دورية أكاديمية

Non-invasive label-free imaging analysis pipeline for in situ characterization of 3D brain organoids.

التفاصيل البيبلوغرافية
العنوان: Non-invasive label-free imaging analysis pipeline for in situ characterization of 3D brain organoids.
المؤلفون: Filan C; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30318, USA., Charles S; Georgia Institute of Technology, Interdisciplinary Program in Bioengineering, Atlanta, GA, 30332, USA., Casteleiro Costa P; Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA, 30332, USA., Niu W; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, 30322, USA., Cheng B; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30318, USA., Wen Z; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, 30322, USA.; Departments of Cell Biology and Neurology, Emory University School of Medicine, Atlanta, Georgia, 30322, USA., Lu H; Georgia Institute of Technology, Interdisciplinary Program in Bioengineering, Atlanta, GA, 30332, USA.; Georgia Institute of Technology, School of Chemical and Biomolecular Engineering, Atlanta, Georgia, 30332, USA., Robles FE; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30318, USA. robles@gatech.edu.; Georgia Institute of Technology, Interdisciplinary Program in Bioengineering, Atlanta, GA, 30332, USA. robles@gatech.edu.; Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA, 30332, USA. robles@gatech.edu.; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30318, USA. robles@gatech.edu.
المصدر: Scientific reports [Sci Rep] 2024 Sep 27; Vol. 14 (1), pp. 22331. Date of Electronic Publication: 2024 Sep 27.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Organoids*/cytology , Brain*/diagnostic imaging , Brain*/cytology , Imaging, Three-Dimensional*/methods, Humans ; Animals ; Mice ; Cell Culture Techniques, Three Dimensional/methods
مستخلص: Brain organoids provide a unique opportunity to model organ development in a system similar to human organogenesis in vivo. Brain organoids thus hold great promise for drug screening and disease modeling. Conventional approaches to organoid characterization predominantly rely on molecular analysis methods, which are expensive, time-consuming, labor-intensive, and involve the destruction of the valuable three-dimensional (3D) architecture of the organoids. This reliance on end-point assays makes it challenging to assess cellular and subcellular events occurring during organoid development in their 3D context. As a result, the long developmental processes are not monitored nor assessed. The ability to perform non-invasive assays is critical for longitudinally assessing features of organoid development during culture. In this paper, we demonstrate a label-free high-content imaging approach for observing changes in organoid morphology and structural changes occurring at the cellular and subcellular level. Enabled by microfluidic-based culture of 3D cell systems and a novel 3D quantitative phase imaging method, we demonstrate the ability to perform non-destructive high-resolution quantitative image analysis of the organoid. The highlighted results demonstrated in this paper provide a new approach to performing live, non-destructive monitoring of organoid systems during culture.
(© 2024. The Author(s).)
References: Lancaster, M. A. & Knoblich, J. A. Cerebral organoids model human brain development and microcephaly. Nature 350, 373–379. https://doi.org/10.1038/nature12517 (2013). (PMID: 10.1038/nature12517)
Blair, J. D., Hockemeyer, D. & Bateup, H. S. Genetically engineered human cortical spheroid models of tuberous sclerosis. Nat. Med. 24, 1568–1578. https://doi.org/10.1038/s41591-018-0139-y (2018). (PMID: 10.1038/s41591-018-0139-y30127391)
Kim, N.-S. et al. Pharmacological rescue in patient iPSC and mouse models with a rare DISC1 mutation. Nat. Commun. 12, 1398. https://doi.org/10.1038/s41467-021-21713-3 (2021). (PMID: 10.1038/s41467-021-21713-333658519)
Groveman, B. R. et al. Human cerebral organoids as a therapeutic drug screening model for Creutzfeldt–Jakob disease. Sci. Rep. 11, 5165. https://doi.org/10.1038/s41598-021-84689-6 (2021). (PMID: 10.1038/s41598-021-84689-633727594)
Qian, X. et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165, 1238–1254. https://doi.org/10.1016/j.cell.2016.04.032 (2016). (PMID: 10.1016/j.cell.2016.04.03227118425)
Park, S. E., Georgescu, A. & Huh, D. Organoids-on-a-chip. Science 364, 960–965. https://doi.org/10.1126/science.aaw7894 (2019). (PMID: 10.1126/science.aaw789431171693)
Rossi, G., Manfrin, A. & Lutolf, M. P. Progress and potential in organoid research. Nat. Rev. Genet. 19, 671–687. https://doi.org/10.1038/s41576-018-0051-9 (2018). (PMID: 10.1038/s41576-018-0051-930228295)
Sasai, Y. Next-generation regenerative medicine: Organogenesis from stem cells in 3D culture. Cell Stem Cell 12, 520–530. https://doi.org/10.1016/j.stem.2013.04.009 (2013). (PMID: 10.1016/j.stem.2013.04.00923642363)
Kann, S. H. et al. Measurement of oxygen consumption rates of human renal proximal tubule cells in an array of organ-on-chip devices to monitor drug-induced metabolic shifts. Microsyst. Nanoeng. 8, 109. https://doi.org/10.1038/s41378-022-00442-7 (2022). (PMID: 10.1038/s41378-022-00442-736187891)
Perottoni, S. et al. Intracellular label-free detection of mesenchymal stem cell metabolism within a perivascular niche-on-a-chip. Lab Chip 21, 1395–1408. https://doi.org/10.1039/d0lc01034k (2021). (PMID: 10.1039/d0lc01034k33605282)
Kaushik, G. et al. Quantitative label-free imaging of 3D vascular networks self-assembled in synthetic hydrogels. Adv. Healthcare Mater. 8, 1801186. https://doi.org/10.1002/adhm.201801186 (2018). (PMID: 10.1002/adhm.201801186)
Wang, Q. et al. High-throughput read-on-ski automated imaging and label-free detection system for toxicity screening of compounds using personalised human kidney organoids. J. Zhejiang Univ.-Sci. B 23, 564–577. https://doi.org/10.1631/jzus.b2100701 (2022). (PMID: 10.1631/jzus.b210070135794686)
Ao, Z. et al. One-stop microfluidic assembly of human brain organoids to model prenatal cannabis exposure. Anal. Chem. 92, 4630–4638. https://doi.org/10.1021/acs.analchem.0c00205 (2020). (PMID: 10.1021/acs.analchem.0c0020532070103)
Cho, A.-N. et al. Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nat. Commun. 12, 4730 (2021). (PMID: 10.1038/s41467-021-24775-534354063)
Berger, E. et al. Millifluidic culture improves human midbrain organoid vitality and differentiation. Lab Chip 18, 3172–3183 (2018). (PMID: 10.1039/C8LC00206A30204191)
Wang, Y., Wang, L., Zhu, Y. & Qin, J. Human brain organoid-on-a-chip to model prenatal nicotine exposure. Lab Chip 18, 851–860 (2018). (PMID: 10.1039/C7LC01084B29437173)
Rakotoson, I. et al. Fast, multicolor 3-D imaging of brain organoids with a new single-objective two-photon virtual light-sheet microscope. Biorxiv 461335, https://doi.org/10.1101/461335 ( 2018).
Vinci, M. et al. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol. 10, 29. https://doi.org/10.1186/1741-7007-10-29 (2012). (PMID: 10.1186/1741-7007-10-2922439642)
Gabriel, E. et al. Cpap promotes timely cilium disassembly to maintain neural progenitor pool. EMBO J. 35, 803–819 (2016). (PMID: 10.15252/embj.20159367926929011)
Kang, Y. et al. A human forebrain organoid model of fragile x syndrome exhibits altered neurogenesis and highlights new treatment strategies. Nat. Neurosci. 24, 1377–1391 (2021). (PMID: 10.1038/s41593-021-00913-634413513)
Lee, G. et al. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461, 402–406 (2009). (PMID: 10.1038/nature0832019693009)
Li, Y. et al. Induction of expansion and folding in human cerebral organoids. Cell Stem Cell 20, 385-396.e3 (2017). (PMID: 10.1016/j.stem.2016.11.01728041895)
Mariani, J. et al. Foxg1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell 162, 375–390. https://doi.org/10.1016/j.cell.2015.06.034 (2015). (PMID: 10.1016/j.cell.2015.06.03426186191)
Raja, W. K. et al. Self-organizing 3D human neural tissue derived from induced pluripotent stem cells recapitulate Alzheimer’s disease phenotypes. PLoS One 11, e0161969 (2016). (PMID: 10.1371/journal.pone.016196927622770)
Seo, J. et al. Inhibition of p25/cdk5 attenuates tauopathy in mouse and iPSC models of frontotemporal dementia. J. Neurosci. 37, 9917–9924 (2017). (PMID: 10.1523/JNEUROSCI.0621-17.201728912154)
Kadoshima, T. et al. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. PNAS 110, 20284–20289. https://doi.org/10.1073/pnas.1315710110 (2013). (PMID: 10.1073/pnas.131571011024277810)
Wang, P. et al. CRISPR/Cas9-mediated heterozygous knockout of the autism gene chd8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells. Mol. Autism 8, 1–17 (2017). (PMID: 10.1186/s13229-017-0124-1)
Hof, L. et al. Long-term live imaging and multiscale analysis identify heterogeneity and core principles of epithelial organoid morphogenesis. BMC Biol. 19, 1–22. https://doi.org/10.1186/s12915-021-00958-w (2021). (PMID: 10.1186/s12915-021-00958-w)
de Medeiros, G. et al. Multiscale light-sheet organoid imaging framework. Nature Communications 13, https://doi.org/10.1038/s41467-022-32465-z ( 2022).
Kessel, S. et al. High-throughput 3D tumor spheroid screening method for cancer drug discovery using celigo image cytometry. SLAS Technol. 22, 454–465. https://doi.org/10.1177/2211068216652846 (2016). (PMID: 10.1177/221106821665284627272155)
Iefremova, V. et al. An organoid-based model of cortical development identifies non-cell-autonomous defects in Wnt signaling contributing to Miller-Dieker syndrome. Cell Rep. 19, 50–59 (2017). (PMID: 10.1016/j.celrep.2017.03.04728380362)
Huang, Y. et al. Optical coherence tomography detects necrotic regions and volumetrically quantifies multicellular tumor spheroids. Cancer Res. 77, 6011–6020. https://doi.org/10.1158/0008-5472.CAN-17-0821 (2017). (PMID: 10.1158/0008-5472.CAN-17-082128904062)
Sharma, M., Verma, Y., Rao, K., Nair, R. & Gupta, P. Imaging growth dynamics of tumour spheroids using optical coherence tomography. Biotechnol. Lett. 29, 273–278. https://doi.org/10.1007/s10529-006-9232-2 (2007). (PMID: 10.1007/s10529-006-9232-217160349)
Ledwig, P., Sghayyer, M., Kurtzberg, J. & Robles, F. E. Dual-wavelength oblique back-illumination microscopy for the non-invasive imaging and quantification of blood in collection and storage bags. Biomed. Opt. Express 9, 2743–2754. https://doi.org/10.1364/boe.9.002743 (2018). (PMID: 10.1364/boe.9.00274330258687)
Ledwig, P. & Robles, F. E. Epi-mode tomographic quantitative phase imaging in thick scattering samples. Biomed. Opt. Express 10, 3605–3621. https://doi.org/10.1364/boe.10.003605 (2019). (PMID: 10.1364/boe.10.00360531360607)
Ledwig, P. & Robles, F. Quantitative 3D refractive index tomography of opaque samples in epi-mode. Optica 8, 6–14. https://doi.org/10.1364/OPTICA.410135 (2021). (PMID: 10.1364/OPTICA.41013534368406)
Park, Y., Depeursinge, C. & Popescu, G. Quantitative phase imaging in biomedicine. Nature Photon. 12, 578–589. https://doi.org/10.1038/s41566-018-0253-x (2018). (PMID: 10.1038/s41566-018-0253-x)
Mir, M., Bhaduri, B., Wang, R., Zhu, R. & Popescu, G. Quantitative Phase Imaging (Elsevier Inc., 2012). (PMID: 10.1016/B978-0-44-459422-8.00003-5)
Kastl, L., Isbach, M., Dirksen, D., Schnekenburger, J. & Kemper, B. Quantitative phase imaging for cell culture quality control. Cytometry A 91, 470–481. https://doi.org/10.1002/cyto.a.23082 (2017). (PMID: 10.1002/cyto.a.2308228264140)
Marquet, P., Depeursinge, C. & Magistretti, P. J. Review of quantitative phase-digital holographic microscopy: Promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders. Neurophotonics 1, 020901. https://doi.org/10.1117/1.nph.1.2.020901 (2014). (PMID: 10.1117/1.nph.1.2.02090126157976)
Wang, R. et al. Dispersion-relation phase spectroscopy of intracellular transport. Opt. Express 19, 20571–20579. https://doi.org/10.1364/oe.19.020571 (2011). (PMID: 10.1364/oe.19.02057121997064)
Costa, P. C., Ledwig, P., Bergquist, A. & Robles, F. Noninvasive white blood cell quantification in umbilical cord blood collection bags with quantitative oblique back-illumination microscopy. Transfusion 60, 588–597. https://doi.org/10.1111/trf.15704 (2020). (PMID: 10.1111/trf.15704)
Costa, P. C. et al. Towards in-vivo label-free detection of brain tumor margins with epi-illumination tomographic quantitative phase imaging. Biomed. Opt. Express 12, 1621–1634. https://doi.org/10.1364/BOE.416731 (2021). (PMID: 10.1364/BOE.41673133796377)
Costa, P. C. et al. Functional imaging with dynamic quantitative oblique back-illumination microscopy. J. Biomed. Opt. 27, 066502. https://doi.org/10.1117/1.JBO.27.6.066502 (2022). (PMID: 10.1117/1.JBO.27.6.066502)
Charles, S. et al. Non-invasive quality control of organoid cultures using mesofluidic CSTR bioreactors and high-content imaging. Adv. Mater. Technol. 2400473. https://doi.org/10.1002/admt.202400473 (2024).
Jackson-Holmes, E. L. Microfluidics-based tools for culture and multi-functional assessments of three-dimensional pluripotent stem cell derived tissues. Ph.D. thesis,Georgia Institute of Technology (2018).
Przybyla, L. & Voldman, J. Probing embryonic stem cell autocrine and paracrine signaling using microfluidics. Annu. Rev. Anal. Chem. (Palo Alto Calif.) 5, 293–315 (2012). (PMID: 10.1146/annurev-anchem-062011-14312222524217)
Charles, S. Microfluidic tools for Studying Development in Embryos and Brain Organoids. Ph.D. thesis, Georgia Institute of Technology (2022).
Crino, P. B., Nathanson, K. L. & Henske, E. P. The tuberous sclerosis complex. N. Engl. J. Med. 355, 1345–1356 (2006). (PMID: 10.1056/NEJMra05532317005952)
Crino, P. B. mTOR: A pathogenic signaling pathway in developmental brain malformations. Trends Mol. Med. 17, 734–742 (2011). (PMID: 10.1016/j.molmed.2011.07.00821890410)
Niu, W., Siciliano, B. & Wen, Z. Modeling tuberous sclerosis complex with human induced pluripotent stem cells. World J. Pediatr. 20(3), 208–218. https://doi.org/10.1007/s12519-022-00576-8 (2022). (PMID: 10.1007/s12519-022-00576-835759110)
Costa, V. et al. mtorc1 inhibition corrects neurodevelopmental and synaptic alterations in a human stem cell model of tuberous sclerosis. Cell Rep. 15, 86–95. https://doi.org/10.1016/j.celrep.2016.02.090 (2016). (PMID: 10.1016/j.celrep.2016.02.09027052171)
Grabole, N. et al. Genomic analysis of the molecular neuropathology of tuberous sclerosis using a human stem cell model. Genome Med. 8, 1–14 (2016). (PMID: 10.1186/s13073-016-0347-3)
Li, Y. et al. Abnormal neural progenitor cells differentiated from induced pluripotent stem cells partially mimicked development of TSC2 neurological abnormalities. Stem Cell Rep. 8, 883–893 (2017). (PMID: 10.1016/j.stemcr.2017.02.020)
Paşca, A. M. et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods 12, 671–678 (2015). (PMID: 10.1038/nmeth.341526005811)
Chen, H., Jin, X., Li, T. & Ye, Z. Brain organoids: Establishment and application. Front. Cell Dev. Biol. 10, 1029873. https://doi.org/10.3389/fcell.2022.1029873 (2022). (PMID: 10.3389/fcell.2022.102987336506083)
Blair, J. D. & Bateup, H. S. New frontiers in modeling tuberous sclerosis with human stem cell-derived neurons and brain organoids. Dev. Dyn. 249, 46–55. https://doi.org/10.1002/dvdy.60 (2020). (PMID: 10.1002/dvdy.6031070828)
Sundberg, M. et al. Purkinje cells derived from TSC patients display hypoexcitability and synaptic deficits associated with reduced FMRP levels and reversed by rapamycin. Mol. Psychiatry 23, 2167–2183 (2018). (PMID: 10.1038/s41380-018-0018-429449635)
Inc., T. M. Matlab version: 23.2.0.2409890 (r2023b) update 3 ( 2023).
Gul, B., Ashraf, S., Khan, S., Nisar, H. & Ahmad, I. Cell refractive index: Models, insights, applications and future perspectives. Photodiagn. Photodyn. Ther. 33, 102096. https://doi.org/10.1016/j.pdpdt.2020.102096 (2021). (PMID: 10.1016/j.pdpdt.2020.102096)
Singh, R., Priye, V. & Chack, D. Highly sensitive refractive index-based sensor for DNA hybridization using subwavelength grating waveguide. IETE Tech. Rev. 39, 1463–1472. https://doi.org/10.1080/02564602.2021.2016076 (2022). (PMID: 10.1080/02564602.2021.2016076)
Mehlem, A., Hagberg, C. E., Muhl, L., Eriksson, U. & Falkevall, A. Imaging of neutral lipids by oil red o for analyzing the metabolic status in health and disease. Nat. Protoc. 8, 1149–1154. https://doi.org/10.1038/nprot.2013.055 (2013). (PMID: 10.1038/nprot.2013.05523702831)
Bowers, M. et al. FASN-dependent lipid metabolism links neurogenic stem/progenitor cell activity to learning and memory deficits. Cell Stem Cell 27, 98-109.e11 (2020). (PMID: 10.1016/j.stem.2020.04.00232386572)
Mieulet, V. & Lamb, R. F. Tuberous sclerosis complex: Linking cancer to metabolism. Trends Mol. Med. 16, 329–335 (2010). (PMID: 10.1016/j.molmed.2010.05.00120605525)
Fowler, S. D. & Greenspan, P. Application of Nile red, a fluorescent hydrophobic probe, for the detection of neutral lipid deposits in tissue sections: comparison with oil red O. J. Histochem. Cytochem. 33, 833–836 (1985). (PMID: 10.1177/33.8.40200994020099)
Zheng, L., Fleith, M., Giuffrida, F., O’Neill, B. V. & Schneider, N. Dietary polar lipids and cognitive development: A narrative review. Adv. Nutr. 10, 1163–1176 (2019). (PMID: 10.1093/advances/nmz05131147721)
Piomelli, D., Astarita, G. & Rapaka, R. A neuroscientist’s guide to lipidomics. Nat. Rev. Neurosci. 8, 743–754 (2007). (PMID: 10.1038/nrn223317882252)
Nguyen, T. H., Kandel, M. E., Rubessa, M., Wheeler, M. B. & Popescu, G. Gradient light interference microscopy for 3d imaging of unlabeled specimens. Nat. Commun. 8, 210. https://doi.org/10.1038/s41467-017-00190-7 (2017). (PMID: 10.1038/s41467-017-00190-728785013)
Li, Y., Petrovic, L., La, J., Celli, J. P. & Yelleswarapu, C. S. Digital holographic microscopy for longitudinal volumetric imaging of growth and treatment response in three-dimensional tumor models. J. Biomed. Opt. 19, 116001. https://doi.org/10.1117/1.jbo.19.11.116001 (2014). (PMID: 10.1117/1.jbo.19.11.11600125364948)
Kandel, M. E. et al. Epi-illumination gradient light interference microscopy for imaging opaque structures. Nat. Commun. 12, 4691. https://doi.org/10.1038/s41467-019-12634-3 (2019). (PMID: 10.1038/s41467-019-12634-3)
Scholler, J. et al. Dynamic full-field optical coherence tomography: 3D live-imaging of retinal organoids. Light Sci. Appl. 9, 140. https://doi.org/10.1038/s41377-020-00375-8 (2020). (PMID: 10.1038/s41377-020-00375-832864115)
Filan, C. et al. Three-dimensional quantitative phase imaging for the assessment of glioblastoma multiforme treatment efficacy in human spheroids. In Optica Biophotonics Congress: Biomedical Optics 2024, MM5A.4 (Optica, 2024).
Filan, C. et al. In-line assessment of immunotherapy cell cultures using quantitative oblique back-illumination microscopy. In Optica Biophotonics Congress: Biomedical Optics 2024, MS3A.2 (Optica, 2024).
Duffy, D. C., McDonald, J. C., Schueller, O. J. & Whitesides, G. M. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70, 4974–4984 (1998). (PMID: 10.1021/ac980656z21644679)
Ford, T., Chu, K. & Mertz, J. Phase-gradient microscopy in thick tissue with oblique back-illumination. Nat. Methods 9, 1195–1197. https://doi.org/10.1038/nmeth.2219 (2012). (PMID: 10.1038/nmeth.221923103879)
Preibisch, S., Saalfeld, S. & Tomancak, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25, 1463–1465 (2009). (PMID: 10.1093/bioinformatics/btp18419346324)
Dejgaard, S. Y. & Presley, J. F. New automated single-cell technique for segmentation and quantitation of lipid droplets. J. Histochem. Cytochem. 62, 889–901. https://doi.org/10.1369/0022155414554835 (2014). (PMID: 10.1369/002215541455483525246387)
Exner, T. et al. Lipid droplet quantification based on iterative image processing. J. Lipid Res. 60, 1333–1344. https://doi.org/10.1194/jlr.D092841 (2019). (PMID: 10.1194/jlr.D09284130926625)
Haralick, R. M., Shanmugam, K. & Dinstein, I. Textural features for image classification. In IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-3, 610–621, https://doi.org/10.1109/TSMC.1973.4309314 (1973).
Costa, A., Humpire-Mamani, G. & Traina, A. An efficient algorithm for fractal analysis of textures. In 25th Sibgrapi Conf Graph Patterns Images, 39–46 (Pearson, 2012).
Traina, J., AJM, Wu, L. & Faloutsos, C. Fast feature selection using fractal dimension. In XV Brazilian Database Symposium, 158–171 ( 2000).
Gonzalez, R. C. & Woods, R. E. Digital Image Processing, vol. 4 ( Pearson, 2012).
Robles, F. E., Wilson, J. & Warren, W. Quantifying melanin spatial distribution using pump-probe microscopy and a 2-D morphological autocorrelation transformation for melanoma diagnosis. J. Biomed. Opt. 18, 120502. https://doi.org/10.1117/1.JBO.18.12.120502 (2013). (PMID: 10.1117/1.JBO.18.12.12050224296994)
Robles, F. E. et al. Pump-probe imaging of pigmented cutaneous melanoma primary lesions gives insight into metastatic potential. Biomed. Opt. Express 6, 3631–3645. https://doi.org/10.1364/BOE.6.003631 (2015). (PMID: 10.1364/BOE.6.00363126417529)
معلومات مُعتمدة: NSF GRFP DGE-2039655 National Science Foundation Graduate Research Fellowship Program; R21NS117067 United States NS NINDS NIH HHS; R21MH123711 United States MH NIMH NIH HHS; W81XWH1910353 U.S. Department of Defense; CASI BWF 1014540 Burroughs Wellcome Fund; NSF CBET CAREER 356 1752011 National Science Foundation; R35GM147437 United States GM NIGMS NIH HHS
فهرسة مساهمة: Keywords: Brain organoids; Live imaging; Mesofluidics; Neurodevelopmental disorders; Non-invasive imaging; Quantitative phase imaging systems
تواريخ الأحداث: Date Created: 20240927 Date Completed: 20240928 Latest Revision: 20240927
رمز التحديث: 20240928
DOI: 10.1038/s41598-024-72038-2
PMID: 39333572
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-024-72038-2