دورية أكاديمية

A ternary nanofibrous scaffold potential for central nerve system tissue engineering.

التفاصيل البيبلوغرافية
العنوان: A ternary nanofibrous scaffold potential for central nerve system tissue engineering.
المؤلفون: Saadatkish, Niloufar, Nouri Khorasani, Saied, Morshed, Mohammad, Allafchian, Ali‐Reza, Beigi, Mohammad‐Hossein, Masoudi Rad, Maryam, Esmaeely Neisiany, Rasoul, Nasr‐Esfahani, Mohammad‐Hossein
المصدر: Journal of Biomedical Materials Research, Part A; Sep2018, Vol. 106 Issue 9, p2394-2401, 8p
مستخلص: Abstract: In the present research, a ternary polycaprolactone (PCL)/gelatin/fibrinogen nanofibrous scaffold for tissue engineering application was developed. Through this combination, PCL improved the scaffold mechanical properties; meanwhile, gelatin and fibrinogen provided more hydrophilicity and cell proliferation. Three types of nanofibrous scaffolds containing different fibrinogen contents were prepared and characterized. Morphological study of the nanofibers showed that the prepared nanofibers were smooth, uniform without any formation of beads with a significant reduction in nanofiber diameter after incorporation of fibrinogen. The chemical characterization of the scaffolds confirmed that no chemical reaction occurred between the scaffold components. The tensile test results of the scaffolds showed that increasing in fibrinogen content led to a decrease in mechanical properties. Furthermore, adipose‐derived stem cells were employed to evaluate cell–scaffold interaction. Cell culture results indicated that higher cell proliferation occurred for the higher amount of fibrinogen. Statistical analysis was also carried out to evaluate the significant difference for the obtained results of water droplet contact angle and cell culture. Therefore, the results confirmed that PCL/gel/fibrinogen scaffold has a good potential for tissue engineering applications including central nerve system tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A:2394–2401, 2018. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Biomedical Materials Research, Part A is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:15493296
DOI:10.1002/jbm.a.36431