دورية أكاديمية

Mdivi-1 Inhibits Astrocyte Activation and Astroglial Scar Formation and Enhances Axonal Regeneration after Spinal Cord Injury in Rats.

التفاصيل البيبلوغرافية
العنوان: Mdivi-1 Inhibits Astrocyte Activation and Astroglial Scar Formation and Enhances Axonal Regeneration after Spinal Cord Injury in Rats.
المؤلفون: Gang Li, Yang Cao, Feifei Shen, Yangsong Wang, Liangjie Bai, Weidong Guo, Yunlong Bi, Gang Lv, Zhongkai Fan, Xiaojing J. Gao, Yu-Feng Wang
المصدر: Frontiers in Cellular Neuroscience; 10/19/2016, Vol. 10, p1-14, 14p
مصطلحات موضوعية: ASTROCYTES, SCARS, SPINAL cord injuries, AXONS, LABORATORY rats, MITOCHONDRIAL DNA, GLIAL fibrillary acidic protein, CHONDROITIN
مستخلص: After spinal cord injury (SCI), astrocytes become hypertrophic, and proliferative, forming a dense network of astroglial processes at the site of the lesion. This constitutes a physical and biochemical barrier to axonal regeneration. Mitochondrial fission regulates cell cycle progression; inhibiting the cell cycle of astrocytes can reduce expression levels of axon growth-inhibitory molecules as well as astroglial scar formation after SCI. We therefore investigated how an inhibitor of mitochondrial fission, Mdivi-1, would affect astrocyte proliferation, astroglial scar formation, and axonal regeneration following SCI in rats. We stern blot and immunofluorescent double-labeling showed that Mdivi-1 markedly reduced the expression of the astrocyte marker glial fibrillary acidic protein (GFAP), and a cell proliferation marker, proliferating cell nuclear antigen, in astrocytes 3 days after SCI. Moreover, Mdivi-1 decreased the expression of GFAP and neurocan, a chondroitin sulfate proteoglycan. Notably, immunofluorescent labeling and Nissl staining showed that Mdivi-1 elevated the production of growth-associated protein-43 and increased neuronal survival at 4 weeks after SCI. Finally, hematoxylin-eosin staining, and behavioral evaluation of motor function indicated that Mdivi-1 also reduced cavity formation and improved motor function 4 weeks after SCI. Our results confirm that Mdivi-1 promotes motor function after SCI, and indicate that inhibiting mitochondrial fission using Mdivi-1 can inhibit astrocyte activation and astroglial scar formation and contribute to axonal regeneration after SCI in rats. [ABSTRACT FROM AUTHOR]
Copyright of Frontiers in Cellular Neuroscience is the property of Frontiers Media S.A. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index