دورية أكاديمية

Effect of Lacticaseibacillus rhamnosus IDCC 3201 on irritable bowel syndrome with constipation: a randomized, double-blind, and placebo-controlled trial.

التفاصيل البيبلوغرافية
العنوان: Effect of Lacticaseibacillus rhamnosus IDCC 3201 on irritable bowel syndrome with constipation: a randomized, double-blind, and placebo-controlled trial.
المؤلفون: Kwon H; Immunology Laboratory, Cancer Genomic Research Institute, Seoul Song Do Colorectal Hospital, Seoul, 04597, Republic of Korea., Nam EH; Department of Microbiology, College of Medicine, Inha University, Incheon, 22212, Republic of Korea.; Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon, 22212, Republic of Korea., Kim H; Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, 17957, Republic of Korea., Jo H; Department of Microbiology, College of Medicine, Inha University, Incheon, 22212, Republic of Korea.; Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon, 22212, Republic of Korea., Bang WY; Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, 17957, Republic of Korea., Lee M; Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, 17957, Republic of Korea., Shin H; Immunology Laboratory, Cancer Genomic Research Institute, Seoul Song Do Colorectal Hospital, Seoul, 04597, Republic of Korea., Kim D; Immunology Laboratory, Cancer Genomic Research Institute, Seoul Song Do Colorectal Hospital, Seoul, 04597, Republic of Korea., Kim J; Digestive Endoscopic Center, Seoul Song Do Colorectal Hospital, Seoul, 04597, Republic of Korea., Kim H; Digestive Endoscopic Center, Seoul Song Do Colorectal Hospital, Seoul, 04597, Republic of Korea., Lee J; Department of Surgery, Pelvic Floor Center, Seoul Song Do Colorectal Hospital, Seoul, 04597, Republic of Korea., Jung YH; School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea.; Institute of Fermentation Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea., Yang J; Department of Microbiology, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju, 38066, Republic of Korea. dbl3jwy@dongguk.ac.kr., Won DD; Department of Surgery, Pelvic Floor Center, Seoul Song Do Colorectal Hospital, Seoul, 04597, Republic of Korea. greatsongdo@gmail.com., Shin M; Department of Microbiology, College of Medicine, Inha University, Incheon, 22212, Republic of Korea. mhshin@inha.ac.kr.; Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon, 22212, Republic of Korea. mhshin@inha.ac.kr.
المصدر: Scientific reports [Sci Rep] 2024 Sep 27; Vol. 14 (1), pp. 22384. Date of Electronic Publication: 2024 Sep 27.
نوع المنشور: Journal Article; Randomized Controlled Trial
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Lacticaseibacillus rhamnosus* , Constipation*/drug therapy , Constipation*/microbiology , Constipation*/therapy , Irritable Bowel Syndrome*/microbiology , Irritable Bowel Syndrome*/drug therapy , Irritable Bowel Syndrome*/complications , Probiotics*/therapeutic use , Probiotics*/administration & dosage , Gastrointestinal Microbiome*/drug effects, Humans ; Double-Blind Method ; Male ; Female ; Adult ; Middle Aged ; Feces/microbiology ; Treatment Outcome
مستخلص: Irritable bowel syndrome is a chronic disorder affecting the gastrointestinal tract, negatively impacting patients' quality of life. Here, we aimed to evaluate the effects of Lacticaseibacillus rhamnosus IDCC 3201 (RH 3201) on irritable bowel syndrome with constipation (IBS-C). In this randomised, double-blind, placebo-controlled trial, a total of 30 subjects with IBS-C were randomly assigned (1:1) to receive 8 weeks of probiotics administration or placebo. Concerning bowel activities, both irritant bowel movements and discomfort caused by constipation showed significant improvement with RH 3201 at 8 weeks. Symptoms including severity of abdominal bloating, frequency of abdominal bloating, and satisfaction of bowel habits based on the irritable bowel syndrome-severity scoring system also ameliorated in the probiotic group. Analysis of the fecal microbiome revealed that the abundance of Bacteroides cellulosilyticus and Akkermansia muciniphila was higher during the period of RH 3201 administration compared to the placebo. Untargeted metabolome analysis further suggested a correlation between specific metabolites, such as N-acetylornithine, xanthine, and 3-phenylpropionic acid, and the improvement of clinical symptoms. These results indicate that RH 3201 was effective in ameliorating IBS-C, potentially by enriching beneficial microbes and associated metabolites in the gut environment.
(© 2024. The Author(s).)
References: Carding, S., Verbeke, K., Vipond, D. T., Corfe, B. M. & Owen, L. J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 26. https://doi.org/10.3402/mehd.v26.26191 (2015).
Ahlawat, S. & Asha, Sharma, K. K. Gut-organ axis: a microbial outreach and networking. Lett. Appl. Microbiol. 72. https://doi.org/10.1111/lam.13333 (2021).
Rutsch, A., Kantsjö, J. B. & Ronchi, F. The gut-brain axis: how microbiota and host Inflammasome Influence brain physiology and pathology. Front. Immunol. 11, 604179 (2020). (PMID: 33362788775842810.3389/fimmu.2020.604179)
Kim, H. et al. Increased amino acid absorption mediated by Lacticaseibacillus rhamnosus IDCC 3201 in high-protein diet-fed mice. J. Microbiol. Biotechnol. 33, 511–518 (2023). (PMID: 367884641016473210.4014/jmb.2212.12020)
Deleu, S., Machiels, K., Raes, J., Verbeke, K. & Vermeire, S. Short chain fatty acids and its producing organisms: an overlooked therapy for IBD? EBioMedicine 66, 103293 (2021). (PMID: 33813134804750310.1016/j.ebiom.2021.103293)
Parada Venegas, D. et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory Bowel diseases. Front. Immunol. 10, 277 (2019). (PMID: 30915065642126810.3389/fimmu.2019.00277)
den Besten, G. et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54, 2325–2340 (2013). (PMID: 10.1194/jlr.R036012)
Appanna, V. D. & Dysbiosis probiotics, and prebiotics: in diseases and health. Hum. Microbes Power within 81–122. https://doi.org/10.1007/978-981-10-7684-8_3 (2018).
Bron, P. A. et al. Can probiotics modulate human disease by impacting intestinal barrier function? Br. J. Nutr. 117, 93–107 (2017). (PMID: 28102115529758510.1017/S0007114516004037)
van Zyl, W. F., Deane, S. M. & Dicks, L. M. T. Molecular insights into probiotic mechanisms of action employed against intestinal pathogenic bacteria. Gut Microbes 12, 1831339 (2020). (PMID: 33112695759561110.1080/19490976.2020.1831339)
Pelagalli, A., Squillacioti, C., Mirabella, N. & Meli, R. Aquaporins in health and disease: an overview focusing on the gut of different species. Int. J. Mol. Sci. 17, 1213 (2016). (PMID: 27472320500061110.3390/ijms17081213)
Dimidi, E., Christodoulides, S., Scott, S. M. & Whelan, K. Mechanisms of action of probiotics and the gastrointestinal microbiota on gut motility and constipation. Adv. Nutr. 8, 484–494 (2017). (PMID: 28507013542112310.3945/an.116.014407)
Alexander, C., Ford, B. E. & Lacy, Nicholas, J. Talley. Irritable bowel syndrome. N. Engl. J. Med. 26. https://doi.org/10.1056/NEJMra1607547 (2017).
Adriani, A. et al. Irritable bowel syndrome: the clinical approach. Panminerva Med. 60, 213–222 (2018). (PMID: 3025754210.23736/S0031-0808.18.03541-3)
Efficacy and safety of. Bacillus coagulans LBSC in irritable bowel syndrome: a prospective, interventional, randomized, double-blind, placebo-controlled clinical study [CONSORT Compliant] - PubMed. https://pubmed.ncbi.nlm.nih.gov/33545934/.
Agrawal, A. et al. Clinical trial: the effects of a fermented milk product containing Bifidobacterium lactis DN-173 010 on abdominal distension and gastrointestinal transit in irritable bowel syndrome with constipation. Aliment. Pharmacol. Ther. 29, https://doi.org/10.1111/j.1365-2036.2008.03853.x (2009).
Lewis, E. D. et al. Efficacy of Lactobacillus paracasei HA-196 and Bifidobacterium longum R0175 in alleviating symptoms of irritable bowel syndrome (IBS): a randomized, placebo-controlled study. Nutrients 12, 1159 (2020). (PMID: 32326347723059110.3390/nu12041159)
Young, Y. et al. Probiotics Ameliorate Stool consistency in patients with chronic constipation: a randomized, double-Blind, placebo-controlled study. Dig. Dis. Sci. 10, https://doi.org/10.1007/s10620-018-5139-8 (2018).
Oh, H. et al. Efficacy of a Synbiotic containing Lactobacillus paracasei DKGF1 and Opuntia humifusa in Elderly patients with irritable bowel syndrome: a Randomized, Double-Blind, placebo-controlled trial. Gut Liver 17, https://doi.org/10.5009/gnl210478.
Dai, C., Zheng, C-Q., Jiang, M., Ma, X-Y. & Jiang, L-J. Probiotics and irritable bowel syndrome. World J. Gastroenterol. 19, https://doi.org/10.3748/wjg.v19.i36.5973 (2013).
Jeong, K., Kim, M., Jeon, S. A., Kim, Y. H. & Lee, S. A randomized trial of Lactobacillus rhamnosus IDCC 3201 tyndallizate (RHT3201) for treating atopic dermatitis. Pediatr. Allergy Immunol. 31, 783–792 (2020). (PMID: 3236361310.1111/pai.13269)
Chae, S. A. et al. Anti-inflammatory and anti-pathogenic potential of lacticaseibacillus rhamnosus IDCC 3201 isolated from feces of breast-fed infants. Microb. Pathog. 173, 105857 (2022). (PMID: 3639761410.1016/j.micpath.2022.105857)
Drossman, D. A. & Hasler, W. L. Rome IV-Functional GI disorders: disorders of Gut-Brain Interaction. Gastroenterology 150, 1257–1261 (2016). (PMID: 2714712110.1053/j.gastro.2016.03.035)
Zhou, Q. et al. Randomised placebo-controlled trial of dietary glutamine supplements for postinfectious irritable bowel syndrome. Gut 68, 996–1002 (2019). (PMID: 3010816310.1136/gutjnl-2017-315136)
El-Salhy, M., Hatlebakk, J. G., Gilja, O. H., Bråthen Kristoffersen, A. & Hausken, T. Efficacy of faecal microbiota transplantation for patients with irritable bowel syndrome in a randomised, double-blind, placebo-controlled study. Gut 69, 859–867 (2020). (PMID: 3185276910.1136/gutjnl-2019-319630)
Kim, M. C. et al. Effects of ID-HWS1000 on the perception of bowel activity and microbiome in subjects with functional constipation: a randomized, double-blind placebo-controlled study. J. Med. Food 24, 883–893 (2021). (PMID: 3440687710.1089/jmf.2020.4746)
Wald, R. et al. Validation and clinical utility of a bowel habit questionnaire in school-age children. J. Pediatr. Gastroenterol. Nutr. 5, https://doi.org/10.1097/MPG.0b013e31822504fb (2011).
Francis, C. Y., Morris, J. & Whorwell, P. J. The irritable bowel severity scoring system: a simple method of monitoring irritable bowel syndrome and its progress. Aliment. Pharmacol. Ther. 11, 395–402 (1997). (PMID: 914678110.1046/j.1365-2036.1997.142318000.x)
Bushnell, D. M. et al. Validation of electronic data capture of the irritable bowel syndrome–quality of life measure, the work productivity and activity impairment questionnaire for irritable bowel syndrome and the EuroQol. Value Health 9, 98–105 (2006). (PMID: 1662641310.1111/j.1524-4733.2006.00087.x)
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019). (PMID: 31341288701518010.1038/s41587-019-0209-9)
ggplot2 Based Publication Ready Plots. https://rpkgs.datanovia.com/ggpubr/.
Valero-Mora, P. M. ggplot2: elegant graphics for data analysis. J. Stat. Softw. 35, 1–3 (2010). (PMID: 10.18637/jss.v035.b01)
Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, https://doi.org/10.1186/gb-2011-12-6-r60.
Lacy, B. E. et al. Responders vs clinical response: a critical analysis of data from linaclotide phase 3 clinical trials in IBS-C. Neurogastroenterol. Motil. 26, 326–333 (2014). (PMID: 24382134428239410.1111/nmo.12264)
Wu, C. S. et al. Age-dependent remodeling of gut microbiome and host serum metabolome in mice. Aging (Albany NY) 13, 6330–6345 (2021). (PMID: 3361248010.18632/aging.202525)
Yang, J. et al. Landscapes of bacterial and metabolic signatures and their interaction in major depressive disorders. Sci. Adv. 6 (2020).
Jo, J. K. et al. Gut microbiome and metabolome profiles associated with high-fat diet in mice. Metabolites 11, 482 (2021). (PMID: 34436423839800110.3390/metabo11080482)
Leclercq, S. et al. Gut microbiota-induced changes in β-hydroxybutyrate metabolism are linked to altered sociability and depression in alcohol use disorder. Cell Rep. 33, 108238 (2020). (PMID: 3305335710.1016/j.celrep.2020.108238)
Xiao, L., Liu, Q., Luo, M. & Xiong, L. Gut microbiota-derived metabolites in irritable bowel syndrome. Front. Cell. Infect. Microbiol. 11, https://doi.org/10.3389/fcimb.2021.729346 (2021).
Jacobs, J. P. et al. Multi-omics profiles of the intestinal microbiome in irritable bowel syndrome and its bowel habit subtypes. Microbiome 11, 5 (2023). (PMID: 36624530983075810.1186/s40168-022-01450-5)
Han, L. et al. Altered metabolome and microbiome features provide clues in understanding irritable bowel syndrome and depression comorbidity. ISME J. 16, 983–996 (2022). (PMID: 3475052810.1038/s41396-021-01123-5)
James, S. C., Fraser, K., Young, W., McNabb, W. C. & Roy, N. C. Gut microbial metabolites and biochemical pathways involved in irritable bowel syndrome: effects of diet and nutrition on the microbiome. J. Nutr. 150, 1012–1021 (2020). (PMID: 3189139810.1093/jn/nxz302)
Zamani, M., Alizadeh-Tabari, S. & Zamani, V. Systematic review with meta-analysis: the prevalence of anxiety and depression in patients with irritable bowel syndrome. Aliment. Pharmacol. Ther. 50, 132–143 (2019). (PMID: 3115741810.1111/apt.15325)
Wang, H., Lee, I. S., Braun, C. & Enck, P. Effect of probiotics on central nervous system functions in animals and humans: a systematic review. J. Neurogastroenterol. Motil. 22, 589–605 (2016). (PMID: 27413138505656810.5056/jnm16018)
Sequeira, L-M., Kaeber, M., Cekin, E., Enck, P. & Mack, I. The Effect of Probiotics on Quality of Life, Depression and anxiety in patients with irritable bowel syndrome: a systematic review and Meta-analysis. J. Clin. Med. 10(16), https://doi.org/10.3390/jcm10163497.
Pinto-Sanchez, I. et al. Probiotic Bifidobacterium longum NCC3001 reduces Depression scores and alters brain activity: a pilot study in patients with irritable bowel syndrome. Gastroenterology 153(2), https://doi.org/10.1053/j.gastro.2017.05.003.
Mohideen, K. et al. The knowledge and awareness of medical emergencies and management among dental students. J. Pharm. Bioallied Sci. 13, S741–S747 (2021). (PMID: 34447193837591510.4103/jpbs.JPBS_559_20)
Millan, V. et al. Methanogens and Hydrogen Sulfide producing Bacteria guide distinct gut microbe profiles and irritable bowel syndrome subtypes. Am. J. Gastroenterol. 117(12). https://doi.org/10.14309/ajg.0000000000001997 (2022).
Rosa, D. et al. Constipation-predominant irritable bowel syndrome (IBS-C): effects of different nutritional patterns on intestinal dysbiosis and symptoms. Nutrients 15(7). https://doi.org/10.3390/nu15071647 (2023).
Ghaffari, P., Shoaie, S. & Nielsen, K. Irritable bowel syndrome and microbiome; switching from conventional diagnosis and therapies to personalized interventions. J. Transl. Med. 20(10), https://doi.org/10.1186/s12967-022-03365-z.
Kassinen, A. et al. The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology 133, 24–33 (2007). (PMID: 1763112710.1053/j.gastro.2007.04.005)
Su, Q. et al. Gut microbiome signatures reflect different subtypes of irritable bowel syndrome. Gut Microbes 15, https://doi.org/10.1080/19490976.2022.2157697 (2023).
Zhai, Q., Feng, S., Arjan, N. & Chen, W. A next generation probiotic, Akkermansia muciniphila. Crit. Rev. Food Sci. Nutr. 59, https://doi.org/10.1080/10408398.2018.1517725 (2019).
Pittayanon, R. et al. Differences in gut microbiota in patients with vs without Inflammatory Bowel diseases: a systematic review. Gastroenterology 158, 930–946e1 (2020). (PMID: 3181250910.1053/j.gastro.2019.11.294)
Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. U. S. A. 110, https://doi.org/10.1073/pnas.1219451110 (2013).
Zheng, P., Li, Z. & Zhou, Z. Gut microbiome in type 1 diabetes: a comprehensive review. Diabetes Metab. Res. Rev. 34, e3043 (2018). (PMID: 29929213622084710.1002/dmrr.3043)
Adjuvant Probiotics of Lactobacillus salivarius subsp. Salicinius AP-32, L. Johnsonii MH-68, and Bifidobacterium animalis subsp. lactis CP-9 attenuate glycemic levels and inflammatory cytokines in patients with type 1 Diabetes Mellitus - PubMed. https://pubmed.ncbi.nlm.nih.gov/35299968/.
Hobara, H., Otsuka, A., Okujima, C. & Hashikawa, N. Lactobacillus paragasseri OLL2809 improves depression-like behavior and increases beneficial gut microbes in mice. Front. Neurosci. 16, https://doi.org/10.3389/fnins.2022.918953 (2022).
Ondee, T. et al. Lactobacillus acidophilus LA5 improves saturated fat-induced obesity mouse model through the enhanced intestinal Akkermansia muciniphila. Sci. Rep. 11, https://doi.org/10.1038/s41598-021-85449-2.
Francis, C. & Whorwell, Y. P, J.Bran and irritable bowel syndrome: time for reappraisal. Lancet 344, https://doi.org/10.1016/s0140-6736(94)91055-3.
Galica, N., Galica, R. & Dumitrascu, L. Diet, fibers, and probiotics for irritable bowel syndrome. J. Med. Life 2, https://doi.org/10.25122/jml-2022-0028 (2022).
Robert, C., Chassard, C., Lawson, P. & Donadile, A. Bacteroides cellulosilyticus sp. nov., a cellulolytic bacterium from the human gut microbial community. Int. J. Syst. Evol. Microbiol. 7, https://doi.org/10.1099/ijs.0.64998-0 (2007).
Gao, X. et al. CAZymes-associated method to explore glycans that mitigate DSS-induced colitis via targeting Bacteroides cellulosilyticus. Int. J. Biol. Macromol. 258, 128694 (2023). (PMID: 3809694110.1016/j.ijbiomac.2023.128694)
Neff, P. et al. Diverse intestinal Bacteria contain putative zwitterionic capsular polysaccharides with anti-inflammatory properties. Cell. Host Microbe. 20. https://doi.org/10.1016/j.chom.2016.09.002 (2016).
Vélez, M. P., De Keersmaecker, S. C. J. & Vanderleyden, J. Adherence factors of Lactobacillus in the human gastrointestinal tract. FEMS Microbiol. Lett. 276, 140–148 (2007). (PMID: 1788800910.1111/j.1574-6968.2007.00908.x)
Kastl, A. J., Terry, N. A., Wu, G. D. & Albenberg, L. G. The structure and function of the human small intestinal microbiota: current understanding and future directions. Cell. Mol. Gastroenterol. Hepatol. 9, 33–45 (2020). (PMID: 3134451010.1016/j.jcmgh.2019.07.006)
Yu, Y., Yang, W., Li, Y. & Cong, Y. Enteroendocrine cells: sensing gut microbiota and regulating inflammatory Bowel diseases. Inflamm. Bowel Dis. 26, 11–20 (2020). (PMID: 3156004410.1093/ibd/izz217)
Mazzawi, T. & El-Salhy, M. Dietary guidance and ileal enteroendocrine cells in patients with irritable bowel syndrome. Exp. Ther. Med. 12, 1398–1404 (2016). (PMID: 27588061499804310.3892/etm.2016.3491)
Mazzawi, T., Hausken, T. & El-Salhy, M. Changes in colonic enteroendocrine cells of patients with irritable bowel syndrome following fecal microbiota transplantation. Scand. J. Gastroenterol. 57, 792–796 (2022). (PMID: 3515689310.1080/00365521.2022.2036809)
Mazzawi, T. Gut microbiota manipulation in irritable bowel syndrome. Microorganisms 10, 1332 (2022). (PMID: 35889051931949510.3390/microorganisms10071332)
Jia, Y. et al. Association between human blood metabolome and the risk of psychiatric disorders. Schizophr. Bull. 49, 428 (2023). (PMID: 3612476910.1093/schbul/sbac130)
Wang, J. et al. Characteristics of the gut microbiome and serum metabolome in patients with functional constipation. Nutrients 15, 1779 (2023). (PMID: 370496191009725310.3390/nu15071779)
Nakato, J. et al. l-Ornithine and l-lysine stimulate gastrointestinal motility via transient receptor potential vanilloid 1. Mol. Nutr. Food Res. 61, mnfr.201700230 (2017).
Huang, Z. et al. From purines to purinergic signalling: molecular functions and human diseases. Signal. Transduct. Target. Ther. 6, 162 (2021). (PMID: 33907179807971610.1038/s41392-021-00553-z)
Ni, C. et al. Lactic acid bacteria strains relieve hyperuricaemia by suppressing xanthine oxidase activity via a short-chain fatty acid-dependent mechanism. Food Funct. 12, 7054–7067 (2021). (PMID: 3415235310.1039/D1FO00198A)
Mete, R. et al. The role of oxidants and reactive nitrogen species in irritable bowel syndrome: a potential etiological explanation. Med. Sci. Monit. 19, 762 (2013). (PMID: 24029778378119810.12659/MSM.889068)
Schempp, H., Weiser, D., Kelber, O. & Elstner, E. F. Radical scavenging and anti-inflammatory properties of STW 5 (Iberogast) and its components. Phytomedicine 13, 36 (2006). (PMID: 1677739310.1016/j.phymed.2006.03.017)
Hu, J. et al. Gut microbiota-derived 3-phenylpropionic acid promotes intestinal epithelial barrier function via AhR signaling. Microbiome 11, 102 (2023). (PMID: 371589701016579810.1186/s40168-023-01551-9)
Cho, S. et al. Phenylpropionic acid produced by gut microbiota alleviates acetaminophen-induced hepatotoxicity. Gut Microbes 15, 2231590 (2023). (PMID: 374318671033750310.1080/19490976.2023.2231590)
معلومات مُعتمدة: NRF-2022R1C1C1008574 National Research Foundation of Korea
تواريخ الأحداث: Date Created: 20240927 Date Completed: 20240927 Latest Revision: 20240927
رمز التحديث: 20240928
DOI: 10.1038/s41598-024-72887-x
PMID: 39333245
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-024-72887-x