دورية أكاديمية

Subtracting the background by reducing cell-free DNA's confounding effects on Mycobacterium tuberculosis quantitation and the sputum microbiome.

التفاصيل البيبلوغرافية
العنوان: Subtracting the background by reducing cell-free DNA's confounding effects on Mycobacterium tuberculosis quantitation and the sputum microbiome.
المؤلفون: Naidoo CC; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa.; African Microbiome Institute, Division of Molecular Biology & Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa., Venter R; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa., Codony F; Municipal Laboratory - Aigües de Mataró, Mataró, Spain., Agustí G; Reactivos para Diagnóstico, Setmenat, Spain., Kitchin N; Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa., Naidoo S; Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa., Monaco H; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA., Mishra H; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa.; Public Health Research Institute, New Jersey Medical School, Newark, New Jersey, USA., Li Y; Division of Pulmonary, Critical Care, and Sleep Medicine, New York University School of Medicine, New York, USA., Clemente JC; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA., Warren RM; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa., Segal LN; Division of Pulmonary, Critical Care, and Sleep Medicine, New York University School of Medicine, New York, USA., Theron G; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa. gtheron@sun.ac.za.; African Microbiome Institute, Division of Molecular Biology & Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa. gtheron@sun.ac.za.
المصدر: Scientific reports [Sci Rep] 2024 Sep 27; Vol. 14 (1), pp. 22350. Date of Electronic Publication: 2024 Sep 27.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Mycobacterium tuberculosis*/genetics , Mycobacterium tuberculosis*/drug effects , Mycobacterium tuberculosis*/isolation & purification , Sputum*/microbiology , Microbiota*/drug effects , Microbiota*/genetics , Cell-Free Nucleic Acids* , RNA, Ribosomal, 16S*/genetics , DNA, Bacterial*/genetics, Humans ; Tuberculosis/microbiology ; Tuberculosis/drug therapy ; Tuberculosis/diagnosis ; Female ; Male ; Adult ; Middle Aged ; Azides/pharmacology ; Tuberculosis, Pulmonary/microbiology ; Tuberculosis, Pulmonary/drug therapy ; Tuberculosis, Pulmonary/diagnosis ; Propidium/analogs & derivatives
مستخلص: DNA characterisation in people with tuberculosis (TB) is critical for diagnostic and microbiome evaluations. However, extracellular DNA, more frequent in people on chemotherapy, confounds results. We evaluated whether nucleic acid dyes [propidium monoazide (PMA), PEMAX] and DNaseI could reduce this. PCR [16S Mycobacterium tuberculosis complex (Mtb) qPCR, Xpert MTB/RIF] was done on dilution series of untreated and treated (PMA, PEMAX, DNaseI) Mtb. Separately, 16S rRNA gene qPCR and sequencing were done on untreated and treated sputa before (Cohort A: 11 TB-negatives, 9 TB-positives; Cohort B: 19 TB-positives, PEMAX only) and 24-weeks after chemotherapy (Cohort B). PMA and PEMAX reduced PCR-detected Mtb DNA for dilution series and Cohort A sputum versus untreated controls, suggesting non-intact Mtb is present before treatment-start. PEMAX enabled sequencing-based Mycobacterium-detection in 7/12 (58%) TB-positive sputa where no such reads otherwise occurred. In Cohort A, PMA- and PEMAX-treated versus untreated sputa had decreased α- and increased β-diversities. In Cohort B, β-diversity differences between timepoints were only detected with PEMAX. DNaseI had negligible effects. PMA and PEMAX (but not DNaseI) reduced extracellular DNA in PCR and improved pathogen detection by sequencing. PEMAX additionally detected chemotherapy-associated taxonomic changes that would otherwise be missed. Dyes enhance microbiome evaluations especially during chemotherapy.
(© 2024. The Author(s).)
References: Bouskra, D. et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature456 (7221), 507–510 (2008). (PMID: 1898763110.1038/nature07450)
VanEvery, H. et al. Microbiome epidemiology and association studies in human health. Nat. Rev. Genet.24 (2), 109–124 (2023). (PMID: 3619890810.1038/s41576-022-00529-x)
Wen, J. & He, J. Q. The causal impact of the gut microbiota on respiratory tuberculosis susceptibility. Infect. Dis. Ther.12 (11), 2535–2544 (2023). (PMID: 378157541065182310.1007/s40121-023-00880-4)
Wipperman, M. F. et al. Gastrointestinal microbiota composition predicts peripheral inflammatory state during treatment of human tuberculosis. Nat. Commun.12 (1), 1141 (2021). (PMID: 33602926789257510.1038/s41467-021-21475-y)
Musisi, E. et al. Effect of seven anti-tuberculosis treatment regimens on sputum microbiome: a retrospective analysis of the HIGHRIF study 2 and PanACEA MAMS-TB clinical trials. Lancet Microbe4 (11), e913–e922 (2023). (PMID: 3783257110.1016/S2666-5247(23)00191-X)
Wipperman, M. F. et al. Antibiotic treatment for tuberculosis induces a profound dysbiosis of the microbiome that persists long after therapy is completed. Sci. Rep.7 (1), 10767 (2017). (PMID: 28883399558991810.1038/s41598-017-10346-6)
Global tuberculosis report 2023. Geneva: World Health Organization (2023).
Theron, G. et al. Xpert MTB/RIF results in patients with previous tuberculosis: can we distinguish true from false positive results? Clin. Infect. Dis.62 (8), 995–1001 (2016). (PMID: 26908793480310510.1093/cid/civ1223)
Mishra, H. et al. Xpert MTB/RIF Ultra and Xpert MTB/RIF for diagnosis of tuberculosis in an HIV-endemic setting with a high burden of previous tuberculosis: a two-cohort diagnostic accuracy study. Lancet Respir. Med.8 (4), 368–382 (2020). (PMID: 3206653410.1016/S2213-2600(19)30370-4)
Theron, G. et al. False-positive Xpert MTB/RIF results in retested patients with previous tuberculosis: frequency, profile, and prospective clinical outcomes. J. Clin. Microbiol.56 (3) (2018).
Jacobs, R. et al. Identification of novel host biomarkers in plasma as candidates for the immunodiagnosis of tuberculosis disease and monitoring of tuberculosis treatment response. Oncotarget7 (36), 57581 (2016). (PMID: 27557501529537410.18632/oncotarget.11420)
Goletti, D. et al. Can we predict tuberculosis cure? What tools are available? Eur. Respir. J.52 (5) (2018).
Namasivayam, S. et al. Longitudinal profiling reveals a persistent intestinal dysbiosis triggered by conventional anti-tuberculosis therapy. Microbiome5 (1), 1–17 (2017). (PMID: 10.1186/s40168-017-0286-2)
Burdet, C. et al. Impact of antibiotic gut exposure on the temporal changes in microbiome diversity. Antimicrob. Agents Chemother.63 (10) (2019).
Rogers, G. et al. The exclusion of dead bacterial cells is essential for accurate molecular analysis of clinical samples. Clin. Microbiol. Infect.16 (11), 1656–1658 (2010). (PMID: 2014891810.1111/j.1469-0691.2010.03189.x)
Agustí, G. et al. Viability determination of Helicobacter pylori using propidium monoazide quantitative PCR. Helicobacter15 (5), 473–476 (2010). (PMID: 2108375410.1111/j.1523-5378.2010.00794.x)
Rawsthorne, H., Dock, C. & Jaykus, L. PCR-based method using propidium monoazide to distinguish viable from nonviable Bacillus subtilis spores. Appl. Environ. Microbiol.75 (9), 2936–2939 (2009). (PMID: 19270144268167610.1128/AEM.02524-08)
Vesper, S. et al. Quantifying fungal viability in air and water samples using quantitative PCR after treatment with propidium monoazide (PMA). J. Microbiol. Methods72 (2), 180–184 (2008). (PMID: 1816015610.1016/j.mimet.2007.11.017)
Agustí, G., Fittipaldi, M. & Codony, F. False-positive viability PCR results: an association with microtubes. Curr. Microbiol.74 (3), 377–380 (2017). (PMID: 2817595910.1007/s00284-016-1189-3)
Wagner, A. O. et al. Removal of free extracellular DNA from environmental samples by ethidium monoazide and propidium monoazide. Appl. Environ. Microbiol.74 (8), 2537–2539 (2008). (PMID: 18296534229314910.1128/AEM.02288-07)
Vondrakova, L. et al. Impact of various killing methods on EMA/PMA-qPCR efficacy. Food Control85, 23–28 (2018). (PMID: 10.1016/j.foodcont.2017.09.013)
Kragh, M. L., Thykier, M. & Hansen, L. T. A long-amplicon quantitative PCR assay with propidium monoazide to enumerate viable Listeria monocytogenes after heat and desiccation treatments. Food Microbiol.86, 103310 (2020). (PMID: 3170385910.1016/j.fm.2019.103310)
Cuthbertson, L. et al. Implications of multiple freeze-thawing on respiratory samples for culture-independent analyses. J. Cyst. Fibros.14 (4), 464–467 (2015). (PMID: 2545956310.1016/j.jcf.2014.10.004)
Nocker, A. et al. Use of propidium monoazide for live/dead distinction in microbial ecology. Appl. Environ. Microbiol.73 (16), 5111–5117 (2007). (PMID: 17586667195100110.1128/AEM.02987-06)
Nocker, A., Cheung, C. Y. & Camper, A. K. Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J. Microbiol. Methods67 (2), 310–320 (2006). (PMID: 1675323610.1016/j.mimet.2006.04.015)
Hortelano, I. et al. Optimization of pre-treatments with Propidium Monoazide and PEMAX™ before real-time quantitative PCR for detection and quantification of viable Helicobacter pylori cells. J. Microbiol. Methods185, 106223 (2021). (PMID: 3387263810.1016/j.mimet.2021.106223)
Kayigire, X. A. et al. Propidium monoazide and Xpert MTB/RIF to quantify Mycobacterium tuberculosis cells. Tuberculosis101, 79–84 (2016). (PMID: 2786540310.1016/j.tube.2016.08.006)
Nikolayevskyy, V. et al. Utility of propidium monoazide viability assay as a biomarker for a tuberculosis disease. Tuberculosis95 (2), 179–185 (2015). (PMID: 2553416810.1016/j.tube.2014.11.005)
Kim, Y. J. et al. Evaluation of propidium monoazide real-time PCR for early detection of viable Mycobacterium tuberculosis in clinical respiratory specimens. Ann. Lab. Med.34 (3), 203 (2014). (PMID: 24790907399931810.3343/alm.2014.34.3.203)
de Assunção, T. M. et al. Real time PCR quantification of viable Mycobacterium tuberculosis from sputum samples treated with propidium monoazide. Tuberculosis94 (4), 421–427 (2014). (PMID: 2486365410.1016/j.tube.2014.04.008)
Miotto, P. et al. Early tuberculosis treatment monitoring by Xpert ® MTB/RIF. Eur. Respir. J.39 (5), 1269–1271 (2012). (PMID: 2254773710.1183/09031936.00124711)
Lu, J. et al. Direct detection from clinical sputum samples to differentiate live and dead Mycobacterium tuberculosis. J. Clin. Lab. Anal.33 (3), e22716 (2019). (PMID: 3046105410.1002/jcla.22716)
Esmail, A. et al. An all-oral 6-month regimen for multidrug-resistant tuberculosis: a multicenter, randomized controlled clinical trial (the NExT study). Am. J. Respir. Crit Care Med.205 (10), 1214–1227 (2022). (PMID: 3517590510.1164/rccm.202107-1779OC)
Invitrogen. PureLink™ Microbiome DNA Purification Kit. Pub. No. MAN0014267 Rev. A.0.
Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci.108 (Supplement 1), 4516–4522 (2011). (PMID: 2053443210.1073/pnas.1000080107)
GenIUL PEMAX 25 Reagent Monodose (TBC-Biomarker kit) INSTRUCTIONS in Doc Code 450000075-00 (2015).
Segal, L. N. et al. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nat. Microbiol.1 (5), 1–11 (2016). (PMID: 10.1038/nmicrobiol.2016.31)
Segal, L. N. et al. Anaerobic Bacterial Fermentation Products Increase Tuberculosis Risk in Antiretroviral-Drug-Treated HIV Patients (Cell Host & Microbe, 2017).
Tsay, J. C. J. et al. Airway Microbiota is associated with upregulation of the PI3K pathway in lung cancer. Am. J. Respir. Crit Care Med.198 (9), 1188–1198 (2018). (PMID: 29864375622157410.1164/rccm.201710-2118OC)
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol.37 (8), 852–857 (2019). (PMID: 31341288701518010.1038/s41587-019-0209-9)
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods13 (7), 581–583 (2016). (PMID: 27214047492737710.1038/nmeth.3869)
McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J.6 (3), 610–618 (2012). (PMID: 2213464610.1038/ismej.2011.139)
Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J.6 (8), 1621–1624 (2012). (PMID: 22402401340041310.1038/ismej.2012.8)
Davis, N. M. et al. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome6, 1–14 (2018). (PMID: 10.1186/s40168-018-0605-2)
Oksanen, J. et al. The vegan package. Community Ecol. Pack.10, 631–637 (2007).
Love, M. I., Huber, W. & Anders, S. Moderated estimation of Fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.15 (12), 550 (2014). (PMID: 25516281430204910.1186/s13059-014-0550-8)
Elizaquível, P., Aznar, R. & Sánchez, G. Recent developments in the use of viability dyes and quantitative PCR in the food microbiology field. J. Appl. Microbiol.116 (1), 1–13 (2014). (PMID: 2411907310.1111/jam.12365)
Kim, Y. J. et al. Evaluation of propidium monoazide real-time PCR for early detection of viable Mycobacterium tuberculosis in clinical respiratory specimens. Ann. Lab. Med.34 (3), 203–209 (2014). (PMID: 24790907399931810.3343/alm.2014.34.3.203)
Sulaiman, I. et al. Evaluation of the airway microbiome in nontuberculous mycobacteria disease. Eur. Respir. J.52(4) (2018).
Naidoo, C. C. et al. Anaerobe-enriched gut microbiota predicts pro-inflammatory responses in pulmonary tuberculosis. EBioMedicine67, 103374 (2021). (PMID: 33975252812218010.1016/j.ebiom.2021.103374)
Ticlla, M. R. et al. The sputum microbiome in pulmonary tuberculosis and its association with disease manifestations: a cross-sectional study. Front. Microbiol.12, 633396 (2021). (PMID: 34489876841780410.3389/fmicb.2021.633396)
Kateete, D. P. et al. Sputum microbiota profiles of treatment-naïve TB patients in Uganda before and during first-line therapy. Sci. Rep.11 (1), 24486 (2021). (PMID: 34966183871653210.1038/s41598-021-04271-y)
Pezzulo, A. A. et al. Abundant DNase I-sensitive bacterial DNA in healthy porcine lungs and its implications for the lung microbiome. Appl. Environ. Microbiol.79 (19), 5936–5941 (2013). (PMID: 23872563381137710.1128/AEM.01752-13)
Nocker, A., Sossa, K. E. & Camper, A. K. Molecular monitoring of disinfection efficacy using propidium monoazide in combination with quantitative PCR. J. Microbiol. Methods70 (2), 252–260 (2007). (PMID: 1754416110.1016/j.mimet.2007.04.014)
Codony, F., Agustí, G. & Allué-Guardia, A. Cell membrane integrity and distinguishing between metabolically active and inactive cells as a means of improving viability PCR. Mol. Cell Probes29 (3), 190–192 (2015). (PMID: 2579778710.1016/j.mcp.2015.03.003)
de Goffau, M. C. et al. Recognizing the reagent microbiome. Nat. Microbiol.3 (8), 851–853 (2018). (PMID: 3004617510.1038/s41564-018-0202-y)
معلومات مُعتمدة: K43TW012302 United States NH NIH HHS; R01AI136894 United States NH NIH HHS; 98948 National Research Foundation; SF1041 European and Developing Countries Clinical Trials Partnership
فهرسة مساهمة: Keywords: Mycobacterium tuberculosis; DNaseI; PEMAX; Propidium monoazide; Sputum microbiome; Xpert MTB/RIF
المشرفين على المادة: 0 (Cell-Free Nucleic Acids)
0 (RNA, Ribosomal, 16S)
0 (DNA, Bacterial)
0 (propidium monoazide)
0 (Azides)
36015-30-2 (Propidium)
تواريخ الأحداث: Date Created: 20240927 Date Completed: 20240927 Latest Revision: 20240927
رمز التحديث: 20240928
DOI: 10.1038/s41598-024-73497-3
PMID: 39333362
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-024-73497-3