دورية أكاديمية

Exploring Co-Amorphous Formulations Of Nevirapine: Insights From Computational, Thermal, And Solubility Analyses.

التفاصيل البيبلوغرافية
العنوان: Exploring Co-Amorphous Formulations Of Nevirapine: Insights From Computational, Thermal, And Solubility Analyses.
المؤلفون: Dos Santos KA; Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil., Chaves LL; Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil.; Postgraduate Program in Pharmaceutical Sciences, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió, Alagoas, Brazil., Nadvorny D; Postgraduate Program in Pharmaceutical Sciences, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió, Alagoas, Brazil., de La Roca Soares MF; Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil.; Postgraduate Program in Pharmaceutical Sciences, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió, Alagoas, Brazil., Sobrinho JLS; Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil. joselamartine@hotmail.com.
المصدر: AAPS PharmSciTech [AAPS PharmSciTech] 2024 Sep 12; Vol. 25 (7), pp. 214. Date of Electronic Publication: 2024 Sep 12.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 100960111 Publication Model: Electronic Cited Medium: Internet ISSN: 1530-9932 (Electronic) Linking ISSN: 15309932 NLM ISO Abbreviation: AAPS PharmSciTech Subsets: MEDLINE
أسماء مطبوعة: Publication: New York : Springer
Original Publication: Arlington, VA : American Association of Pharmaceutical Scientists, c2000-
مواضيع طبية MeSH: Nevirapine*/chemistry , Solubility* , Calorimetry, Differential Scanning*/methods , X-Ray Diffraction*/methods , Chemistry, Pharmaceutical*/methods, Spectroscopy, Fourier Transform Infrared/methods ; Drug Compounding/methods ; Lamivudine/chemistry ; Hydrogen Bonding ; Anti-HIV Agents/chemistry
مستخلص: This study aimed to assess the formation of nevirapine (NVP) co-amorphs systems (CAM) with different co-formers (lamivudine-3TC, citric acid-CAc, and urea) through combined screening techniques as computational and thermal studies, solubility studies; in addition to develop and characterize suitable NVP-CAM. NVP-CAM were obtained using the quench-cooling method, and characterized by differential scanning calorimetry (DSC), X-ray diffractometry (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and polarized light microscopy (PLM), in addition to in vitro dissolution in pH 6.8. The screening results indicated intermolecular interactions occurring between NVP and 3TC; NVP and CAc, where shifts in the melting temperature of NVP were verified. The presence of CAc impacted the NVP equilibrium solubility, due to hydrogen bonds. DSC thermograms evidenced the reduction and shifting of the endothermic peaks of NVP in the presence of its co-formers, suggesting partial miscibility of the compounds. Amorphization was proven by XRD and PLM assays. In vitro dissolution study exhibited a significant increase in solubility and dissolution efficiency of NVP-CAM compared to free NVP. Combined use of screening studies was useful for the development of stable and amorphous NVP-CAM, with increased NVP solubility, making CAM promising systems for combined antiretroviral therapy.
(© 2024. The Author(s), under exclusive licence to American Association of Pharmaceutical Scientists.)
References: World Health Organization. HIV and AIDS [Internet]. 2023 [cited 2023 Sep 18]. Available from: https://www.who.int/news-room/fact-sheets/detail/hiv-aids.
Arca HÇ, Mosquera-Giraldo LI, Dahal D, Taylor LS, Edgar KJ. Multidrug, Anti-HIV Amorphous Solid Dispersions: Nature and Mechanisms of Impacts of Drugs on Each Other’s Solution Concentrations. Mol Pharm. 2017;14:3617–27. (PMID: 2887286710.1021/acs.molpharmaceut.7b00203)
Santos KA dos, Danda LJ de A, Oliveira TC de, Soares-Sobrinho JL, Soares MF de LR. The drug loading impact on dissolution and diffusion: a case-study with amorphous solid dispersions of nevirapine. Research, Society and Development. 2022;11:e168111436117.
Panzade P, Somani P, Rathi P. Nevirapine Pharmaceutical Cocrystal: Design. Development and Formulation Drug Deliv Lett. 2019;9:240–7. (PMID: 10.2174/2210303109666190411125857)
Rao MRP, Sonawane AS, Sapate SA, Mehta CH, Nayak UY. Molecular modeling and in vitro studies to assess solubility enhancement of nevirapine by solid dispersion technique. J Mol Struct. 2023;1273: 134373. (PMID: 10.1016/j.molstruc.2022.134373)
Tambosi G, Coelho PF, Soares L, Lenschow ICS, Zétola M, Stulzer HK, et al. Challenges to improve the biopharmaceutical properties of poorly water-soluble drugs and the application of the solid dispersion technology. Revista Materia. 2018;23:e12224. (PMID: 10.1590/s1517-707620180004.0558)
Savjani KT, Gajjar AK, Savjani JK. Drug Solubility: Importance and Enhancement Techniques. ISRN Pharm [Internet]. 2012;2012:1–10. Available from: https://www.hindawi.com/archive/2012/195727/.
Blaabjerg LI, Bulduk B, Lindenberg E, Löbmann K, Rades T, Grohganz H. Influence of Glass Forming Ability on the Physical Stability of Supersaturated Amorphous Solid Dispersions. J Pharm Sci. 2019;108:2561–9. (PMID: 3087851310.1016/j.xphs.2019.02.028)
Cooper ER. Nanoparticles: A personal experience for formulating poorly water soluble drugs. J Control Release. 2010;141:300–2. (PMID: 1982217710.1016/j.jconrel.2009.10.006)
Shegokar R, Singh KK. Surface modified nevirapine nanosuspensions for viral reservoir targeting: In vitro and in vivo evaluation. Int J Pharm. 2011;421:341–52. (PMID: 2198611410.1016/j.ijpharm.2011.09.041)
Zhu Y, Ye J, Zhang Q. Self-emulsifying Drug Delivery System Improve Oral Bioavailability: Role of Excipients and Physico-chemical Characterization. Pharm Nanotechnol. 2020;8:290–301. (PMID: 3278197810.2174/2211738508666200811104240)
Tang J, Sun J, He Z-G. Self-Emulsifying Drug Delivery Systems: Strategy for Improving Oral Delivery of Poorly Soluble Drugs. Curr Drug ther. 2008;2:85–93. (PMID: 10.2174/157488507779422400)
Singh G, Singh N, Kumar R, Bedi N. Development and characterization of nevirapine loaded amorphous solid dispersions for solubility enhancement. Asian J Pharm Clin Res. 2019;12:176–82. (PMID: 10.22159/ajpcr.2019.v12i18.34097)
Ivone R, Fernando A, DeBoef B, Meenach SA, Shen J. Development of Spray-Dried Cyclodextrin-Based Pediatric Anti-HIV Formulations. AAPS PharmSciTech. 2021;22:193. (PMID: 3418416310.1208/s12249-021-02068-w)
Hiew TN, Zemlyanov DY, Taylor LS. Balancing Solid-State Stability and Dissolution Performance of Lumefantrine Amorphous Solid Dispersions: The Role of Polymer Choice and Drug-Polymer Interactions. Mol Pharm. 2022;19:392–413. (PMID: 3449484210.1021/acs.molpharmaceut.1c00481)
Fong SYK, Bauer-Brandl A, Brandl M. Oral bioavailability enhancement through supersaturation: an update and meta-analysis. Expert Opin Drug Deliv. 2017;14:403–26. (PMID: 2748804910.1080/17425247.2016.1218465)
Laitinen R, Löbmann K, Grohganz H, Priemel P, Strachan CJ, Rades T. Supersaturating drug delivery systems: The potential of co-amorphous drug formulations. Int J Pharm. 2017;532:1–12. (PMID: 2887076410.1016/j.ijpharm.2017.08.123)
Sarode AL, Wang P, Obara S, Worthen DR. Supersaturation, nucleation, and crystal growth during single- and biphasic dissolution of amorphous solid dispersions: Polymer effects and implications for oral bioavailability enhancement of poorly water soluble drugs. Eur J Pharm Biopharm. 2014;86:351–60. (PMID: 2416165510.1016/j.ejpb.2013.10.005)
Baghel S, Cathcart H, O’Reilly NJ. Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs. J Pharm Sci. 2016;105:2527–44. (PMID: 2688631410.1016/j.xphs.2015.10.008)
Karagianni A, Kachrimanis K, Nikolakakis I. Co-Amorphous Solid Dispersions for Solubility and Absorption Improvement of Drugs: Composition, Preparation, Characterization and Formulations for Oral Delivery. Pharmaceutics. 2018;10:1–26. (PMID: 10.3390/pharmaceutics10030098)
Mizoguchi R, Waraya H, Hirakura Y. Application of Co-Amorphous Technology for Improving the Physicochemical Properties of Amorphous Formulations. Mol Pharm. 2019;16:2142–52. (PMID: 3094677810.1021/acs.molpharmaceut.9b00105)
Yarlagadda DL, Sai Krishna Anand V, Nair AR, Navya Sree KS, Dengale SJ, Bhat K. Considerations for the selection of co-formers in the preparation of co-amorphous formulations. Int J Pharm. 2021 602:120649.
Vullendula SKA, Nair AR, Yarlagadda DL, Navya Sree KS, Bhat K, Dengale SJ. Polymeric solid dispersion Vs co-amorphous technology: A critical comparison. J Drug Deliv Sci Technol. 2022;78: 103980. (PMID: 10.1016/j.jddst.2022.103980)
Han J, Wei Y, Lu Y, Wang R, Zhang J, Gao Y, et al. Co-amorphous systems for the delivery of poorly water-soluble drugs: recent advances and an update. Expert Opin Drug Deliv. 2020;17:1411–35. (PMID: 3268399610.1080/17425247.2020.1796631)
Liu J, Grohganz H, Löbmann K, Rades T, Hempel NJ. Co-amorphous drug formulations in numbers: Recent advances in co-amorphous drug formulations with focus on co-formability, molar ratio, preparation methods, physical stability, in vitro and in vivo performance, and new formulation strategies. Pharmaceutics. 2021;13:389. (PMID: 33804159799920710.3390/pharmaceutics13030389)
Shi X, Zhou X, Shen S, Chen Q, Song S, Gu C, et al. Improved in vitro and in vivo properties of telmisartan in the co-amorphous system with hydrochlorothiazide: A potential drug-drug interaction mechanism prediction. Eur J Pharm Sci. 2021;161:105773. (PMID: 3364050010.1016/j.ejps.2021.105773)
Korhonen O, Pajula K, Laitinen R. Rational excipient selection for co-amorphous formulations. Expert Opin Drug Deliv. 2016;14:551–69. (PMID: 2726787310.1080/17425247.2016.1198770)
Dennington R, Keith T, Millam J. Gauss View. Shawnee Mission: Semichem Inc.; 2009.
Froese FC. General Hartree-Fock program. Comput Phys Commun. 1987;43:355–65. (PMID: 10.1016/0010-4655(87)90053-1)
D’Angelo A, Edgar B, Hurt AP, Antonijević MD. Physico-chemical characterisation of three-component co-amorphous systems generated by a melt-quench method. J Therm Anal Calorim. 2018;134:381–90. (PMID: 10.1007/s10973-018-7291-y)
Chadha R, Arora P, Garg M, Bhandari S, Jain DS. Thermoanalytical and spectroscopic studies on different crystal forms of nevirapine. J Therm Anal Calorim. 2013;111:2133–42. (PMID: 10.1007/s10973-012-2666-y)
Food and Drug Administration. FDA. Waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid dosage forms base on a Biopharmaceutics Classification System. Maryland; 2017. p. 1–19.
Baka E, Comer JEA, Takács-Novák K. Study of equilibrium solubility measurement by saturation shake-flask method using hydrochlorothiazide as model compound. J Pharm Biomed Anal. 2008;46:335–41. (PMID: 1805515310.1016/j.jpba.2007.10.030)
Skotnicki M, Jadach B, Skotnicka A, Milanowski B, Tajber L, Pyda M, et al. Physicochemical characterization of a co-amorphous atorvastatin-irbesartan system with a potential application in fixed-dose combination therapy. Pharmaceutics. 2021;13:1–20. (PMID: 10.3390/pharmaceutics13010118)
Vieira-Sellaï L, Quintana M, Diop O, Mercier O, Tarrit S, Raimi N, et al. Green HPLC quantification method of lamivudine, zidovudine and nevirapine with identification of related substances in tablets. Green Chem Lett Rev. 2022;15:695–704. (PMID: 10.1080/17518253.2022.2129463)
Anbazhagan S, Indumathy N, Shanmugapandiyan P, Sridhar SK. Simultaneous quantification of stavudine, lamivudine and nevirapine by UV spectroscopy, reverse phase HPLC and HPTLC in tablets. J Pharm Biomed Anal. 2005;39:801–4. (PMID: 1595042510.1016/j.jpba.2005.04.044)
Lodagekar A, Chavan RB, Mannava MKC, Yadav B, Chella N, Nangia AK, et al. Co amorphous valsartan nifedipine system: Preparation, characterization, in vitro and in vivo evaluation. Eur J Pharm Sci. 2019;139: 105048. (PMID: 3144607710.1016/j.ejps.2019.105048)
Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, et al. DDSolver: An add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12:263–71. (PMID: 20373062289545310.1208/s12248-010-9185-1)
Porfírio LDO, Costa AA, Conceição RR, Matos TDO, Almeida EDP, Sarmento VHV, et al. Compatibility study of hydroxypropylmethylcellulose films containing zidovudine and lamivudine using thermal analysis and infrared spectroscopy. J Therm Anal Calorim. 2015;120:817–28. (PMID: 10.1007/s10973-014-3938-5)
Reguri BR, Chakka R. Crystalline forms of nevirapine. Estados Unidos; 2006. p. 1–7.
Sarkar M, Perumal OP, Panchagnula R. Solid-state characterization of nevirapine. Indian J Pharm Sci. 2008;70:619–30. (PMID: 21394259303828710.4103/0250-474X.45401)
Palei NN, Mamidi SK, Rajangam J. Formulation and evaluation of lamivudine sustained release tablet using okra mucilage. J Appl Pharm Sci. 2016;6:069–75. (PMID: 10.7324/JAPS.2016.60910)
Baruah U, Deka MJ, Chowdhury D. Reversible on/off switching of fluorescence via esterification of carbon dots. RSC Adv. 2014;4:36917–22. (PMID: 10.1039/C4RA04734F)
Pimpang P, Sumang R, Choopun S. Effect of concentration of citric acid on size and optical properties of fluorescence graphene quantum dots prepared by tuning carbonization degree. Chiang Mai J Sci. 2018;45:2005–14.
Hirakawa Y, Ueda H, Miyano T, Kamiya N, Goto M. New insight into transdermal drug delivery with supersaturated formulation based on co-amorphous system. Int J Pharm. 2019;569:118582. (PMID: 3138198710.1016/j.ijpharm.2019.118582)
Chambers LI, Musa OM, Steed JW. Prediction and Preparation of Coamorphous Phases of a Bislactam. Mol Pharm. 2022;19:2651–61. (PMID: 35730408925774610.1021/acs.molpharmaceut.2c00357)
Ahuja N, Katare OP, Singh B. Studies on dissolution enhancement and mathematical modeling of drug release of a poorly water-soluble drug using water-soluble carriers. Eur J Pharm Biopharm. 2007;65:26–38. (PMID: 1696275010.1016/j.ejpb.2006.07.007)
Hirakawa Y, Ueda H, Takata Y, Minamihata K, Wakabayashi R, Kamiya N, et al. Co-amorphous formation of piroxicam-citric acid to generate supersaturation and improve skin permeation. Eur J Pharm Sci. 2021;158:105667. (PMID: 3329671110.1016/j.ejps.2020.105667)
Ueda H, Wu W, Löbmann K, Grohganz H, Müllertz A, Rades T. Application of a Salt Coformer in a Co-Amorphous Drug System Dramatically Enhances the Glass Transition Temperature: A Case Study of the Ternary System Carbamazepine, Citric Acid, and l -Arginine. Mol Pharm. 2018;15:2036–44. (PMID: 2963084210.1021/acs.molpharmaceut.8b00174)
Deng Y, Liu S, Jiang Y, Martins ICB, Rades T. Recent Advances in Co-Former Screening and Formation Prediction of Multicomponent Solid Forms of Low Molecular Weight Drugs. Pharmaceutics. 2023;15:2174. (PMID: 377651451053814010.3390/pharmaceutics15092174)
Zhang Z, Li D, Jiang W, Wang Z. The electron density delocalization of hydrogen bond systems. Adv Phys X. 2018;3:1428915.
Takahashi M, Okamura N, Ding X, Shirakawa H, Minamide H. Intermolecular hydrogen bond stretching vibrations observed in terahertz spectra of crystalline vitamins. CrystEngComm. 2018;20:1960–9.
Kolesov B. Hydrogen Bonds: Raman Spectroscopic Study. Int J Mol Sci. 2021;22:5380. (PMID: 34065358816109510.3390/ijms22105380)
Ma X, Higashi K, Fukuzawa K, Ueda K, Kadota K, Tozuka Y, et al. Computational approach to elucidate the formation and stabilization mechanism of amorphous formulation using molecular dynamics simulation and fragment molecular orbital calculation. Int J Pharm. 2022;615: 121477. (PMID: 3505153610.1016/j.ijpharm.2022.121477)
Yarlagadda DL, Anand VSK, Nair AR, Dengale SJ, Pandiyan S, Mehta CH, et al. A computational-based approach to fabricate Ceritinib co-amorphous system using a novel co-former Rutin for bioavailability enhancement. Eur J Pharm Biopharm. 2023;190:220–30. (PMID: 3752421410.1016/j.ejpb.2023.07.019)
Ferrero M, Civalleri B, Rérat M, Orlando R, Dovesi R. The calculation of the static first and second susceptibilities of crystalline urea: A comparison of Hartree–Fock and density functional theory results obtained with the periodic coupled perturbed Hartree–Fock/Kohn–Sham scheme. J Chem Phys. 2009;131.
Civalleri B, Doll K, Zicovich-Wilson CM. Ab initio investigation of structure and cohesive energy of crystalline urea. J Phys Chem B. 2007;111:26–33. (PMID: 1720142510.1021/jp065757c)
Perpétuo GJ, Janczak J. Supramolecular hydrogen-bonding networks in the 1-(diaminomethylenene) thiouron-1-ium 4-hydroxybenzoate, 3,4-dihydroxybenzoate and 3,4,5- trihydroxybenzoate monohydrate crystals. J Mol Struct. 2013;1041:127–38. (PMID: 10.1016/j.molstruc.2013.03.015)
Maheswaram MP, Mantheni D, Perera I, Venumuddala H, Riga A, Alexander K. Characterization of crystalline and amorphous content in pharmaceutical solids by dielectric thermal analysis. J Therm Anal Calorim. 2013;111:1987–97. (PMID: 10.1007/s10973-011-2140-2)
Rojek B, Wesolowski M. A combined differential scanning calorimetry and thermogravimetry approach for the effective assessment of drug substance-excipient compatibility. J Therm Anal Calorim. 2023;148:845–58. (PMID: 10.1007/s10973-022-11849-9)
Datta A, Nolas GS. Composition controlled synthesis of Bi rich Bi1−xSbx alloy nanocrystals by a low temperature polyol process. CrystEngComm. 2011;13:2753. (PMID: 10.1039/c0ce00706d)
Alhalaweh A, Alzghoul A, Kaialy W, Mahlin D, Bergström CAS. Computational Predictions of Glass-Forming Ability and Crystallization Tendency of Drug Molecules. Mol Pharm [Internet]. 2014 [cited 2022 Feb 15];11:3123–32. Available from: https://pubs.acs.org/doi/full/10.1021/mp500303a.
Adeola AO, de Lange J, Forbes PBC. Adsorption of antiretroviral drugs, efavirenz and nevirapine from aqueous solution by graphene wool: Kinetic, equilibrium, thermodynamic and computational studies. Appl Surf Sci Adv. 2021;6: 100157. (PMID: 10.1016/j.apsadv.2021.100157)
Nangare S, Vispute Y, Tade R, Dugam S, Patil P. Pharmaceutical applications of citric acid. Futur J Pharm Sci. 2021;7:1–23. (PMID: 10.1186/s43094-021-00203-9)
Wu W, Ueda H, Löbmann K, Rades T, Grohganz H. Organic acids as co-formers for co-amorphous systems – Influence of variation in molar ratio on the physicochemical properties of the co-amorphous systems. Eur J Pharm Biopharm. 2018;131:25–32. (PMID: 3004099710.1016/j.ejpb.2018.07.016)
Wu H, Ma J, Qian S, Jiang W, Liu Y, Li J, et al. Co-amorphization of posaconazole using citric acid as an acidifier and a co-former for solubility improvement. J Drug Deliv Sci Technol. 2023;80: 104136. (PMID: 10.1016/j.jddst.2022.104136)
Beig A, Lindley D, Miller JM, Agbaria R, Dahan A. Hydrotropic solubilization of lipophilic drugs for oral delivery: The effects of urea and nicotinamide on carbamazepine solubility-permeability interplay. Front Pharmacol. 2016;7:379. (PMID: 27826241507867410.3389/fphar.2016.00379)
Krstić M, Manić L, Martić N, Vasiljević D, Mračević SĐ, Vukmirović S, et al. Binary polymeric amorphous carvedilol solid dispersions: In vitro and in vivo characterization. Eur J Pharm Sci. 2020;150: 105343. (PMID: 3237638610.1016/j.ejps.2020.105343)
Mui PW, Jacober SP, Hargrave KD, Adams J. Crystal structure of nevirapine, a non-nucleoside inhibitor of HIV-1 reverse transcriptase, and computational alignment with a structurally diverse inhibitor. J Med Chem. 1992;35:201–2. (PMID: 137069410.1021/jm00079a029)
Ayala AP, Siesler HW, Wardell SMSV, Boechat N, Dabbene V, Cuffini SL. Vibrational spectra and quantum mechanical calculations of antiretroviral drugs: Nevirapine. J Mol Struct. 2007;828:201–10. (PMID: 10.1016/j.molstruc.2006.05.055)
Hatanaka Y, Uchiyama H, Kadota K, Tozuka Y. Improved solubility and permeability of both nifedipine and ketoconazole based on coamorphous formation with simultaneous dissolution behavior. J Drug Deliv Sci Technol. 2021;65: 102715. (PMID: 10.1016/j.jddst.2021.102715)
Jensen KT, Larsen FH, Cornett C, Löbmann K, Grohganz H, Rades T. Formation Mechanism of Coamorphous Drug-Amino Acid Mixtures. Mol Pharm. 2015;12:2484–92. (PMID: 2605795010.1021/acs.molpharmaceut.5b00295)
Löbmann K, Strachan C, Grohganz H, Rades T, Korhonen O, Laitinen R. Co-amorphous simvastatin and glipizide combinations show improved physical stability without evidence of intermolecular interactions. Eur J Pharm Biopharm. 2012;81:159–69. (PMID: 2235348910.1016/j.ejpb.2012.02.004)
Allesø M, Chieng N, Rehder S, Rantanen J, Rades T, Aaltonen J. Enhanced dissolution rate and synchronized release of drugs in binary systems through formulation: Amorphous naproxen–cimetidine mixtures prepared by mechanical activation. J Control Release. 2009;136:45–53. (PMID: 1933184210.1016/j.jconrel.2009.01.027)
Löbmann K, Laitinen R, Grohganz H, Gordon KC, Strachan C, Rades T. Coamorphous drug systems: enhanced physical stability and dissolution rate of indomethacin and naproxen. Mol Pharm. 2011;8:1919–28. (PMID: 2181561410.1021/mp2002973)
Jensen KT, Larsen FH, Löbmann K, Rades T, Grohganz H. Influence of variation in molar ratio on co-amorphous drug-amino acid systems. Eur J Pharm Biopharm. 2016;107:32–9. (PMID: 2736874710.1016/j.ejpb.2016.06.020)
Lambros M, Tran T, Fei Q, Nicolaou M. Citric Acid: A Multifunctional Pharmaceutical Excipient. Pharmaceutics. 2022;14:972. (PMID: 35631557914806510.3390/pharmaceutics14050972)
Wang J, Chang R, Zhao Y, Zhang J, Zhang T, Fu Q, et al. Coamorphous Loratadine-Citric Acid System with Enhanced Physical Stability and Bioavailability. AAPS PharmSciTech. 2017;18:2541–50. (PMID: 2822439310.1208/s12249-017-0734-0)
Hari BV, Devendharan K, Narayanan N. Approaches of Novel drug delivery systems for Anti-HIV agents. Int J Drug Dev Res. 2013;5:1–9.
فهرسة مساهمة: Keywords: HIV; biopharmaceutical classification system (BCS); co-amorphous; solubility
المشرفين على المادة: 99DK7FVK1H (Nevirapine)
2T8Q726O95 (Lamivudine)
0 (Anti-HIV Agents)
تواريخ الأحداث: Date Created: 20240912 Date Completed: 20240913 Latest Revision: 20240912
رمز التحديث: 20240916
DOI: 10.1208/s12249-024-02932-5
PMID: 39266781
قاعدة البيانات: MEDLINE
الوصف
تدمد:1530-9932
DOI:10.1208/s12249-024-02932-5