دورية أكاديمية

Xiao-Qing-Long-Tang Maintains Cardiac Function during Heart Failure with Reduced Ejection Fraction in Salt-Sensitive Rats by Regulating the Imbalance of Cardiac Sympathetic Innervation.

التفاصيل البيبلوغرافية
العنوان: Xiao-Qing-Long-Tang Maintains Cardiac Function during Heart Failure with Reduced Ejection Fraction in Salt-Sensitive Rats by Regulating the Imbalance of Cardiac Sympathetic Innervation.
المؤلفون: Li, Zhaoyu, Wang, Yongcheng, Jiang, Yuehua, Ma, Dufang, Jiang, Ping, Zhou, Guofeng, Yang, Jinlong, Dong, Feng, Zhao, Hengyi, Zhang, Yimei, Li, Xiao
المصدر: Evidence-based Complementary & Alternative Medicine (eCAM); 11/24/2020, p1-11, 11p, 5 Graphs
مصطلحات موضوعية: INNERVATION of the heart, ACETYLTRANSFERASES, ANIMAL experimentation, BLOOD pressure, BODY weight, CARDIAC output, ECHOCARDIOGRAPHY, ELECTROCARDIOGRAPHY, ELECTRON microscopy, HEART failure, HERBAL medicine, CHINESE medicine, PEPTIDE hormones, POLYMERASE chain reaction, RATS, WESTERN immunoblotting, VENTRICULAR ejection fraction, THERAPEUTICS
مصطلحات جغرافية: ASIA
مستخلص: Objective. The anatomical and functional imbalances of sympathetic nerves are associated with cardiovascular disease progression. Xiao-Qing-Long-Tang (XQLT), an ancient Chinese herbal formula, has been used to treat cardiovascular diseases in eastern Asia for thousands of years. We determined the effect of XQLT in maintaining cardiac function during heart failure with reduced ejection fraction (HFrEF) with respect to its neurobiological effects in salt-sensitive rats. Methods. Dahl salt-sensitive (DS) rats were fed a high-salt diet to establish an HFrEF model and were divided into model (DS, administered normal saline) and XQL groups (administrated XQLT) randomly, with SS-13BN rats being used as the control. The bodyweight and blood pressure of rats were observed regularly. Electrocardiogram, echocardiography, and plasma N-terminal pro-B-type natriuretic peptide (NT-proBNP) were determined to assess cardiac function. The sympathetic tune and myocardial morphological changes were evaluated. Western blot and qRT-PCR were used to assay the expression of the nerve growth factor (NGF) and leukemia inhibitory factor (LIF). Tyrosine hydroxylase (TH), choline acetyltransferase (CHAT), and growth-associated protein 43 (GAP43) were assayed to confirm sympathetic remodeling. The micromorphological changes in cardiac sympathetic nerve endings were observed by transmission electron microscopy. Results. Four weeks after XQLT treatment, cardiac function and bodyweight were higher and blood pressure was lower than that of the DS group. Myocardial noradrenaline (NA) increased, while the plasma NA level decreased significantly. The morphology demonstrated that XQLT significantly alleviated myocardial damage. XQLT decreased the expression of LIF, increased the expression of NGF, enhanced the TH+/GAP43+ and TH+/CHAT + positive nerve fiber density, and improved the TH and GAP43 protein expression, but had no effect on CHAT. Moreover, XQLT improved the micromorphology of sympathetic nerve endings in the myocardium. Conclusion. XQLT maintains cardiac function during HFrEF in salt-sensitive rats, in part, by regulating the imbalance of cardiac sympathetic innervation. [ABSTRACT FROM AUTHOR]
Copyright of Evidence-based Complementary & Alternative Medicine (eCAM) is the property of Hindawi Limited and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:1741427X
DOI:10.1155/2020/9467271