دورية أكاديمية

Utilisation of acid-tolerant bacteria for base metal recovery under strongly acidic conditions.

التفاصيل البيبلوغرافية
العنوان: Utilisation of acid-tolerant bacteria for base metal recovery under strongly acidic conditions.
المؤلفون: Takano C; Division of Life Sciences and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan.; Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan., Nakashima K; Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan., Kawasaki S; Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan., Aoyagi H; Division of Life Sciences and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan. aoyagi.hideki.ge@u.tsukuba.ac.jp.; Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan. aoyagi.hideki.ge@u.tsukuba.ac.jp.
المصدر: Extremophiles : life under extreme conditions [Extremophiles] 2024 Sep 24; Vol. 28 (3), pp. 45. Date of Electronic Publication: 2024 Sep 24.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9706854 Publication Model: Electronic Cited Medium: Internet ISSN: 1433-4909 (Electronic) Linking ISSN: 14310651 NLM ISO Abbreviation: Extremophiles Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer, c1997-
مواضيع طبية MeSH: Electronic Waste*, Hydrogen-Ion Concentration ; Micrococcus luteus/metabolism ; Micrococcus luteus/drug effects ; Micrococcus luteus/growth & development ; Metals, Heavy/metabolism
مستخلص: Hydrometallurgical bioprocesses for base metal recovery in environmentally friendly electronic device waste (e-waste) recycling are typically studied under neutral pH conditions to avoid competition between metals and hydrogen ions. However, metal leachate is generally strongly acidic, thus necessitating a neutralisation process in the application of these bioprocesses to e-waste recycling. To solve this pH disparity, we focused on acid-tolerant bacteria for metal recovery under strongly acidic conditions. Four acid-tolerant bacterial strains were isolated from neutral pH environments to recover base metals from simulated waste metal leachate (pH 1.5, containing 100 or 1000 mg L -1 of Co, Cu, Li, Mn, and Ni) without neutralisation. The laboratory setting for sequential metal recovery was established using these strains and a reported metal-adsorbing bacterium, Micrococcus luteus JCM1464. The metal species were successfully recovered from 100 mg L -1 metal mixtures at the following rates: Co (8.95%), Cu (21.23%), Li (5.49%), Mn (13.18%), and Ni (9.91%). From 1000 mg L -1 metal mixtures, Co (7.23%), Cu (6.82%), Li (5.85%), Mn (7.64%), and Ni (7.52%) were recovered. These results indicated the amenability of acid-tolerant bacteria to environmentally friendly base metal recycling, contributing to the development of novel industrial application of the beneficial but unutilised bioresource comprising acid-tolerant bacteria.
(© 2024. The Author(s), under exclusive licence to Springer Nature Japan KK.)
References: Aoyagi H, Saitoh R, Murayama K (2022) Development of a device for cultivation and isolation of microbes using a specialized cellulose film. J Microbiol Methods 195:106450. https://doi.org/10.1016/j.mimet.2022.106450. (PMID: 10.1016/j.mimet.2022.10645035318086)
Aryal M (2015) Removal and recovery of nickel ions from aqueous solutions using Bacillus sphaericus biomass. Int J Environ Res. https://doi.org/10.22059/IJER.2015.1004. (PMID: 10.22059/IJER.2015.1004)
Chen X, Chen Y, Zhou T, Liu D, Hu H, Fan S (2015) Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries. Waste Manage 38:349–356. https://doi.org/10.1016/j.wasman.2014.12.023. (PMID: 10.1016/j.wasman.2014.12.023)
Chen M, Wang R, Qi Y, Han Y, Wang R, Fu J, Meng F, Yi X, Huang J, Shu J (2021) Cobalt and lithium leaching from waste lithium ion batteries by glycine. J Power Sources 482:228942. https://doi.org/10.1016/j.jpowsour.2020.228942. (PMID: 10.1016/j.jpowsour.2020.228942)
Chojnacka K (2010) Biosorption and bioaccumulation – the prospects for practical applications. Environ Int 36:299–307. https://doi.org/10.1016/j.envint.2009.12.001. (PMID: 10.1016/j.envint.2009.12.00120051290)
Demarco J, Cadore J, Oliveira F, Tanabe E, Bertuol D (2019) Recovery of metals from spent lithium-ion batteries using organic acids. Hydrometallurgy 190:105169. https://doi.org/10.1016/j.hydromet.2019.105169. (PMID: 10.1016/j.hydromet.2019.105169)
Han Y, Chen J, Li H, Deng Y (2023) Comprehensive recovery process of impurities removal and valuable metals co-extraction from simulated leaching solution of spent LIBs with CA12-TBP system. Sep Purif Technol 326:124773. https://doi.org/10.1016/j.seppur.2023.124773. (PMID: 10.1016/j.seppur.2023.124773)
Huang F, Wang ZH, Cai YX, Chen SH, Tian JH, Cai KZ (2018) Heavy metal bioaccumulation and cation release by growing Bacillus cereus RC-1 under culture conditions. Ecotoxicol Environ Saf 157:216–226. https://doi.org/10.1016/j.ecoenv.2018.03.077. (PMID: 10.1016/j.ecoenv.2018.03.07729625395)
Hui C, Guo Y, Zhang W, Gao C, Yang X, Chen Y, Li L, Huang X (2018) Surface display of PbrR on Escherichia coli and evaluation of the bioavailability of lead associated with engineered cells in mice. Sci Rep 8:5685. https://doi.org/10.1038/s41598-018-24134-3. (PMID: 10.1038/s41598-018-24134-3296323275890273)
Ichinose R, Yamazaki-Yashiki S, Katakura Y (2023) Analysis of the effects of specific growth rate of Lactococcus lactis MG1363 on aerobic metabolism and its application to high-density culture. J Biosci Bioeng 136:129–135. https://doi.org/10.1016/j.jbiosc.2023.05.005. (PMID: 10.1016/j.jbiosc.2023.05.00537301698)
Isildar A, Vossenberg J, Rene E, Hullebusch E, Lens P (2016) Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB). Waste Manage 57:149–157. https://doi.org/10.1016/j.wasman.2015.11.033. (PMID: 10.1016/j.wasman.2015.11.033)
Isildar A, Hullebusch E, Lenz M, Laing G, Marra A, Cesaro A, Panda S, Akcil A, Kucuker M, Kuchta K (2019) Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE)—A review. J Hazard Mater 362:467–481. https://doi.org/10.1016/j.jhazmat.2018.08.050. (PMID: 10.1016/j.jhazmat.2018.08.05030268020)
Juodeikiene G, Zadeike D, Bartkiene E, Klupsaite D (2016) Application of acid tolerant Pedioccocus strains for increasing the sustainability of lactic acid production from cheese whey. LWT Food Sci Technol 72:399–406. https://doi.org/10.1016/j.lwt.2016.05.023. (PMID: 10.1016/j.lwt.2016.05.023)
Krol A, Mizerna K, Bozym M (2020) An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag. J Hazard Mater 384:121502. https://doi.org/10.1016/j.jhazmat.2019.121502. (PMID: 10.1016/j.jhazmat.2019.12150231732354)
Kurosawa H, Nakagomi T, Kanda K, Nakamura K, Amano Y (1991) High density cultivation of Thiobacillus thiooxidans S3 in a fermentor with cross-flow filtration. J Ferment Bioeng 72:36–40. https://doi.org/10.1016/0922-338X(91)90143-5. (PMID: 10.1016/0922-338X(91)90143-5)
Letnik I, Avrahami R, Port R, Greiner A, Zussman E, Rokem JS, Greenblatt C (2017) Biosorption of copper from aqueous environments by Micrococcus luteus in cell suspension and when encapsulated. Int Biodeterior Biodegrad 116:64–72. https://doi.org/10.1016/j.ibiod.2016.09.029. (PMID: 10.1016/j.ibiod.2016.09.029)
Liang C, Shen J (2022) Removal of yttrium from rare-earth wastewater by Serratia marcescens: biosorption optimization and mechanisms studies. Sci Rep 12:4861. https://doi.org/10.1038/s41598-022-08542-0. (PMID: 10.1038/s41598-022-08542-0353183478941142)
Liu T, Chen J, Shen X, Li H (2021) Regulating and regenerating the valuable metals from the cathode materials in lithium-ion batteries by nickel-cobalt-manganese co-extraction. Sep Purif Technol 259:118088. https://doi.org/10.1016/j.seppur.2020.118088. (PMID: 10.1016/j.seppur.2020.118088)
Long J, Gao X, Su M, Li H, Chen D, Zhou S (2018) Performance and mechanism of biosorption of nickel(II) from aqueous solution by non-living Streptomyces roseorubens SY. Colloids Surf 548:125–133. https://doi.org/10.1016/j.colsurfa.2018.03.040. (PMID: 10.1016/j.colsurfa.2018.03.040)
Lopez A, Lazaro N, Priego JM, Marques AM (2000) Effect of pH on the biosorption of nickel and other heavy metals by Pseudomonas fluorescens 4F39. J Ind Microbiol Biotechnol 24:146–151. https://doi.org/10.1038/sj.jim.2900793. (PMID: 10.1038/sj.jim.2900793)
Markou G, Mitrogiannis D, Celekli A, Bozkurt H, Georgakakis D, Chrysikopoulos CV (2015) Biosorption of Cu 2+ and Ni 2+ by Arthrospira platensis with different biochemical compositions. Chem Eng J 259:806–813. https://doi.org/10.1016/j.cej.2014.08.037. (PMID: 10.1016/j.cej.2014.08.037)
Mwandira W, Nakashima K, Kawasaki S, Arabelo A, Banda K, Nyamben I, Chirwa M, Sato T, Igarashi T, Nakata H, Nakayama S, Ishizuka M (2020a) Biosorption of Pb (II) and Zn (II) from aqueous solution by Oceanobacillus profundus isolated from an abandoned mine. Sci Rep 10:21189. https://doi.org/10.1038/s41598-020-78187-4. (PMID: 10.1038/s41598-020-78187-4332735897713119)
Mwandira W, Nakashima K, Togo Y, Sato T, Kawasaki S (2020b) Cellulose-metallothionein biosorbent for removal of Pb (II) and Zn (II) from polluted water. Chemosphere 246:125733. https://doi.org/10.1016/j.chemosphere.2019.125733. (PMID: 10.1016/j.chemosphere.2019.12573331901659)
Naseri T, Bahaloo-Horeh N, Mousavi SM (2019) Environmentally friendly recovery of valuable metals from spent coin cells through two-step bioleaching using Acidithiobacillus thiooxidans. J Environ Manage 235:357–367. https://doi.org/10.1016/j.jenvman.2019.01.086. (PMID: 10.1016/j.jenvman.2019.01.08630708273)
Pipiska M, Trajtelova Z, Hornik M, Fristak V (2018) Evaluation of Mn bioaccumulation and biosorption by bacteria isolated from spent nuclear fuel pools using 54 Mn as a radioindicator. Radiochim Acta 106:217–228. https://doi.org/10.1515/ract-2017-2836. (PMID: 10.1515/ract-2017-2836)
Rizvi A, Ahmed B, Zaidi A, Khan M (2020) Biosorption of heavy metals by dry biomass of metal tolerant bacterial biosorbents: an efficient metal clean-up strategy. Environ Monit Assess 192:801. https://doi.org/10.1007/s10661-020-08758-5. (PMID: 10.1007/s10661-020-08758-533263175)
Roy JJ, Madhavi S, Cao B (2021) Bioleaching as an eco-friendly approach for metal recovery from spent NMC-based lithium-ion batteries at a high pulp density. ACS Sustainable Chem Eng 9:3060–3069. https://doi.org/10.1021/acssuschemeng.0c06573. (PMID: 10.1021/acssuschemeng.0c06573)
Sharma A, Satyanarayana T (2010) High maltose-forming, Ca 2+ -independent and acid stable a-amylase from a novel acidophilic bacterium, Bacillus acidicola. Biotechnol Lett 32:1503–1507. https://doi.org/10.1007/s10529-010-0322-9. (PMID: 10.1007/s10529-010-0322-920559683)
Shimura K, Yoshida H (2011) Heterogeneous photocatalytic hydrogen production from water and biomass derivatives. Energy Environ Sci 4:2467–2481. (PMID: 10.1039/c1ee01120k)
Takano C, Aoyagi H (2022) Screening and isolation of acid-tolerant bacteria using a novel pH shift culture method. J Biosci Bioeng 134:521–527. https://doi.org/10.1016/j.jbiosc.2022.08.009. (PMID: 10.1016/j.jbiosc.2022.08.00936207257)
Tian Y, Ye JS, Yin H, Peng H, Li QS, Bai JQ, Xie DP (2013) Characteristics of copper removal and ion release during copper biosorption by Stenotrophomonas maltophilia in presence of benzo[a]pyrene. J Cent South Univ 20:2796–2805. https://doi.org/10.1007/s11771-013-1799-x. (PMID: 10.1007/s11771-013-1799-x)
Walters C (1998) Oil–oil and oil–source rock correlation. In: Geochemistry. Encycl Earth Sci Springer, Dordrecht. https://doi.org/10.1007/1-4020-4496-8_222.
Xin Y, Guo X, Chen S, Wang J, Wu F, Xin B (2016) Bioleaching of valuable metals Li Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery. J Clean Prod 116:249–258. https://doi.org/10.1016/j.jclepro.2016.01.001. (PMID: 10.1016/j.jclepro.2016.01.001)
Xu C, Dai Q, Gaines L, Hu M, Tukker A, Steubing B (2020) Future material demand for automotive lithium-based batteries. Commun Mater 1:99. https://doi.org/10.1038/s43246-020-00095-x. (PMID: 10.1038/s43246-020-00095-x)
Xu X, Mu W, Xiao T, Li L, Xin H, Lei X, Luo S (2022) A clean and efficient process for simultaneous extraction of Li Co, Ni and Mn from spent lithium-ion batteries by low-temperature NH 4 Cl roasting and water leaching. Waste Manage 153:61–71. https://doi.org/10.1016/j.wasman.2022.08.022. (PMID: 10.1016/j.wasman.2022.08.022)
Yokoi H, Ohkawara T, Hirose J, Hayashi S, Takasaki Y (1995) Characteristics of hydrogen production by aciduric enterobacter aerogenes strain HO-39. J Ferment Bioeng. 80:571–574.  https://doi.org/10.1016/0922-338X(96)87733-6. (PMID: 10.1016/0922-338X(96)87733-6)
Zhang S, Ding Y, Liu B, Chang C (2017) Supply and demand of some critical metals and present status of their recycling in WEEE. Waste Manage 65:113–127. https://doi.org/10.1016/j.wasman.2017.04.003. (PMID: 10.1016/j.wasman.2017.04.003)
معلومات مُعتمدة: Research Grant Yanmar Environmental Sustainability Support Association; Grant-in-Aid for JSPS Fellows (Exploratory) / 21J1 Japan Society for the Promotion of Science; Grant-in-Aid for Scientific Research B / 22H02474 Japan Society for the Promotion of Science; 2023-2028 Sumitomo Electric Industries Group Corporate Social Responsibility Foundation
فهرسة مساهمة: Keywords: Acid-tolerant bacteria; Bioaccumulation; Biosorption; Metal recycling; e-waste
المشرفين على المادة: 0 (Metals, Heavy)
تواريخ الأحداث: Date Created: 20240924 Date Completed: 20240924 Latest Revision: 20240924
رمز التحديث: 20240925
DOI: 10.1007/s00792-024-01362-2
PMID: 39316163
قاعدة البيانات: MEDLINE
الوصف
تدمد:1433-4909
DOI:10.1007/s00792-024-01362-2