دورية أكاديمية

Improved functionality of hepatic spheroids cultured in acoustic levitation compared to existing 2D and 3D models.

التفاصيل البيبلوغرافية
العنوان: Improved functionality of hepatic spheroids cultured in acoustic levitation compared to existing 2D and 3D models.
المؤلفون: Rabiet L; Laboratoire Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS, ESPCI, 7 Quai Saint-Bernard, 75005, Paris, France. lucile.rabiet@gmail.com.; Inserm U976, CIC-BT CBT501, AP-HP, Université Paris-Cité, Hôpital Saint-Louis, 1 avenue Claude Vellefaux, 75010, Paris, France. lucile.rabiet@gmail.com., Jeger-Madiot N; Laboratoire Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS, ESPCI, 7 Quai Saint-Bernard, 75005, Paris, France., García DR; Laboratoire Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS, ESPCI, 7 Quai Saint-Bernard, 75005, Paris, France., Tosca L; Service Histologie Embryologie Cytogénomique, Hôpital Antoine Béclère, 157 Rue de la Porte de Trivaux, 92140, Clamart, France., Tachdjian G; Service Histologie Embryologie Cytogénomique, Hôpital Antoine Béclère, 157 Rue de la Porte de Trivaux, 92140, Clamart, France., Kellouche S; Laboratoire ERRMECe, Maison Internationale de la Recherche, CY Cergy Paris Université, 1 rue Descartes, 95000, Neuville-sur-Oise, France., Agniel R; Laboratoire ERRMECe, Maison Internationale de la Recherche, CY Cergy Paris Université, 1 rue Descartes, 95000, Neuville-sur-Oise, France., Larghero J; Inserm U976, CIC-BT CBT501, AP-HP, Université Paris-Cité, Hôpital Saint-Louis, 1 avenue Claude Vellefaux, 75010, Paris, France., Aider JL; Laboratoire Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS, ESPCI, 7 Quai Saint-Bernard, 75005, Paris, France. jean-luc.aider@espci.psl.eu., Arakelian L; Inserm U976, CIC-BT CBT501, AP-HP, Université Paris-Cité, Hôpital Saint-Louis, 1 avenue Claude Vellefaux, 75010, Paris, France. lousineh.arakelian@aphp.fr.
المصدر: Scientific reports [Sci Rep] 2024 Sep 14; Vol. 14 (1), pp. 21528. Date of Electronic Publication: 2024 Sep 14.
نوع المنشور: Journal Article; Comparative Study
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Spheroids, Cellular*/cytology , Spheroids, Cellular*/metabolism , Hepatocytes*/cytology , Hepatocytes*/metabolism , Acoustics* , Cell Culture Techniques*/methods, Humans ; Cell Survival ; Cell Line ; Cell Culture Techniques, Three Dimensional/methods ; Liver/cytology ; Liver/metabolism
مستخلص: Hepatic spheroids are of high interest in basic research, drug discovery and cell therapy. Existing methods for spheroid culture present advantages and drawbacks. An alternative technology is explored: the hepatic spheroid formation and culture in an acoustofluidic chip, using HepaRG cell line. Spheroid formation and morphology, cell viability, genetic stability, and hepatic functions are analyzed after 6 days of culture in acoustic levitation. They are compared to 2D culture and non-levitated 3D cultures. Sizes of the 25 spheroids created in a single acoustofluidic microphysiological system are homogeneous. The acoustic parameters in our system do not induce cell mortality nor DNA damage. Spheroids are cohesive and dense. From a functional point of view, hepatic spheroids obtained by acoustic levitation exhibit polarity markers, secrete albumin and express hepatic genes at higher levels compared to 2D and low attachment 3D cultures. In conclusion, this microphysiological system proves not only to be suitable for long-term culture of hepatic spheroids, but also to favor differentiation and functionality within 6 days of culture.
(© 2024. The Author(s).)
References: Ehrlich, A., Duche, D., Ouedraogo, G. & Nahmias, Y. Challenges and opportunities in the design of liver-on-chip microdevices. Annu. Rev. Biomed. Eng. 21, 219–239. https://doi.org/10.1146/annurev-bioeng-060418-052305 (2019). (PMID: 10.1146/annurev-bioeng-060418-052305311670987004816)
Liu, M. et al. State-of-the-art advancements in Liver-on-a-chip (LOC): Integrated biosensors for LOC. Biosens. Bioelectron. 218, 114758. https://doi.org/10.1016/j.bios.2022.114758 (2022). (PMID: 10.1016/j.bios.2022.11475836201998)
Michalopoulos, G. K. & Bhushan, B. Liver regeneration: Biological and pathological mechanisms and implications. Nat. Rev. Gastroenterol. Hepatol. 18, 40–55. https://doi.org/10.1038/s41575-020-0342-4 (2021). (PMID: 10.1038/s41575-020-0342-432764740)
Elaut, G. et al. Molecular mechanisms underlying the dedifferentiation process of isolated hepatocytes and their cultures. Curr. Drug Metab. 7, 629–660. https://doi.org/10.2174/138920006778017759 (2006). (PMID: 10.2174/13892000677801775916918317)
Zeilinger, K., Freyer, N., Damm, G., Seehofer, D. & Knöspel, F. Cell sources for in vitro human liver cell culture models. Exp. Biol. Med. (Maywood, NJ) 241, 1684–1698. https://doi.org/10.1177/1535370216657448 (2016). (PMID: 10.1177/1535370216657448)
Gripon, P. et al. Infection of a human hepatoma cell line by hepatitis B virus. Proc. Natl. Acad. Sci. 99, 15655–15660. https://doi.org/10.1073/pnas.232137699 (2002). (PMID: 10.1073/pnas.23213769912432097137772)
Le Vee, M. et al. Functional expression of sinusoidal and canalicular hepatic drug transporters in the differentiated human hepatoma HepaRG cell line. Eur. J. Pharm. Sci. 28, 109–117. https://doi.org/10.1016/j.ejps.2006.01.004 (2006). (PMID: 10.1016/j.ejps.2006.01.00416488578)
Kanebratt, K. P. & Andersson, T. B. HepaRG cells as an in vitro model for evaluation of cytochrome P450 induction in humans. Drug Metab. Dispos. Biol. Fate Chem. 36, 137–145. https://doi.org/10.1124/dmd.107.017418 (2008). (PMID: 10.1124/dmd.107.01741817954527)
Mayati, A. et al. Functional polarization of human hepatoma HepaRG cells in response to forskolin. Sci. Rep. 8, 16115. https://doi.org/10.1038/s41598-018-34421-8 (2018). (PMID: 10.1038/s41598-018-34421-8303821266208432)
Kamalian, L. et al. The utility of HepaRG cells for bioenergetic investigation and detection of drug-induced mitochondrial toxicity. Toxicol. In Vitro Int. J. Publ. Assoc. BIBRA 53, 136–147. https://doi.org/10.1016/j.tiv.2018.08.001 (2018). (PMID: 10.1016/j.tiv.2018.08.001)
Lauschke, V. M., Shafagh, R. Z., Hendriks, D. F. G. & Ingelman-Sundberg, M. 3D primary hepatocyte culture systems for analyses of liver diseases, drug metabolism, and toxicity: Emerging culture paradigms and applications. Biotechnol. J. 14, 1800347. https://doi.org/10.1002/biot.201800347 (2019). (PMID: 10.1002/biot.201800347)
Takahashi, Y. et al. 3D spheroid cultures improve the metabolic gene expression profiles of HepaRG cells. Biosci. Rep. 35, e00208. https://doi.org/10.1042/BSR20150034 (2015). (PMID: 10.1042/BSR20150034261823704613666)
Vorrink, S. U. et al. Endogenous and xenobiotic metabolic stability of primary human hepatocytes in long-term 3D spheroid cultures revealed by a combination of targeted and untargeted metabolomics. FASEB J. 31, 2696–2708. https://doi.org/10.1096/fj.201601375R (2017). (PMID: 10.1096/fj.201601375R282649755434660)
Ramos, P. et al. Microphysiological systems to study colorectal cancer: State-of-the-art. Biofabrication 15, 032001. https://doi.org/10.1088/1758-5090/acc279 (2023). (PMID: 10.1088/1758-5090/acc279)
Wang, J., Wu, X., Zhao, J., Ren, H. & Zhao, Y. Developing liver microphysiological systems for biomedical applications. Adv. Healthc. Mater.[SPACE] https://doi.org/10.1002/adhm.202302217 (2023). (PMID: 10.1002/adhm.2023022173816121110175134)
Achilli, T.-M., Meyer, J. & Morgan, J. R. Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin. Biol. Ther. 12, 1347–1360. https://doi.org/10.1517/14712598.2012.707181 (2012). (PMID: 10.1517/14712598.2012.707181227842384295205)
Chen, B. et al. High-throughput acoustofluidic fabrication of tumor spheroids. Lab Chip 19, 1755–1763. https://doi.org/10.1039/C9LC00135B (2019). (PMID: 10.1039/C9LC00135B30918934)
Tevlek, A., Kecili, S., Ozcelik, O. S., Kulah, H. & Tekin, H. C. Spheroid engineering in microfluidic devices. ACS Omega[SPACE] https://doi.org/10.1021/acsomega.2c06052 (2023). (PMID: 10.1021/acsomega.2c06052367430719893254)
Nagamoto, Y. et al. Transplantation of a human iPSC-derived hepatocyte sheet increases survival in mice with acute liver failure. J. Hepatol. 64, 1068–1075. https://doi.org/10.1016/j.jhep.2016.01.004 (2016). (PMID: 10.1016/j.jhep.2016.01.00426778754)
Chen, S. et al. Hepatic spheroids derived from human induced pluripotent stem cells in bio-artificial liver rescue porcine acute liver failure. Cell Res. 30, 95–97. https://doi.org/10.1038/s41422-019-0261-5 (2020). (PMID: 10.1038/s41422-019-0261-531827240)
Ten Dam, M. J. M., Frederix, G. W. J., Ten Ham, R. M. T., van der Laan, L. J. W. & Schneeberger, K. Toward transplantation of liver organoids: From biology and ethics to cost-effective therapy. Transplantation[SPACE] https://doi.org/10.1097/TP.0000000000004520 (2023). (PMID: 10.1097/TP.00000000000045203675781910358442)
Christoffersson, J. & Mandenius, C.-F. Using a microfluidic device for culture and drug toxicity testing of 3D cells. Methods Mol. Biol. (Clifton NJ) 235–241, 2019. https://doi.org/10.1007/978-1-4939-9477-922 (1994). (PMID: 10.1007/978-1-4939-9477-922)
Sasikumar, S., Chameettachal, S., Kingshott, P., Cromer, B. & Pati, F. 3D hepatic mimics—The need for a multicentric approach. Biomed. Mater. 15, 052002. https://doi.org/10.1088/1748-605X/ab971c (2020). (PMID: 10.1088/1748-605X/ab971c32460259)
Bruus, H. Acoustofluidics 7: The acoustic radiation force on small particles. Lab Chip 12, 1014. https://doi.org/10.1039/c2lc21068a (2012). (PMID: 10.1039/c2lc21068a22349937)
Olofsson, K., Hammarström, B. & Wiklund, M. Ultrasonic based tissue modelling and engineering. Micromachines.[SPACE] https://doi.org/10.3390/mi9110594 (2018). (PMID: 10.3390/mi9110594304417526266922)
Jeger-Madiot, N. et al. Self-organization and culture of mesenchymal stem cell spheroids in acoustic levitation. Sci. Rep. 11, 8355. https://doi.org/10.1038/s41598-021-87459-6 (2021). (PMID: 10.1038/s41598-021-87459-6338639368052426)
Rabiet, L. et al. Acoustic levitation as a tool for cell-driven self-organization of human cell spheroids during long-term 3D culture. Biotechnol. Bioeng. 121, 1422–1434. https://doi.org/10.1002/bit.28651 (2024). (PMID: 10.1002/bit.2865138225905)
Coakley, W. et al. Cell-cell contact and membrane spreading in an ultrasound trap. Colloids Surf. B 34, 221–230. https://doi.org/10.1016/j.colsurfb.2004.01.002 (2004). (PMID: 10.1016/j.colsurfb.2004.01.002)
Khedr, M. M. S. et al. Generation of functional hepatocyte 3D discoids in an acoustofluidic bioreactor. Biomicrofluidics 13, 014112. https://doi.org/10.1063/1.5082603 (2019). (PMID: 10.1063/1.5082603308678826404912)
Ramaiahgari, S. C. et al. From the cover: Three-dimensional (3D) HepaRG spheroid model with physiologically relevant xenobiotic metabolism competence and hepatocyte functionality for liver toxicity screening. Toxicol. Sci. 159, 124–136. https://doi.org/10.1093/toxsci/kfx122 (2017). (PMID: 10.1093/toxsci/kfx122286334245837526)
Wiklund, M. Acoustofluidics 12: Biocompatibility and cell viability in microfluidic acoustic resonators. Lab Chip 12, 2018–2028. https://doi.org/10.1039/C2LC40201G (2012). (PMID: 10.1039/C2LC40201G22562376)
Du, M. et al. The impact of low intensity ultrasound on cells: Underlying mechanisms and current status. Prog. Biophys. Mol. Biol.[SPACE] https://doi.org/10.1016/j.pbiomolbio.2022.06.004 (2022). (PMID: 10.1016/j.pbiomolbio.2022.06.00436417963)
Organization, W. H. Recommendations for the evaluation of animal cell cultures as substrates for the manufacture of biological medicinal products and for the characterization of cell banks. WHO Technical Report Series WHO TRS [Formula: see text]978, World Health Organization (2013).
Ng, S., Gisonni-Lex, L. & Azizi, A. New approaches for characterization of the genetic stability of vaccine cell lines. Hum. Vaccines Immunother. 13, 1669–1672. https://doi.org/10.1080/21645515.2017.1295191 (2017). (PMID: 10.1080/21645515.2017.1295191)
Guillouzo, A. et al. The human hepatoma HepaRG cells: A highly differentiated model for studies of liver metabolism and toxicity of xenobiotics. Chem. Biol. Interact. 168, 66–73. https://doi.org/10.1016/j.cbi.2006.12.003 (2007). (PMID: 10.1016/j.cbi.2006.12.00317241619)
van der Mark, V. A. et al. Stable overexpression of the constitutive androstane receptor reduces the requirement for culture with dimethyl sulfoxide for high drug metabolism in HepaRG cells. Drug Metab. Dispos. 45, 56–67. https://doi.org/10.1124/dmd.116.072603 (2017). (PMID: 10.1124/dmd.116.07260327780834)
Yosioka, K. & Kawasima, Y. Acoustic radiation pressure on a compressible sphere. Acta Acust. Acust. 5, 167–173 (1955).
Settnes, M. & Bruus, H. Forces acting on a small particle in an acoustical field in a viscous fluid. Phys. Rev. E 85, 016327. https://doi.org/10.1103/PhysRevE.85.016327 (2012). (PMID: 10.1103/PhysRevE.85.016327)
Dumy, G. et al. Acoustic manipulation of dense nanorods in microgravity. Microgravity Sci. Technol. 32, 1159–1174. https://doi.org/10.1007/s12217-020-09835-7 (2020). (PMID: 10.1007/s12217-020-09835-7)
Pazos Ospina, J. F. et al. Particle-size effect in airborne standing-wave acoustic levitation: Trapping particles at pressure antinodes. Phys. Rev. Appl. 18, 034026. https://doi.org/10.1103/PhysRevApplied.18.034026 (2022). (PMID: 10.1103/PhysRevApplied.18.034026)
Jeger-Madiot, N. et al. Controlling the force and the position of acoustic traps with a tunable acoustofluidic chip: Application to spheroid manipulations. J. Acoust. Soc. Am. 151, 4165. https://doi.org/10.1121/10.0011464 (2022). (PMID: 10.1121/10.001146435778170)
Dron, O. & Aider, J.-L. Varying the agglomeration position of particles in a micro-channel using Acoustic Radiation Force beyond the resonance condition. Ultrasonics 53, 1280–1287. https://doi.org/10.1016/j.ultras.2013.03.012 (2013). (PMID: 10.1016/j.ultras.2013.03.01223628114)
فهرسة مساهمة: Keywords: Acoustic levitation; Acoustofluidics; Hepatocytes; Microphysiological system; Spheroids
تواريخ الأحداث: Date Created: 20240914 Date Completed: 20240914 Latest Revision: 20240918
رمز التحديث: 20240919
مُعرف محوري في PubMed: PMC11401944
DOI: 10.1038/s41598-024-72059-x
PMID: 39277635
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-024-72059-x