.1021/ja051507i. (PMID: 10.1021/ja051507i16131213)
Lodoso-Torrecilla I, Klein Gunnewiek R, Grosfeld EC et al (2020) Bioinorganic supplementation of calcium phosphate-based bone substitutes to improve: in vivo performance: a systematic review and meta-analysis of animal studies. Biomater Sci 8:4792–4809. https://doi.org/10.1039/d0bm00599a. (PMID: 10.1039/d0bm00599a32729591)
Chan WC, Ng MP, Ang CW et al (2023) From lab to life: safe and efficient optical based dual-mode chemosensor for the detection of aluminium(III) and copper(II) ions. Inorganica Chim Acta 557:121703. https://doi.org/10.1016/j.ica.2023.121703. (PMID: 10.1016/j.ica.2023.121703)
Dathees TJ, Makarios Paul SP, Sanmugam A et al (2024) Naphthalene derived Schiff base as a reversible fluorogenic chemosensor for aluminium ions detection. Spectrochim Acta Part A Mol Biomol Spectrosc 308:123732. https://doi.org/10.1016/j.saa.2023.123732. (PMID: 10.1016/j.saa.2023.123732)
Jomova K, Makova M, Alomar SY et al (2022) Essential metals in health and disease. Chem Biol Interact 367:110173. https://doi.org/10.1016/j.cbi.2022.110173. (PMID: 10.1016/j.cbi.2022.11017336152810)
Zheng X, Cheng W, Ji C et al (2020) Detection of metal ions in biological systems: a review. Rev Anal Chem 39:231–246. https://doi.org/10.1515/revac-2020-0118. (PMID: 10.1515/revac-2020-0118)
Bao W, Rong Y, Rong S, Liu L (2012) Dietary iron intake, body iron stores, and the risk of type 2 diabetes: a systematic review and meta-analysis. BMC Med. https://doi.org/10.1186/1741-7015-10-119. (PMID: 10.1186/1741-7015-10-119230465493520769)
Roohani N, Hurrell R, Kelishadi R, Schulin R (2013) Zinc and its importance for human health: an integrative review. J Res Med Sci 18:144–157. (PMID: 239142183724376)
Black MM (1998) Zinc deficiency and child development. Am J Clin Nutr 68:464–469. https://doi.org/10.1093/ajcn/68.2.464S. (PMID: 10.1093/ajcn/68.2.464S)
Osredkar, Joško ŠN Special Issue Title: Copper and zinc, biological role and significance of copper/zinc imbalance. Significance. https://doi.org/10.4172/2161-0494.S3-001.
Bartzas G, Tsakiridis PE, Komnitsas K (2021) Nickel industry: heavy metal(loid)s contamination—sources, environmental impacts and recent advances on waste valorization. Curr Opin Environ Sci Health 21:100253. https://doi.org/10.1016/j.coesh.2021.100253. (PMID: 10.1016/j.coesh.2021.100253)
Basu N, Kwan M, Man Chan H (2006) Mercury but not organochlorines inhibits muscarinic cholinergic receptor binding in the cerebrum of ringed seals (Phoca hispida). J Toxicol Environ Health Part A Curr Issues 69:1133–1143. https://doi.org/10.1080/15287390500362394. (PMID: 10.1080/15287390500362394)
Kumar M, Puri A (2012) A review of permissible limits of drinking water. Indian J Occup Environ Med 16:40–44. https://doi.org/10.4103/0019-5278.99696. (PMID: 10.4103/0019-5278.99696231125073482709)
Picci G, Montis R, Gilchrist AM et al (2024) Fluorescent and colorimetric sensors for anions: highlights from 2020 to 2022. Coord Chem Rev 501:215561. https://doi.org/10.1016/j.ccr.2023.215561. (PMID: 10.1016/j.ccr.2023.215561)
Devi B, Guha AK, Devi A (2024) Fluoride ion detection in aqueous medium: colorimetric and turn-off fluorescent Schiff base chemosensor. Spectrochim Acta Part A Mol Biomol Spectrosc 305:123448. https://doi.org/10.1016/j.saa.2023.123448. (PMID: 10.1016/j.saa.2023.123448)
Ahmed N, Zhang B, Chachar Z et al (2024) Micronutrients and their effects on horticultural crop quality, productivity and sustainability. Sci Hortic (Amsterdam) 323:112512. https://doi.org/10.1016/j.scienta.2023.112512. (PMID: 10.1016/j.scienta.2023.112512)
Ahmad M, ud din Naik M, Tariq MR et al (2024) Advances in natural polysaccharides for gold recovery from e-waste: recent developments in preparation with structural features. Int J Biol Macromol 261:129688. https://doi.org/10.1016/j.ijbiomac.2024.129688. (PMID: 10.1016/j.ijbiomac.2024.12968838280695)
Lohar S, Dhara K, Roy P et al (2018) Highly sensitive ratiometric chemosensor and biomarker for cyanide ions in the aqueous medium. ACS Omega 3:10145–10153. https://doi.org/10.1021/acsomega.8b01035. (PMID: 10.1021/acsomega.8b01035302212416130900)
Zhang H, Song J, Wang S et al (2023) Recent progress in macrocyclic chemosensors for lead, cadmium and mercury heavy metal ions. Dye Pigment 216:111380. https://doi.org/10.1016/j.dyepig.2023.111380. (PMID: 10.1016/j.dyepig.2023.111380)
Raveendran AV, Sankeerthana PA, Jayaraj A, Chinna Ayya Swamy P (2022) Recent developments on BODIPY based chemosensors for the detection of group IIB metal ions. Results Chem 4:100297. https://doi.org/10.1016/j.rechem.2022.100297. (PMID: 10.1016/j.rechem.2022.100297)
Nguyen MH, Nguyen TN, Do DQ et al (2020) A highly selective fluorescent anthracene-based chemosensor for imaging Zn 2+ in living cells and zebrafish. Inorg Chem Commun 115:107882. https://doi.org/10.1016/j.inoche.2020.107882. (PMID: 10.1016/j.inoche.2020.107882)
Bouali W, Yaman M, Seferoğlu N, Seferoğlu Z (2024) Colorimetric and fluorimetric detection of CN ion using a highly selective and sensitive chemosensor derived from coumarin-hydrazone. J Photochem Photobiol A Chem. https://doi.org/10.1016/j.jphotochem.2023.115227. (PMID: 10.1016/j.jphotochem.2023.115227)
Wagay SA, Alam M, Ali R (2023) Synthesis of two novel fluorescein appended dipyromethanes (DPMs): naked-eye chemosensors for fluoride, acetate and phosphate anions. J Mol Struct 1291:135982. https://doi.org/10.1016/j.molstruc.2023.135982. (PMID: 10.1016/j.molstruc.2023.135982)
Ozmen P, Demir Z, Karagoz B (2022) An easy way to prepare reusable rhodamine-based chemosensor for selective detection of Cu 2+ and Hg 2+ ions. Eur Polym J 162:110922. https://doi.org/10.1016/j.eurpolymj.2021.110922. (PMID: 10.1016/j.eurpolymj.2021.110922)
Chen MC, Lee YL, Huang ZX et al (2020) Tuning electron-withdrawing strength on phenothiazine derivatives: achieving 100 % photoluminescence quantum yield by NO 2 substitution. Chem A Eur J 26:7124–7130. https://doi.org/10.1002/chem.202000754. (PMID: 10.1002/chem.202000754)
Gavale R, Ghasemi M, Khan F et al (2023) Phenothiazine and phenothiazine sulfone derivatives: AIE, HTMs for doping free fluorescent and multiple-resonance TADF OLEDs. J Mater Chem C 12:2134–2147. https://doi.org/10.1039/d3tc03921h. (PMID: 10.1039/d3tc03921h)
Rout Y, Montanari C, Pasciucco E et al (2021) Tuning the fluorescence and the intramolecular charge transfer of phenothiazine dipolar and quadrupolar derivatives by oxygen functionalization. J Am Chem Soc 143:9933–9943. https://doi.org/10.1021/jacs.1c04173. (PMID: 10.1021/jacs.1c04173341617258297855)
Vinayagam D, Subramanian K (2024) A phenothiazine-functionalized pyridine-based AIEE-active molecule: a versatile molecular probe for highly sensitive detection of hypochlorite and picric acid. RSC Adv 14:5149–5158. https://doi.org/10.1039/d3ra08451e. (PMID: 10.1039/d3ra08451e3833278410851053)
Hsieh TS, Wu JY, Chang CC (2015) Multiple fluorescent behaviors of phenothiazine-based organic molecules. Dye Pigment 112:34–41. https://doi.org/10.1016/j.dyepig.2014.06.017. (PMID: 10.1016/j.dyepig.2014.06.017)
Gong J, Han J, Liu Q et al (2019) An ideal platform of light-emitting materials from phenothiazine: facile preparation, tunable red/NIR fluorescence, bent geometry-promoted AIE behaviour and selective lipid-droplet (LD) tracking ability. J Mater Chem C 7:4185–4190. https://doi.org/10.1039/c9tc00143c. (PMID: 10.1039/c9tc00143c)
Qiu W, Cai X, Li M et al (2021) Dynamic adjustment of emission from both singlets and triplets: the role of excited state conformation relaxation and charge transfer in phenothiazine derivates. J Mater Chem C 9:1378–1386. https://doi.org/10.1039/d0tc05343k. (PMID: 10.1039/d0tc05343k)
Kim Y, Jeon Y, Na M et al (2024) Recent trends in chemical sensors for detecting toxic materials. Sensors. https://doi.org/10.3390/s24020431. (PMID: 10.3390/s240204313927573311398032)
Prodi L, Bolletta F, Montalti M, Zaccheroni N (2000) Luminescent chemosensors for transition metal ions. Coord Chem Rev 205:59–83. https://doi.org/10.1016/s0010-8545(00)00242-3. (PMID: 10.1016/s0010-8545(00)00242-3)
Fang J, Li X, Gao C et al (2024) A unique phenothiazine-based fluorescent probe using benzothiazolium as a reactivity regulator for the specific detection of hypochlorite in drinking water and living organisms. Talanta 268:125299. https://doi.org/10.1016/j.talanta.2023.125299. (PMID: 10.1016/j.talanta.2023.12529937832451)
Dua A, Selvam P, Majeed SA et al (2024) Diaminomaleonitrile Schiff base with phenothiazine aldehyde as multimode chemosensor for copper ions and its application. J Photochem Photobiol A Chem 447:115219. https://doi.org/10.1016/j.jphotochem.2023.115219. (PMID: 10.1016/j.jphotochem.2023.115219)
Meng Y, Liu C, Ding H et al (2023) A novel tethered phenothiazine-coumarin fluorescence probe for rapid detection of hypochlorite ion and its applications. Dye Pigment 218:111470. https://doi.org/10.1016/j.dyepig.2023.111470. (PMID: 10.1016/j.dyepig.2023.111470)
Wang X, Wang H, Duan J et al (2024) Phenothiazine-hemicyanine hybrid as a near-infrared fluorescent probe for ratiometric imaging of hypochlorite in vivo. Sens Actuators B Chem 407:135453. https://doi.org/10.1016/j.snb.2024.135453. (PMID: 10.1016/j.snb.2024.135453)
Sachdeva T, Milton MD (2021) Novel push-pull based phenothiazine-benzothiazole derivatives integrated with molecular logic gate operation for reversible volatile acid detection. J Mol Struct 1243:130768. https://doi.org/10.1016/j.molstruc.2021.130768. (PMID: 10.1016/j.molstruc.2021.130768)
Lu W, Yang B, Guo Z et al (2024) Machine learning-based fluorescence sensor array: accurate discrimination, quantitative assay of phenothiazine drugs via versatile DNA probes. Sens Actuators B Chem 405:135330. https://doi.org/10.1016/j.snb.2024.135330. (PMID: 10.1016/j.snb.2024.135330)
Prabakaran G, Velmurugan K, David CI et al (2023) Imidazole appended rotatable hydroxy quinoline scaffold as dual signaling fluorescent chemosensor: detection of silver ions with hypsochromic shift and hydroxide ions with bathochromic shift and their LFP ’ s, anticounterfeiting, soil analysis and bio-. J Mol Liq 388:122733. https://doi.org/10.1016/j.molliq.2023.122733. (PMID: 10.1016/j.molliq.2023.122733)
Jothi D, Munusamy S, Manickam S et al (2022) Detection of cyanide ions. 30045–30050. https://doi.org/10.1039/d2ra03702e.
Kitai AH (2008) 1. Principles of luminescence.
Šípoš R, Šima J (2020) Jablonski diagram revisited. Rev Cuba Fis 37:125–130.
Croneya JC, Jamesona DM, Learmonthb RP (2001) Fluorescence spectroscopy in biochemistry: teaching basic principles with visual demonstrations. 00.
Lodge JP (2018) Fluorescence spectrophotometry. Methods Air Sampl Anal. https://doi.org/10.1201/9780203747407-29. (PMID: 10.1201/9780203747407-29)
Khatun M, Mandal J, William V et al (2024) J Photochem Photobiol A Chem 447:115231. https://doi.org/10.1016/j.jphotochem.2023.115231. (PMID: 10.1016/j.jphotochem.2023.115231)
Purushothaman P, Karpagam S (2024) Thiophene derived sky-blue fluorescent probe for the selective recognition of mercuric ion through CHEQ mechanism and application in real time samples. Spectrochim Acta Part A Mol Biomol Spectrosc 305:123518. https://doi.org/10.1016/j.saa.2023.123518. (PMID: 10.1016/j.saa.2023.123518)
Deng L, Xue L, Gao Y et al (2024) A coumarin based ratiometric fluorescent probe for the detection of Cu 2+ and mechanochromism as well as application in living cells and vegetables. Spectrochim Acta Part A Mol Biomol Spectrosc 305:123479. https://doi.org/10.1016/j.saa.2023.123479. (PMID: 10.1016/j.saa.2023.123479)
Ma L, Liu C, Zhu H et al (2023) Research progress of reactive mercury ions organic small-molecule chemodosimeters containing sulfur in the last decade. Dye Pigment 220:111595. https://doi.org/10.1016/j.dyepig.2023.111595. (PMID: 10.1016/j.dyepig.2023.111595)
Choi MG, Park SY, Park KY, Chang S (2019) Novel Hg 2+ -selective signaling probe based on resorufin thionocarbonate and its μ PAD application. Sci Rep. https://doi.org/10.1038/s41598-019-40169-6. (PMID: 10.1038/s41598-019-40169-6318927176938477)
Chen X, Ma Y, Zhang Y et al (2020) A selective and reversible fluorescent probe for Zn 2+ detection in living cells. Anal Chem. https://doi.org/10.1002/slct.202000662. (PMID: 10.1002/slct.202000662333825908552992)
Ilakiyalakshmi M, Mohana Roopan S, Arumugam Napoleon A (2023) Furan-formulated benzothiazole based Schiff bases for highly selective visual and fluorometric detection of Cu 2+ ion with density functional theory studies and its application for real-life samples. Inorg Chem Commun 157:111412. https://doi.org/10.1016/j.inoche.2023.111412. (PMID: 10.1016/j.inoche.2023.111412)
Ramki K, Thiruppathi G, Kumar S et al (2024) An aggregation-induced emission-based ratiometric fluorescent chemosensor for Hg(II) and its application in Caenorhabditis elegans imaging. Methods 221:1–11. https://doi.org/10.1016/j.ymeth.2023.11.010. (PMID: 10.1016/j.ymeth.2023.11.01038000523)
Yuan LIN, Lin W, Zheng K, Zhu S (2013) FRET-based small-molecule fluorescent probes: rational design and bioimaging applications. 46.
Zhu Z, Ding H, Wang Y et al (2020) Rational design of a FRET-based ratiometric fluorescent chemosensor for detecting ClO with large Stokes based on rhodamine and naphthalimide fluorophores. Tetrahedron 76:131291. https://doi.org/10.1016/j.tet.2020.131291. (PMID: 10.1016/j.tet.2020.131291)
Xu K, He L, Yang X et al (2018) A ratiometric fluorescent hydrogen peroxide chemosensor manipulated by an ICT-activated FRET mechanism and its bioimaging application in living cells and zebrafish. Analyst 143:3555–3559. https://doi.org/10.1039/c8an00842f. (PMID: 10.1039/c8an00842f29993047)
Chen J, Huang Y, Gao J et al (2023) Chemical H 2 O 2 -targeted ratiometric chemosensor with long-wavelength emission and large emission shift based on ESIPT mechanism for bioimaging application. Sens Actuators B Chem 393:134301. https://doi.org/10.1016/j.snb.2023.134301. (PMID: 10.1016/j.snb.2023.134301)
Piyanuch P, Wangngae S, Kamkaew A et al (2022) Ultrasensitive fluorogenic chemosensor based on ESIPT phenomenon for selective determination of Cu 2+ ion in aqueous system and its application in environmental samples and biological imaging. Dye Pigment 205:110532. https://doi.org/10.1016/j.dyepig.2022.110532. (PMID: 10.1016/j.dyepig.2022.110532)
Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cation recognition. 205:3–40.
Hydrocarbons PA, Complexes R (2003) Fluorogenic and chromogenic chemosensors and reagents for anions.
Silva APD, Gunaratne HQN, Gunnlaugsson T et al (1997) Signaling recognition events with fluorescent sensors and switches. 2665.
Shellaiah M, Venkatesan P, Thirumalaivasan N et al (2023) Pyrene-based fluorescent probe for “Off-on-Off” sequential detection of Cu 2+ and CN with HeLa cells imaging. Chemosensors 11:1–18. https://doi.org/10.3390/chemosensors11020115. (PMID: 10.3390/chemosensors11020115)
Rajasekar M, Geetha Sree Agash S, Narendran C, Rajasekar K (2023) Recent trends in fluorescent-based copper(II) chemosensors and their biomaterial applications. Inorg Chem Commun 151:110609. https://doi.org/10.1016/j.inoche.2023.110609. (PMID: 10.1016/j.inoche.2023.110609)
Wang J, Niu Q, Wei T et al (2020) Novel phenothiazine-based fast-responsive colori/fluorimetric sensor for highly sensitive, selective and reversible detection of Cu 2+ in real water samples and its application as an efficient solid-state sensor. Microchem J 157:104990. https://doi.org/10.1016/j.microc.2020.104990. (PMID: 10.1016/j.microc.2020.104990)
Kaur M, Cho MJ, Choi DH (2016) A phenothiazine-based “naked-eye” fluorescent probe for the dual detection of Hg 2+ and Cu 2+ : application as a solid state sensor. Dye Pigment 125:1–7. https://doi.org/10.1016/j.dyepig.2015.09.030. (PMID: 10.1016/j.dyepig.2015.09.030)
He C, Zhou H, Yang N et al (2018) A turn-on fluorescent BOPHY probe for Cu 2+ ion detection. New J Chem 42:2520–2525. https://doi.org/10.1039/c7nj03911e. (PMID: 10.1039/c7nj03911e)
Singh G, Devi A, Mohit N et al (2022) Synthesis, “turn-on” fluorescence signals towards Zn 2+ and Hg 2+ and monoamine oxidase a inhibitory activity using a molecular docking approach of morpholine analogue Schiff base linked organosilanes. New J Chem 328:21717–21729. https://doi.org/10.1039/d2nj03767j. (PMID: 10.1039/d2nj03767j)
Huang Y, Li Y, Li Y et al (2023) An “AIE + ESIPT” mechanism-based benzothiazole-derived fluorescent probe for the detection of Hg 2+ and its applications. New J Chem 47:6916–6923. https://doi.org/10.1039/d3nj00899a. (PMID: 10.1039/d3nj00899a)
Zhang CL, Liu C, Nie SR et al (2023) A dual functional fluorescent probe based on phenothiazine for detecting Hg 2+ and ClO and its applications. J Fluoresc. https://doi.org/10.1007/s10895-023-03534-3. (PMID: 10.1007/s10895-023-03534-338060150)
Ilakiyalakshmi M, Napoleon AA (2023) Phenothiazine-derived fluorescent chemosensor: a versatile platform enabling swift cyanide ion detection and its multifaceted utility in paper strips, environmental water, food samples and living cells. J Photochem Photobiol A Chem. https://doi.org/10.1016/j.jphotochem.2023.115213. (PMID: 10.1016/j.jphotochem.2023.115213)
Govindasamy V, Perumal S, Sekar I et al (2021) Phenothiazine-thiophene hydrazide dyad: an efficient “On-Off” chemosensor for highly selective and sensitive detection of Hg 2+ ions. J Fluoresc 31:667–674. https://doi.org/10.1007/s10895-021-02690-8. (PMID: 10.1007/s10895-021-02690-833560513)
Lafzi F, Saleh Hussein A, Kilic H, Bayindir S (2023) The thioacetal-modified phenothiazine as a novel colorimetric and fluorescent chemosensor for mercury in aqueous media. J Photochem Photobiol A Chem 444:114958. https://doi.org/10.1016/j.jphotochem.2023.114958. (PMID: 10.1016/j.jphotochem.2023.114958)
Vengaian KM, Britto CD, Sekar K et al (2016) Phenothiazine-diaminomalenonitrile based colorimetric and fluorescence “turn-off-on” sensing of Hg 2+ and S 2 . Sens Actuators B Chem 235:232–240. https://doi.org/10.1016/j.snb.2016.04.180. (PMID: 10.1016/j.snb.2016.04.180)
Sun Y, Wang L, Zhou J et al (2020) A new phenothiazine-based fluorescence sensor for imaging Hg 2+ in living cells. Appl Organomet Chem 34:1–11. https://doi.org/10.1002/aoc.5945. (PMID: 10.1002/aoc.5945)
Wang J, Niu Q, Hu T et al (2019) A new phenothiazine-based sensor for highly selective, ultrafast, ratiometric fluorescence and colorimetric sensing of Hg 2+ : applications to bioimaging in living cells and test strips. J Photochem Photobiol A Chem 384:112036. https://doi.org/10.1016/j.jphotochem.2019.112036. (PMID: 10.1016/j.jphotochem.2019.112036)
Lazarczyk M, Favre M (2008) MINIREVIEW: Role of Zn 2+ ions in host–virus interactions. 82:11486–11494. https://doi.org/10.1128/JVI.01314-08.
Maret W (2017) Zinc in cellular regulation: the nature and significance of “ Zinc Signals”. https://doi.org/10.3390/ijms18112285.
Effects of xenobiotics on the suicidal death of erythrocytes.
Karmegam MV, Karuppannan S, Christopher Leslee DB et al (2020) Phenothiazine–rhodamine-based colorimetric and fluorogenic ‘turn-on’’ sensor for Zn 2+ and bioimaging studies in live cells’. Luminescence 35:90–97. https://doi.org/10.1002/bio.3701. (PMID: 10.1002/bio.370131489767)
Xie Y, Li H, Liu X et al (2018) An aqueous fluorescent sensor for Pb 2+ based on phenothiazine-polyamide. Spectrochim Acta Part A Mol Biomol Spectrosc 201:193–196. https://doi.org/10.1016/j.saa.2018.04.063. (PMID: 10.1016/j.saa.2018.04.063)
Karuppannan S, Karmegam MV, Leslee DBC (2022) A phenothiazine-thiophene-linked chalcone as a highly sensitive fluorescent chemosensor for Ag + ions. ChemistrySelect. https://doi.org/10.1002/slct.202200555. (PMID: 10.1002/slct.202200555)
Santharam Roja S, Shylaja A, Kumar RR (2020) Phenothiazine-tethered 2-aminopyridine-3-carbonitrile: fluorescent turn-off chemosensor for Fe 3+ ions and picric acid. ChemistrySelect 5:2279–2283. https://doi.org/10.1002/slct.201904425. (PMID: 10.1002/slct.201904425)
Aoi W, Marunaka Y (2014) Importance of pH homeostasis in metabolic health and diseases: crucial role of membrane proton transport. 2014.
Bishnoi S, Milton MD (2015) Tunable phenothiazine hydrazones as colour displaying, ratiometric and reversible pH sensors. Tetrahedron Lett 56:6633–6638. https://doi.org/10.1016/j.tetlet.2015.10.041. (PMID: 10.1016/j.tetlet.2015.10.041)
Sachdeva T, Milton MD (2019) Logic gate based novel phenothiazine-pyridylhydrazones: halochromism in solid and solution state. Dye Pigment 164:305–318. https://doi.org/10.1016/j.dyepig.2019.01.038. (PMID: 10.1016/j.dyepig.2019.01.038)
Chaudhary S, Mukherjee M, Paul TK et al (2020) Novel thiazoline-phenothiazine based “push-pull” molecules as fluorescent probes for volatile acids detection. J Photochem Photobiol A Chem 397:112509. https://doi.org/10.1016/j.jphotochem.2020.112509. (PMID: 10.1016/j.jphotochem.2020.112509)
Kavitha V, Viswanathamurthi P, Haribabu J, Echeverria C (2023) A new nitrile vinyl linked ultrafast receptor to track cyanide ions: utilization on realistic samples and HeLa cell imaging. Spectrochim Acta Part A Mol Biomol Spectrosc 295:122607. https://doi.org/10.1016/j.saa.2023.122607. (PMID: 10.1016/j.saa.2023.122607)
Ilakiyalakshmi M, Arumugam Napoleon A (2024) Phenothiazine-derived fluorescent chemosensor: a versatile platform enabling swift cyanide ion detection and its multifaceted utility in paper strips, environmental water, food samples and living cells. J Photochem Photobiol A Chem 447:115213. https://doi.org/10.1016/j.jphotochem.2023.115213. (PMID: 10.1016/j.jphotochem.2023.115213)
Liu Q, Xiao M, Ding H et al (2023) A water-soluble colorimetric and ratiometric fluorescent probe based on phenothiazine for the detection of hypochlorite ion. Dye Pigment 215:111194. https://doi.org/10.1016/j.dyepig.2023.111194. (PMID: 10.1016/j.dyepig.2023.111194)
El-Shishtawy RM, Al-Zahrani FAM, Al-amshany ZM, Asiri AM (2017) Synthesis of a new fluorescent cyanide chemosensor based on phenothiazine derivative. Sens Actuators B Chem 240:288–296. https://doi.org/10.1016/j.snb.2016.08.168. (PMID: 10.1016/j.snb.2016.08.168)
Al-Qahtani SD, Alnoman RB, Snari RM et al (2022) Synthesis and characterization of novel ionochromic tricyanofuran-based phenothiazine fluorophore: cellulose-based xerogel for colorimetric detection of toxic cyanides. J Polym Environ 30:3107–3118. https://doi.org/10.1007/s10924-022-02418-0. (PMID: 10.1007/s10924-022-02418-0)
Al-Zahrani FAM, El-Shishtawy RM, Asiri AM et al (2020) A new phenothiazine-based selective visual and fluorescent sensor for cyanide. BMC Chem 14:1–11. https://doi.org/10.1186/s13065-019-0656-x. (PMID: 10.1186/s13065-019-0656-x)
Várguez PEM, Raimundo JM (2022) Naked-eye chromogenic test strip for cyanide sensing based on novel phenothiazine push–pull derivatives. Biosensors. https://doi.org/10.3390/bios12060407. (PMID: 10.3390/bios120604079220876)
Suganya S, Ravindran E, Mahato MK, Prasad E (2019) Orange emitting fluorescence probe for the selective detection of cyanide ion in solution and solid states. Sens Actuators B Chem 291:426–432. https://doi.org/10.1016/j.snb.2019.04.066. (PMID: 10.1016/j.snb.2019.04.066)
Chakraborty S, Paul S, Roy P, Rayalu S (2021) Detection of cyanide ion by chemosensing and fluorosensing technology. Inorg Chem Commun 128:108562. https://doi.org/10.1016/j.inoche.2021.108562. (PMID: 10.1016/j.inoche.2021.108562)
Jia J, Xue P, Zhang Y et al (2014) Fluorescent sensor based on dimesitylborylthiophene derivative for probing fluoride and cyanide. Tetrahedron 70:5499–5504. https://doi.org/10.1016/j.tet.2014.06.114. (PMID: 10.1016/j.tet.2014.06.114)
Zhang W, Feng X, Zhang C et al (2023) Activity of N–H in phenothiazine derivatives: synthesis and applications in fluoride ions sensing. 2949–2956. https://doi.org/10.1039/d2tc04079d.
Yan L, Li D, Le Y et al (2022) Dyes and pigments phenothiazine-based fluorescent probe for fluoride ions and its applications in rapid detection of endemic disease. 201. https://doi.org/10.1016/j.dyepig.2022.110200.
Yang W, Yang S, Guo Q et al (2015) Phenothiazine–aminothiourea–Hg (II) ensemble-based fluorescence turn-on toward iodide in aqueous media and imaging application in live cells. Sens Actuators B Chem 213:404–408. https://doi.org/10.1016/j.snb.2015.02.117. (PMID: 10.1016/j.snb.2015.02.117)
Madkour LH (2019) Function of reactive oxygen species (ROS) inside the living organisms and sources of oxidants. Pharm Sci Anal Res J 2019:180023.
Kang Z, Jiang J, Tu Q et al (2023) Dual-site chemosensor for monitoring ·OH-cysteine redox in cells and in vivo. J Am Chem Soc 145:507–515. https://doi.org/10.1021/jacs.2c10855. (PMID: 10.1021/jacs.2c1085536524839)
Wang C, Qian Y (2019) A TICT-active orthogonal D-A type probe phenothiazine-BODIPY for ratiometric response of hypochlorite and its application in living cells. J Lumin 210:261–268. https://doi.org/10.1016/j.jlumin.2019.02.044. (PMID: 10.1016/j.jlumin.2019.02.044)
Zhang C, Wang Y, Zhang L et al (2022) A near-infrared fluorescent probe based on phenothiazine for rapid detecting of CN and ClO . Opt Mater (Amst) 133:112959. https://doi.org/10.1016/j.optmat.2022.112959. (PMID: 10.1016/j.optmat.2022.112959)
Cui H, Hou P, Li Y et al (2021) Ratiometric fluorescence imaging of hypochlorous acid in living cells and zebrafish using a novel phenothiazine-fused HPQ probe. J Photochem Photobiol A Chem. https://doi.org/10.1016/j.jphotochem.2021.113343. (PMID: 10.1016/j.jphotochem.2021.113343)
Zhang J, Zhang D, Xiao L, Pu S (2021) Development of an ultrasensitive Ru(II) complex-based fluorescent probe with phenothiazine unit for selective detection HOCl and its application in water samples. Dye Pigment 188:109179. https://doi.org/10.1016/j.dyepig.2021.109179. (PMID: 10.1016/j.dyepig.2021.109179)
Deng X, Yu X, Wei F et al (2023) A ratiometric fluorescent probe based on phenothiazine and HBI motif for rapid detection of HClO and its applications. Dye Pigment 209:110930. https://doi.org/10.1016/j.dyepig.2022.110930. (PMID: 10.1016/j.dyepig.2022.110930)
Zhang C, Wang Y, Li X et al (2023) A fluorescent probe based on phenothiazine for detection of ClO with naked-eye color change properties. Anal Biochem. https://doi.org/10.1016/j.ab.2023.115131. (PMID: 10.1016/j.ab.2023.11513138161043)
Zhi X, Qian Y (2021) A novel red-emission phenothiazine fluorescent protein chromophore based on oxygen–chlorine bond (O–Cl) formation for real-time detection of hypochlorous acid in cells. Talanta 222:121503. https://doi.org/10.1016/j.talanta.2020.121503. (PMID: 10.1016/j.talanta.2020.12150333167216)
Chen X, Zhou Y, Shan J et al (2023) Selective colorimetric and fluorometric organogel sensors for the detection of F and ClO based on chiral glutamic and phenothiazine derivatives. Colloid Polym Sci 301:107–115. https://doi.org/10.1007/s00396-022-05050-5. (PMID: 10.1007/s00396-022-05050-5)
Tan J, Li Z, Lu Z et al (2021) Dyes and pigments recent progress in the development of chemodosimeters for fluorescence visualization of phosgene. Dye Pigment 193:109540. https://doi.org/10.1016/j.dyepig.2021.109540. (PMID: 10.1016/j.dyepig.2021.109540)
Jr LSH, Wright E, Pizon AF (2014) Phosgene exposure: a case of accidental industrial exposure. 51–56. https://doi.org/10.1007/s13181-013-0319-6.
Wang S, Zhu B, Wang B et al (2020) A highly selective phenothiazine-based fluorescent chemosensor for phosgene. Dye Pigment 173:107933. https://doi.org/10.1016/j.dyepig.2019.107933. (PMID: 10.1016/j.dyepig.2019.107933)
Zhang R, Ye Z, Yin Y et al (2012) Developing red-emissive ruthenium(II) complex-based luminescent probes for cellular imaging.
Links DA (2012) Communication: BODIPY based colorimetric fluorescent probe for selective thiophenol detection: theoretical and experimental studies. 3921–3924. https://doi.org/10.1039/c2an35524h.
Chen W, Yue X, Li W et al (2017) A phenothiazine coumarin-based red emitting fluorescent probe for nanomolar detection of thiophenol with a large Stokes shift. Sens Actuators B Chem 245:702–710. https://doi.org/10.1016/j.snb.2017.01.167. (PMID: 10.1016/j.snb.2017.01.167)
Chen W, Zhu L, Hao Y et al (2017) Detection of thiophenol in buffer, in serum, on fi lter paper strip, and in living cells using a red-emitting amino phenothiazine boranil based fluorescent probe with a large Stokes shift. Tetrahedron 73:4529–4537. https://doi.org/10.1016/j.tet.2017.06.011. (PMID: 10.1016/j.tet.2017.06.011)
Hou P, Wang J, Fu S et al (2019) Highly sensitive fluorescent probe based on a novel phenothiazine dye for detection of thiophenols in real water samples and living cells. 935–942.
Gai J, Chen C, Huang J et al (2020) An acetophenothiazine-based fluorescence probe for multi-channel imaging of thiophenol with a large Stokes shift. Tetrahedron Lett 61:152038. https://doi.org/10.1016/j.tetlet.2020.152038. (PMID: 10.1016/j.tetlet.2020.152038)
Review T (2013). Chem Soc Rev. https://doi.org/10.1039/c3cs60024f. (PMID: 10.1039/c3cs60024f)
Zheng Y, Hou P, Li Y et al (2021) A phenothiazine-HPQ based fluorescent probe with a large stokes shift for sensing biothiols in living systems. 1–12.
Manna SK, Gangopadhyay A, Maiti K, Mondal S (2019) Recent developments in fluorometric and colorimetric chemodosimeters targeted towards hydrazine sensing: present success and future possibilities. 7219–7245. https://doi.org/10.1002/slct.201803685.
Zhang X, Yang Y, Wang W et al (2020) Fluorescent sensors for the detection of hydrazine in environmental and biological systems: recent advances and future prospects. Coord Chem Rev 417:213367. https://doi.org/10.1016/j.ccr.2020.213367. (PMID: 10.1016/j.ccr.2020.213367)
Qiu X, Liu S, Hao Y et al (2020) Phenothiazine-based fluorescence probe for ratiometric imaging of hydrazine in living cells with remarkable Stokes shift. Spectrochim Acta Part A Mol Biomol Spectrosc 227:117675. https://doi.org/10.1016/j.saa.2019.117675. (PMID: 10.1016/j.saa.2019.117675)
Li L, Wang R, Wang L, Huang L (2022) Development of phenothiazine-based fluorescent probe with aggregation induced emission (AIE) for detection of hydrazine and its application in imaging of living cells. J Mol Struct 1249:131596. https://doi.org/10.1016/j.molstruc.2021.131596. (PMID: 10.1016/j.molstruc.2021.131596)
Hou J, Wang B, Wang S et al (2020) Detection of hydrazine via a highly selective fluorescent probe: a case study on the reactivity of cyano-substituted C–C bond. Dye Pigment 178:108366. https://doi.org/10.1016/j.dyepig.2020.108366. (PMID: 10.1016/j.dyepig.2020.108366)
Li J, Huo F (2015) Hydrogen sulfide: review of detection mechanisms since the year. RSC Adv 2009:2191–2206. https://doi.org/10.1039/c4ra11870g. (PMID: 10.1039/c4ra11870g)
Wei H, Liu Y, Zhao X (2020) Methylene blue-based 7-nitro-1, 2, 3-benzoxadiazole NIR fluorescent probe triggered by H 2 S. Bioorg Med Chem Lett 30:127221. https://doi.org/10.1016/j.bmcl.2020.127221. (PMID: 10.1016/j.bmcl.2020.12722132386977)
Wang C, Cheng X, Tan J et al (2018) Reductive cleavage of C–C bonds as a new strategy for turn-on dual fluorescence in effective. Chem Sci. https://doi.org/10.1039/c8sc03430c. (PMID: 10.1039/c8sc03430c311918976385844)
Wang C (2020) Structure–reactivity relationship of probes based on the H 2 S-mediated reductive cleavage of the. 11667–11677. https://doi.org/10.1039/d0nj02307h.
فهرسة مساهمة: Keywords: Anions; Cations; Chemosensors; Fluorescent probe; Mechanism; Phenothiazine
المشرفين على المادة: 0 (Phenothiazines)
0 (Fluorescent Dyes)
0 (Anions)
0 (Cations)
GS9EX7QNU6 (phenothiazine)
تواريخ الأحداث: Date Created: 20240905 Date Completed: 20240906 Latest Revision: 20240916
رمز التحديث: 20240916
DOI: 10.1007/s41061-024-00474-9
PMID: 39237745
قاعدة البيانات: MEDLINE
الوصف
تدمد:2364-8961
DOI:10.1007/s41061-024-00474-9