دورية أكاديمية

Coinfection with Human Norovirus and Escherichia coli O25:H4 Harboring Two Chromosomal blaCTX-M-14 Genes in a Foodborne Norovirus Outbreak in Shizuoka Prefecture, Japan.

التفاصيل البيبلوغرافية
العنوان: Coinfection with Human Norovirus and Escherichia coli O25:H4 Harboring Two Chromosomal blaCTX-M-14 Genes in a Foodborne Norovirus Outbreak in Shizuoka Prefecture, Japan.
المؤلفون: HIROMI NAGAOKA, SHINICHIRO HIRAI, HIROTAKA MORINUSHI, SHIRO MIZUMOTO, KANA SUZUKI, HIROAKI SHIGEMURA, NAOTO TAKAHASHI, FUMIE SUZUKI, MIZUHA MOCHIZUKI, MICHIKO ASANUMA, TAKAHARU MAEHATA, AYA OGAWA, KAI OHKOSHI, TSUYOSHI SEKIZUKA, TAISEI ISHIOKA, SATOWA SUZUKI, HIROKAZU KIMURA, MAKOTO KURODA, MOTOI SUZUKI, KOICHI MURAKAMI
المصدر: Journal of Food Protection; Sep2020, Vol. 83 Issue 9, p1584-1591, 8p, 2 Diagrams, 3 Charts, 1 Graph
مستخلص: Hospital-acquired infections caused by extended-spectrum β-lactamase (ESBL)–producing Escherichia coli are a global problem. Healthy people can carry ESBL-producing E. coli in the intestines; thus, E. coli from healthy people can potentially cause hospital-acquired infections. Therefore, the transmission routes of ESBL-producing E. coli from healthy persons should be determined. A foodborne outbreak of human norovirus (HuNoV) GII occurred at a restaurant in Shizuoka, Japan, in 2018. E. coli O25:H4 was isolated from some of the HuNoV-infected customers. Pulsed-field gel electrophoresis showed that these E. coli O25:H4 strains originated from one clone. Because the only epidemiological link among the customers was eating food from this restaurant, the customers were concurrently infected with E. coli O25:H4 and HuNoV GII via the restaurant food. Whole genome analysis revealed that the E. coli O25:H4 strains possessed genes for regulating intracellular iron and expressing the flagellum and flagella. Extraintestinal pathogenic E. coli often express these genes on the chromosome. Additionally, the E. coli O25:H4 strains had plasmids harboring nine antimicrobial resistance genes. These strains harbored ESBL-encoding blaCTX-M-14 genes on two loci of the chromosome and had higher ESBL activity. Multilocus sequence typing and fimH subtyping revealed that the E. coli O25:H4 strains from the outbreak belonged to the subclonal group, ST131-fimH30R, which has been driving ESBL epidemics in Japan. Because the E. coli O25:H4 strains isolated in the outbreak belonged to a subclonal group spreading in Japan, foods contaminated with ESBL-producing E. coli might contribute to spreading these strains among healthy persons. The isolated E. coli O25:H4 strains produced ESBL and contained plasmids with multiple antimicrobial resistance genes, which may make it difficult to select antimicrobials for treating extraintestinal infections caused by these strains. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Food Protection is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index